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ON SOME QUALITATIVE PROPERTIES OF
SOLUTIONS OF DEGENERATED QUASILINEAR

EQUATIONS

Abstract

In the paper questions on the existence and uniqueness of generalized solution
of the Dirichlet problem for the equation of the form

n∑
i,j=1

∂

∂xi
(aij (x, u,Du))

∂u

∂xj
= f (x) (1)

in weighted Sobolev’s classes and some qualitative properties of the obtained
solution are investigated.

In the given paper questions of unique existence of generalized solution of the
Dirichlet problem for equation of the form

n∑
i,j=1

∂

∂xi
(aij (x, u,Du))

∂u

∂xj
= f (x) (1)

in weighted Sobolev’s classes and some qualitative properties of the obtained solution
(in unboundd domains and close to irregular points of the boundary) are studied.

Note that similar questions associated with the qualitative properties of solutions
of equation (1) earlier were considered in papers [1, 2] and questions of existence of
generalized solution- in [3, 4, 5].

We study questions of unique existence of generalized solution of the homoge-
neous Dirichlet problem for equation (1) in unbounded and nonsmooth domains.

Let 1 < p < ∞ and ϑ, ω1−p′ be locally integrable functions reciving a.e. finite
positive values in Rn, n ≥ 1, where p’= p

p−1 at 1 < p <∞.
In the cited below theorems 1, 2 we will suppose that ϑ ∈ A∞: there exist C > 0

and δ > 0 such that for any ball Q ⊂ Rn and compact e ⊂ Q

ϑ (e)
ϑ (Q)

≤ C

(
|e|
|Q|

)δ

holds, where |e| denotes the Lebesgue measure of the set e, and ϑ (e) =
∫
e

ϑdx;

(ϑ, ω) ∈ Apq is a pair of functions (ϑ, ω):

sup
Q⊂Rn

|Q|
1
n
−1 ϑ (Q)

1
q

(
ω1−p′ (Q)

) 1
p′
<∞.

Suppose, that D is an arbitrary open domain in Rn. Denote by Lp
ϑ (D) measur-

able in D functions u (x) bounded by the norm

‖u‖Lp
ϑ(D) =

∫
D

|u (x)|p ϑ (x) dx

 1
p

for 1 ≤ p <∞.
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Belonging of domain D ∈ Kε means: there exists ε (0, 1) such that for any point
x ∈ D there exists ball Qx

R(x) with the center at the point x of the radius R (x)
satisfying the inequality ∣∣∣Qx

R(x)

∣∣∣D∣∣∣ > ε
∣∣∣Qx

R(x)

∣∣∣ .
Let Ċ∞ (D) denote infinitely differentiable in D functions vanishing on the

boundary of domain. Define the semi norm in this space

‖f‖′ = ‖∇f‖Lp
ω(D) .

The following imbedding theorem was proved in [6, 7]: Let 1 ≤ p ≤ q < ∞,
D ∈ Kε be unbounded domain, ϑ ∈ A∞, (ϑ, ω) ∈ Apq, f ∈ C1 (D) , f |∂D = 0, then
the inequality

‖f‖Lq
ϑ(D) ≤ C ‖∇f‖Lp

ω(D) . (2)

holds, where C > 0 and it doesn’t depend on f .
This inequality remains valid for any function f ∈ Lip (D) , f |∂D = 0. In fact,

there exists a sequence of smooth functions fk, such that fk → f, ∇fk → f . For
example, average of the function f with the smooth kernel [8] has this property.
Then by virtue of the imbedding theorem (2)

‖fk‖Lq
ϑ(D) ≤ C ‖∇fk‖Lp

ω(D) ,

where C > 0 doesn’t depend on k.
Passing to the limit as k →∞ in this inequality, since |∇fk| < M and ∇fk → f

a.e. in D, then by means of the Lebesgue theorem in the right-hand side one can
pass to the limit under the integral sign.

It follows from the previous inequality that for norm fk

lim
k→∞

‖fk‖Lq
ϑ(D) ≤ C lim

k→∞
‖∇fk‖Lp

ω(D) .

The right-hand side by virtue of aforesaid tends to ‖∇fk‖Lp
ω(D), and the left-

hand side by virtue of the Fateaux theorem∫
D

lim
k→∞

|fk|q ϑ (x) dx

 1
q

=

∫
D

|f |q ϑ (x) dx

 1
q

.

