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MATHEMATICS

Nizami Yu. ABBASOV

ON BEHAVIOUR NEAR THE BOUNDARY OF
SOLUTIONS OF THE SECOND ORDER

NON-UNIFORMLY DEGENERATE PARABOLIC
EQUATIONS

Abstract

In the paper a class of the second order parabolic equations of non-divergence
structure, allowing the non-uniform power degeneration at boundary point of do-
main is considered. The sufficient regularity condition of this point with respect
to the first boundary value problem for the mentioned equations is found.

Let Rn+1 be an (n + 1)− dimensional Euclidean space of the points (x, t) =
= (x1, ..., xn, t) , D be a bounded domain in Rn+1, Γ (D) be a parabolic boundary
of D, (0, 0) ∈ Γ (D). Consider the following parabolic equation in D

Lu =
n∑

i,j=1

aij (x, t) uxixj +
n∑

i=1

bi (x, t) uxi + c (x, t) u− ut = 0 (1)

in assumption that ‖aij (x, t)‖ is a real symmetric matrix where for all (x, t) ∈ D
and any n− dimensional vector ξ

γ
n∑

i=1

λi (x, t) ξ2
i ≤

n∑
i,j=1

aij (x, t) ξiξj ≤ γ−1
n∑

i=1

λi (x, t) ξ2
i . (2)

Here γ ∈ (0, 1] is a constant, λi (x, t) =
(
|x|α +

√
|t|
)αi

, |x|α =
n∑

k=1

|xk|
2

2+αk ,

−2 < αi ≤ 2; i = 1, ..., n.

Relative to minor coefficients of the operator L we’ll assume the conditions

|bi (x, t)| ≤ b0; i = 1, ..., n; −b0 ≤ c (x, t) ≤ 0; (x, t) ∈ D (3)

are satisfied, where b0 is non-negative constant.
The aim of the present paper is the determination of sufficient regularity con-

ditions of the point (0, 0) with respect to the first boundary value problem for the
equation (1). Note that the investigations on regularity of boundary points for
the second order parabolic equations take the beginning with the classical works of
I.G.Petrovsky [1] and A.N.Tikhonov [2]. The regularity condition of boundary point
for the heat equation is obtained in [3] (see also [4]). For the equations with variable
coefficients, the boundary properties of solutions are studied in [5-8]. Relative to the
second order parabolic equations of divergence structure, we show in this connection
papers [9-10].
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At first let’s agree to some denotations. For an n-dimensional vector x0 and

positive numbers R and k ER;k

(
x0
)

is the ellipsoid

{
x :

n∑
i=1

(xi−x0
i )

2

Rαi < (kR)2
}

for

t1 < t2 Ct1,t2
R;k

(
x0
)

is the cylinder ER;k

(
x0
)
×
(
t1, t2

)
. For arbitrary cylinder C,

we’ll denote its lateral surface and lower foundation by S (C) and F (C) respectively.
Notation C (· · · ) denotes that a positive constant C depends only on the quantities
appearing in parentheses.

Let α = (α1, ..., αn) , α+ = max {α1, ..., αn} , α− = min {α1, ..., αn}. The func-
tion u (x, t) ∈ C2,1 (D) is called L-subparabolic in D if Lu (x, t) ≥ 0 for (x, t) ∈ D.
The function u (x, t) is called L−superbolic in D, if the function −u (x, t) is L-
subparabolic in D.

Let C1 = C
− 9bR2

8
,0

R;17 (0) , C2 = C
− bR2

16
,0

R;1 (0) , C3 = C1\C̄2, where the constant
b ∈ (0, 1) will be choosen later. For s > 0 and β > 0 introduce the function

Gs,β
R (x, t) =

 t−s exp

[
− 1

4βt

n∑
i=1

x2
i

Rαi

]
, if t > 0,

0, if t ≤ 0.

Without loss of generality we’ll assume that the coefficients of the operator L
are extended in Rn+1\D with preservation of the conditions (2)-(3).

Lemma 1. If relative to coefficients of the operator L the conditions (2)-(3) were
satisfied, then there exist s (γ, α, n, b0, b) and β (γ, α, n, b0, b) such that for any fixed
point (y, τ) ∈ C3 the function Gs,β

R (x− y, t− τ) is L-subparabolic in C3\ {(y, τ)}
at R ≤ 1.

Proof. It’s sufficient to consider the case t > τ . For simplicity we denote the
function Gs,β

R (x, t) simply by G (x, t) . We have

J =
LG (x− y, t− τ)
G (x− y, t− τ)

(t− τ) =
1

4β2 (t− τ)

n∑
i,j=1

aij (x, t)
(xi − yi) (xj − yj)

Rαi+αj
−

− 1
2β

n∑
i=1

aii (x, t)
Rαi

+ s− 1
4β (t− τ)

n∑
i=1

(xi − yi)
2

Rαi
− 1

2β

n∑
i=1

bi (x, t)
(xi − yi)

Rαi
+

+c (x, t) (t− τ) ≥ 1
4β (t− τ)

[
γ

β

n∑
i=1

λi (x, t)
Rαi

(xi − yi)
2

Rαi
−

n∑
i=1

(xi − yi)
2

Rαi

]
+

+s− 1
2βγ

n∑
i=1

λi (x, t)
Rαi

− b0

2β

n∑
i=1

|xi − yi|
Rαi

− b0 (t− τ) . (4)

If (x, t) ∈ C3 then |xi| ≤ 17R1+
αi
2 ; i = 1, ..., n.

Thus

|x|α ≤ R

n∑
i=1

17
2

2+αi ≤ 17
2

2+α− nR,

√
|t| ≤

√
9b

8
R ≤ 2R.
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So
|x|α +

√
|t| ≤

(
17

2
2+α− n + 2

)
R. (5)

On the other hand for (x, t) ∈ C3 either
n∑

i=1

x2
i

Rαi ≥ R2 or |t| ≥ bR2

16 .

Therefore there exists a natural number i0, 1 ≤ i0 ≤ n, such that |xi0 | ≥
n−

1
2 R1+

αi0
2 or

√
|t| ≥

√
b

4 R. So we have

|x|α +
√
|t| ≥ min

{
|x|α ,

√
|t|
}
≥ R min

{
n
− 1

2+αi0 ,

√
b

4

}
≥

≥ R min

{
n
− 1

2+α− ,

√
b

4

}
= a0 (α, n, b) R. (6)

From (5)-(6) we conclude that when αi ≥ 0

λi (x, t) ≤
(
17

2
2+α− n + 2

)αi

Rαi ≤
(
17

2
2+α− n + 2

)α+

Rαi ,

λi (x, t) ≥ aαi
0 Rαi ≥ aα+

0 Rαi