Therefore,
‖f‖Lq

ϑ(D) ≤ C ‖∇f‖Lp
ω(D)

for any f ∈ Lip (D) , f |∂D = 0.
By virtue of (2) this seminorm defines also the norm in the space C∞ (D).
Denote the completion of functions f ∈ Lip (D) , f |∂D = 0 by the norm ‖f‖′ by

H̊ (D), then for any f ∈ H̊ (D)

‖f‖Lq
ϑ(D) ≤ C ‖∇f‖Lp

ω(D)

holds.
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Theorem 1. Let 2 < p < q, ϑ (x) ≤ ω (x) for almost all x ∈ D, D is a bounded
domain or p = q = 2 and D ∈ Kε :

(ϑ, ω) ∈ Apq, ϑ ∈ A∞, V = H̊ (D) , f ∈ V ′ the conditions∣∣∣∣∣
n∑

i=1

aik (x, u,Du)uxi

∣∣∣∣∣ ≤ ω |ux|p−1 + g (x)ω
1
p , (3a)

where

g (x) ∈ Lp′ (D) ,
n∑

i,k=1

aikuxiuxk
≥ ω |ux|p , (3b)

n∑
i=1

(aik (x, u,Du)uxi − aik (x, ϑ,Dϑ)ϑxi) (uxk
− ϑxk

) > 0 (3c)

be satisfied.
Then there exists a unique solution of equation (1) in the class V .
We shall solve equation (1) by the method of monotone operators in Banach

space. Put H = L2,ϑ then V ⊂ H ⊂ V ′.
Let u ∈ V, A : V → V ′ be an operator acting by the rule

〈A (u) , ϕ〉 =
∫
D

aik (x, u,Du)uxiϕxk
dx

for any ϕ ∈ V , where 〈A (u) , ϕ〉 means value of the functional A (u) on the element
ϕ ∈ V, V ′-conjugate to V .

Then equation (1) is equivalent to the operator equation Au = f, u ∈ V, f ∈ V ′.
Proof. In order to prove the theorem 1 it’s sufficient to establish the following

properties of the operator A: 1) boundedness; 2) coerciveness; 3) monotonicity; 4)
semi-continuity (see [9]).

The boundedness of the operator A follows from (3a)

|〈A (u) , ϕ〉| ≤ C

∣∣∣∣∣∣
∫
D

ω |ux|p dx+

∫
D

|g|p
′
dx

∣∣∣∣∣∣
 1

p′
∫

D

ω |ϕx|
p dx

 1
p

.

Hence
‖A (u)‖V ′ ≤ C

(
‖u‖p−1

V + ‖g‖Lp′ (D)

)
.

Let f ∈ V ′, and consider equation

A (u) = f, u ∈ V.

Then by virtue of (3b)

〈A (u) , u〉
‖u‖V

≥
n∑

i,k=1

∫
D

aikuxiuxk

‖u‖V

dx ≥ C ‖u‖p−1
V ,

which means the coerciveness of the operator A.
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The monotonicity of the operator A (〈Au−Aϑ, u− ϑ〉 > 0 if u 6= ϑ) follows
from (3b). Let’s show semi-continuity. By virtue of condition (3a) for any u, ϕ, ψ ∈
V we have ∣∣∣∣∣∣

n∑
i,k=1

aik (x, u+ tϕ, Du+ tDϕ)
(
uxi + tϕxi

)
ψxk

∣∣∣∣∣∣ ≤
≤ C

(
|Du|p−1 + tp−1 |Dϕ|p−1

)
|Dψ|ω + gω

1
p |Dψ| , |t| ≤ t0.

The left-hand side is continuous with respect to the parameter t, and the right-
hand side is integrable function, then on the base of the Lebesgue theorem

〈A (u+ tϕ) , ψ〉 → 〈A (u) , ψ〉 as t→ 0.

The semi-continuity is proved. Theorem 1 is also proved.
Let (ϑ, ω) ∈ Apq, where 1 ≤ p ≤ q <∞ D is a bounded domain.

Theorem 2. Let 1 ≤ p ≤ q < ∞, r > q′, u, α =
(

1
r′ −

1
q

)
1

p−1 + 1
q′ > 1, u be

a solution of equation (1) from the class V = H̊ (D). Then the following estimate
holds

sup
D
|u (x)| ≤ C

(
ϑ (D)α−1

) ∥∥∥∥fϑ
∥∥∥∥ 1

p−1

Lr
ϑ(D)

.

Proof. Note that f ∈ V ′. This follows from the finiteness of the norm ‖f |ϑ‖Lr
ϑ(D).

In fact ∣∣∣∣∣∣
∫
D

fϕdx

∣∣∣∣∣∣ ≤
∥∥∥∥fϑ

∥∥∥∥
Lr

ϑ(D)

· ‖ϕ‖
Lr′

ϑ
≤

≤
∥∥∥∥fϑ

∥∥∥∥
Lr

ϑ(D)

· ‖ϕ‖Lq
ϑ
· ϑ (D)1−

1
r
− 1

q ≤
∥∥∥∥fϑ

∥∥∥∥
Lr

ϑ(D)

ϑ (D)1−
1
r
− 1

q · ‖ϕ‖V .

or

‖f‖V ′ ≤
∥∥∥∥fϑ

∥∥∥∥
Lr

ϑ(D)

· ϑ (D)1−
1
r
− 1

q .

Therefore on the basis of theorem 1 there exists a unique solution u ∈ V of
equation (1). By virtue of the definition of solution u ∈ V

a (u, ϕ) =
∫
D

aik (x, u,Du)uxiϕxj
dx = −

∫
D

fϕdx

for any ϕ ∈ V . Then there exists a sequence of function {uj} and {ϕk} from C∞ (D),
which are fundamental in the norm of the space V , a (uj , ϕk) → a (u, ϕ) as j, k →∞.

Therefore
a (uj , ϕk) = −

∫
D

fϕkdx+ δjk,

where δjk → 0 as j, k →∞.
Denote uj , ϕk and δkj again by u, ϕ and δ respectively, then

a (u, ϕ) = −
∫
D

fϕdx+ δ.
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Let’s choose test function

ϕ = uk (x) =
{
|u (x)| − k, at |u (x)| ≥ k,
0, at |u (x)| < k,

, k > 0,

then ϕ ∈ V and therefore

n∑
i,k=1

∫
Dk

aik (x, u,Du)uxiuxk
dx = −

∫
Dk

fukdx,

where Dk = {x ∈ D : |u (x)| > k} , k ∈ R′. Hence, subject to the condition we shall
have ∫

Dk

ω |ux|p dx ≤
∫
Dk

uk |f | dx+ δ.

Therefore

∫
Dk

ω |ux|p dx ≤

∫
Dk

ϑ |uk|r
′
dx


1
r′

∫
Dk

|f |r ϑ1−rdx


1
r

+ δ,

∫
Dk

ω |ux|p dx ≤

∫
Dk

(
|f |
ϑ

)r

ϑdx


1
r
∫

ϑ

Dk

|uk|q dx


1
q

ϑ (Dk)
1
r′−

1
q + δ.

Taking into account the imbedding theorem and Holder inequality, we obtain∫
ϑ

Dk

|uk|q dx


1
q

≤ ϑ (Dk)
1

r′(p−1)
− 1

q(p−1)

∫
Dk

|f |
|ϑ|

· ϑ dx


1

r(p−1)

+ δ.

Denote by C0 =

∫
D

∣∣∣ f
ϑ

∣∣∣r ϑdx
 1

r

and by z (k) =
∫
Dk

ϑ |uk| dx, we obtain

z (k) = ϑ (Dk)
�

1
r′−

1
q

�
1

p−1
+ 1

q′ · C
1

p−1

0 .

Let

α =
(

1
r′
− 1
q

)
1

p− 1
+

1
q′
> 1,

then

−dz
dk

= ϑ (Dk) and z ≤ CC
1

p−1

0

(
−dz
dk

)α

.

Integrating this inequality and taking into account the fact that

z (0) =
∫
D

|u| dx, z

(
sup
D
|u|

)
= 0.
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We obtain

sup
D
|u| ≤ CC

1
p−1

0 z1− 1
α

∣∣∣∣z(0)

0

= C2C
1

p−1

0 ϑ (D)α−1 ,

where C doesn’t depend on u, ϑ, D.
Theorem 2 is proved.
In the following results the locally summable function ω (x) satisfies the condition:

there exist ε > 0 and α > 0 for any compact E from the ball Q0
R

|E|
p
n
−ε

 1
|E|

∫
E

ω (x) dx

  1
|E|

∫
E

ω
− 1

p−1 (x) dx

p−1

≤ αRp−nε (4)

is satisfied, where |E| is n-dimensional Lebesgue measure of set E, number 1 < p <
∞, α is a positive real number.

Note that power function of the form |x|s for −p < s < 1 satisfies the condition
A′p.

Denote by H̃ (D) the completion of functions f ∈ Lip (D) by the norm

‖f‖ = ‖f‖Lp
ω(D) + ‖∇f‖Lp

ω(D) ,

where ω satisfies condition (4).
Element u = {uj} will be called the solution of equation

∂

∂xi

(
ω |∇u|p−2 ∂u

∂xi

)
= 0, (5)

if
n∑

i=1

∫
D

ω |∇u|p−2 (uj)xi
(ϕk)xi

dx = δjk, (6)

uj ∈ C∞ (D) , ϕk ∈ C∞ (D) , moreover {uj} , {ϕk} are fundamental in the norm
H̃ (D), where δjk → 0 as j, k →∞.

Lemma 1. Let Q0
R be a ball of radius R with the center at the point 0 and having

limiting points on the surface of aphere SR. Let Γ be that part of the boundary of
domain D, which lies strictly inside of the ball QR. Let u ≡ {uj} be a nonnegative
solution of equation (5) vanishing on Γ. It holds the condition (4) for the function
ω (x).Then there exists constant M depending only on n, α, p, such that if

|D| < |QR|
M

then the following inequality is satisfied

u (0) <
1
2
max

D
u (x) .

In order to prove lemma 1 we shall follow the technique. (see [10])
In [10] it is applied to the linear equation without degeneration.
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We denote by D0 the set of points x ∈ D ∩Q0
R
2

at which

u (x) ≥ u (0)
2

.

1) Suppose that

|D0| >
∣∣Q0

R

∣∣
4nM

. (7)

Then we shall show that the statement of lemma 1 is valid. Later we shall show
that the statement of lemma 1 is valid without assumption (7) but with changing
the constant M to 4nM in the inequality. For each t > 0 we denote the set of points
x ∈ D, where uj (x) ≥ t by Dt. For the simplicity we shall write u instead of uj . The
boundary of the set Dt consists of the points of level set u (x) = t of the function
u (x), which will be denoted by Et and of the points situated on the sphere SR

(|x| = R). Suppose
f
Et = Et ∩Q0

R
2

.

By the Kronrode formula [13] for level surface we have

u(0)
2∫
0

∫
f
Et

ω
− 1

p−1
dσ

|∇u|
=

∫
D1

ω
− 1

p−1dx, (8)

where D1 =
{
x ∈ D ∩Q0

R
2

∣∣∣∣u (x) <
u (0)

2

}
.

It follows form (8) that there exists 0 ≤ t0 ≤ u(0)
2 which∫

f
Et0

ω
− 1

p−1
dσ

|∇u|
≤ 2
u (0)

∫
D1

ω
− 1

p−1dx.

Applying to the integral∫
f
Et0

dσ =
∫
f
Et0

(
ω

1
p |∇u|

p−1
p

) (
ω
− 1

p |∇u|−
p−1

p

)
dσ

the Holder inequality, we obtain

(
mes
n−1

f
Et0

)p

≤
∫
f
Et0

ω |∇u|p−1 dσ


∫
f
Et0

ω
− 1

p−1
dσ

|∇u|


p−1

,

∫
f
Et0

ω |∇u|p−1 dσ ≥

(
mes
n−1

f
Et0

)p


∫
f
Et0

ω
− 1

p−1 dσ
|∇u|


p−1 ≥

(
mes
n−1

f
Et0

)p

∫
D1

ω
− 1

p−1dx

p−1 ·
(
u (0)

2

)p−1

, (9)
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since
f
Et0 separates the sets D0 and D2 = Q0

R
2

\D in the ball Q0
R
2

, moreover

|D2| =
∣∣Q0

R

∣∣
2n

− |D| ≥
∣∣Q0

R

∣∣
2n

−
∣∣Q0

R

∣∣
M

=
(

1
2n

− 1
M

) ∣∣Q0
R

∣∣ .
Now let’s choose M such that the following condition be fulfilled

1
2n

− 1
M

>
1
M
, i.e. M > 2n+1.

Then we have |D2| =
|Q0

R|
M > |D| > |D0|.

Everywhere below n-dimensional Lebesgue measure D will be denoted by |D|.
By isoperimetric inequality

mes
n−1

f
Et0 ≥ β |D0|

n−1
n ,

where β is the constant dependent only on dimension n of the space. Therefore (9)
implies ∫

f
Et0

ω |∇u|p−1 dσ ≥ βp

2p−1
· |D0|p·

n−1
n∫

D1

ω
− 1

p−1dx

p−1u (0)p−1 . (10)

Let t > 0, h > 0, r > 0.. Let’s introduce the functions

ϕh =


u(x)−t

h at t ≤ u < t+ h,
1 at u ≥ t+ h,

0 at u < t,

ψh =


r+h−|x|

h at r ≤ |x| < r + h,
1 at |x| ≤ r,

0 at |x| > r + h.

Suppose ϕ = ϕh · ψh in identity (6) (therefore function ϕ ∈ H̊ (D) is a test
function). Then∫

D

ω |∇uj |p−2 ψh∇uj∇ϕhdx+
∫
D

ω |∇uj |p−2 ϕh∇uj∇ϕhdx = δj ,

where δj → 0 as j →∞. (For the simplicity we omit the indices in uj and δj). We
have

1
h

∫
n

t≤u<t+h
|x|<r

o
ω |∇u|p dx− 1

h

∫
n

t+x≤u
r≤|x|<r+h

o
ω |∇u|p−2∇u · x

|x|
dx+ αh = δ,

αh =
1
h

∫
Gh

ω |∇u|p ψhdx−
1
h

∫
Gh

ω |∇u|p−2∇u · x
|x|
ϕhdx,
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where
Gh = {x ∈ D : t ≤ u (x) < t+ h, r ≤ |x| < r + h} .

Passing to the limit as h → 0 by virtue of Lebesgue theorem for almost all
t > 0, r > 0 we shall have∫

n
u=t
|x|<r

o
ω |∇u|p−2 ∂u

∂n
dσ −

∫
n

u>t
|x|=r

o
ω |∇u|p−2 · ∂u

∂r
dσ = δ. (11)

In fact, by means of Federer formula (see [13])

1
h

∫
n

t≤u<t+h
|x|<r

o
ω |∇u|p dx =

1
h

t+h∫
t

ds


∫

n
u≡s
|x|<r

o
ω |∇u|p−1 dσ

 →

→
∫

n
u≡t
|x|<r

o
ω |∇u|p−1 dσ =

∫
n

u≡t
|x|<r

o
ω |∇u|p−2 ∂u

∂n
dσ,

as h→ 0 for a.e. t ∈ R′.
(We have used the fact that

∣∣∂u
∂n

∣∣ = |∇u| will be fulfilled on the level surface of
the function u)

1
h

∫
n

u>t+h
|x|<r+h

o
ω |∇u|p−2 ∂u

∂r
=

1
h

r+h∫
r

ds


∫

n
|x|=s

u>t+h

o
ω |∇u|p−2 ∂u

∂r
dσ

 →
∫

n
|x|=r
u>t

o
ω |∇u|p−2 ∂u

∂r
dσ,

as h→ 0 for a.e. r > 0.
Analogously one can prove that lim

h→0
αh = 0.

By means of equality (11) we shall show the estimate

∫
f
Et0

ω |∇u|p−2

∣∣∣∣∂u∂n
∣∣∣∣ dσ ≤ 6ω (Ft0R) ·

(
osc
Dt0

u

)p−1

Rp
≤

≤ K
ω (D)
Rp

(
max

D
u

)p−1

,

where Ft0R =
{
x ∈ D ∩Qx0

R : u (x) > t0,
R
2 < |x| < R

}
.

Integrating (11) with respect to
[

5
4R,

4
3R

]
at t = t0, we obtain

R

6

∫
f
Et0

ω |∇u|p−2 ∂u

∂n
dσ ≤

∫
Ωt0R

ω |∇u|p−1 dx+ δ · R
6
≤
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≤ ω (Ωt0R)
1
p ·

 ∫
Ωt0R

ω |∇u|p dx


1
p′

+ δ · R
6
, (12)

where Ωt0R =
{
x : 2

3R < |x| < 5
6R, u (x) > t0

}
.

It remains to show the estimate

∫
Ωt0R

ω |∇u|p dx ≤

(
osc
Dt0

u

)p

Rp

 ∫
Ft0R

ωdx

 ;

Put ϕ = (u− t0) ξp
(
|x|
R

)
in identity (6) where ξ ∈

[
1
2 , 1

]
, ξ (t) = 1 for t ∈[

2
3 ,

5
6

]
,

∣∣ξ′∣∣ < C0. Then∫
Ft0R

ω |∇u|p ξpdx+ p

∫
Ft0R

ξp−1ω (u− t0) |∇u|p−2 · ∇u · x
|x|

· ξ
′

R
dx = 0,

∫
Ft0R

ω |∇u|p ξpdx ≤ pC0

R

∫
Ft0R

|u− t0|ω |∇u|p−1 dx ≤

≤ pC0

R

 ∫
Ft0R

ω |∇u|p ξpdx


1
p′

 ∫
Ft0R

ω |u− t0|p dx


1
p

,

hence,∫
Ωt0R

ω |∇u|p dx ≤
(
pC0

R

)p ∫
Ft0R

ω |u− t0|p dx ≤
C

Rp

(
osc
Dt0

u

)p

ω (Ft0R) , (13)

Taking into account the last estimate in (12) we obtain

∫
f
Et0

ω |∇u|p−2

∣∣∣∣∂u∂n
∣∣∣∣ dσ ≤ 6ω (Ft0R) ·

(
osc
Dt0

u

)p−1

Rp
+ 6δ ≤ K

ω (D)
Rp

(
max

D
u

)p−1

,

Hence subject to (10) we obtain

max
D
u (x) ≥


|D0|p

n−1
n Rp∫

D

ωdx

 ∫
D1

ω
− 1

p−1

p−1



1
p−1

u (0)− δ,
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where C =
β

p
p−1

2k1
.

By virtue of condition (4) we obtain

max
D
u (x) ≥ C

α
1

p−1

(
|D0|
|D|p

) p′
n

(
Rn

|D|

) ε
p−1

u (0)− δ. (14)

Taking into account conditions |D0| ≥
|Q0

R|
4nM , |D| ≤ |Q0

R|
M and the arbitrariness

of δ we derive from (14) that

max
D
u (x) ≥ CM

ε
p−1u (0) ,

where C doesn’t depend on M .
Now if we choose such M that the condition

CM
ε

p−1 > 2

be fulfilled, then the first part of lemma 1 will be complete.
2) Let now condition (7) be violated. Lemma 1 will be also valid without as-

sumption (7) if one chooses rather greater constant M̃ = 2nM instead of M .
Suppose that for domain D and solution u (x) of equation (5), condition (7) isn’t

satisfied.
Assume

M (r) = max
|x|=r
x∈D

u (x) = u (xr) , (0 < r ≤ R) .

Let’s prove that for any r
(
0 < r < R

2

)
it will be found ∆

(
0 < ∆ < R

2

)
such

that

M (r + ∆) >
(

1 +
2∆
R

)
M (r) . (15)

Let’s introduce the following denotations: Qm
r is ball with the radius 2

R
m+1 with

the center at the point xr; Dm
r is a component of the point set x ∈ D, where

u (x) > 2m−1
2m M (r), containing the point xr

um
r = u (x)− 2m − 1

2m
M (r) .

Function um
r is the solution of equation (5). For it inequality (7) have the fol-

lowing form in the ball Qm
r ∣∣Dm+1

r

∣∣ > ∣∣Qm+1
r

∣∣
M̃

.

Let m = 0, if inequality (7) is valid then we can apply the first point of lemma
1 to the function u (x) and we shall obtain the statement of lemma 1. If inequality
(7) isn’t satisfied, then ∣∣D′

r

∣∣ < |Q′r|
M̃

.

But for function u1
r it will take the form∣∣D2

r

∣∣ > ∣∣Q2
r

∣∣
M̃

and etc.
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We assert that there exists number m1 such that inequality (7) is satisfied for
function um1

r1
. We can show it by the following way. At the point xr we have

|∇u| 6= 0.
In fact, for sufficiently large m either inequality (7) is fulfilled or there exists the

sequence of numbers mj →∞ as j →∞ such that for each mj the level surface

u (x) =
2mj − 1

2mj
·M (r)

will intersect the corresponding ball Qmj
r . But then on the surface of each ball Qmj

r

a point yj will exist for which

|u (yj)− u (xr)|
|yj − xr|

≥
M(r)
2mj

2
R

mj+1

=
M (r)
2R

is satisfied.
Hence,

|∇u||xr
>
M (r)
2R

6= 0.

Now it follows from |∇u| 6= 0 that the surface of level of the function u (x) passing
through the point xr in the vicinity of xr has a bounded curvature.

Therefore there will be found m0 such that there is a ball with the radius
R

2m0+3

on whose surface lies the point xr, and whose rest points lie in domain u (x) > M (r).
But then this ball is contained in Dm0+1

r and therefore

∣∣Dm0+1
r

∣∣ > (
1
4
· R

2m0+1

)n

|Ωn|

and it means that there exists number m1 (0 < m1 < m2) , for which inequality
(7) is satisfied, where Ωn is a unit ball in Rn. Therefore applying lemma 1 to the
function um1

r , we obtain

max
D

m1
r

um1
r (x) > 2um1

r (xr) =
M (r)
2m1−1

or

M

(
r +

R

2m1+1

)
≥ max

D
m1
r

um1
r (x) +

2m1 − 1
2m1

M (r) ≥
(

1 +
1

2m1

)
M (r) .

It remains to put ∆ =
R

2m1+1
. But inequality (15) implies

max
D
u (x) > 2u (0) .

In fact, let r1 be an upper bound of r ≤ R such that

M (r) ≥ u (0)
(

1 +
2r
R

)
.



Transactions of NAS Azerbaijan
[On some qualitative properties of solutions]

103

If r1 <
R

2
, then

M (r + ∆) > M (r1)
(

1 +
2∆
R

)
> u (0)

(
1 +

2 (r1 + ∆)
R

)
and we get the contradiction to the fact that r1 is an upper bound of r for which
(15) is fulfilled.

Thereby it means
M (r1) > 2u (0) .

Thus lemma 1 is completely proved.
Now after proving lemma 1 we can refer to the standard reasonings of paper [12]

and prove the following theorems.
Theorem 3. Let QR be the ball with the radius R with the center at the point

0. Let D be domain situated inside the ball containing point 0 and having limiting
points on the boundary of the ball. Let Γ be that part of the boundary of domain D
which is situated strictly inside the ball. Furthermore,

|D| = σ <
|Q|
M

,

where M is a constant of lemma 1.
Suppose that u (x) ∈ H̃ (D) is a solution positive in D and vanishing on Γ. All

the assumptions of lemma 1 are satisfied with respect to ω (x).
Then

u (0)≤ exp

{
− R

n
n−1

Cσ
1

n−1

}
max

D̄
u (x) ,

where constant C depends only on n, p and α from condition (4).
Theorem 4 (of Fragmen-Lindelöf type). Let D be a bounded domain of

solid angle type of dimension η, and exactly for all natural m starting with some m0

the inequality
|D ∩Q2m | < η |Q2m |

be satisfied, where Q2m is the ball with the radius 2m with the center at the point 0.
Further let

η <
2

2nM
,

where M is a constant of lemma 1.
Suppose that u (x) ∈ H̃ (D) is positive in D solution of equation (5) vanishing on

the boundary ∂D of the domain D. Condition (4) is fulfilled with respect to ω (x).
Then either

1) u (x) ≤ 0 everywhere in D or, 2) if we assume

M (R) =max
|x|=R

u (x)

then lim
R→∞

M (R)

R
1

kη 1
n−1

, where k is constant dependent only on α, p, γ and on dimension

of the space.
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Theorem 5. Let D be the domain with the limiting point 0. Let equation (5) be
defined in D. Condition (4) is satisfied with respect to ω (x). Further let there exist
number η satisfying the inequality

η <
1

2nM

(here M is the constant of lemma 1, such that∣∣D ∩Q0
2−m

∣∣ ≤ η
∣∣Q0

2−m

∣∣
for all numbers m starting with same m0. Then if we suppose M (r) = max

|x|=r
x∈D

u (x),

then M (r) ≤ Cr

1

kη
1

m−1 . Constants C and k depend only on P, n, α and C depends
also on m and m0.
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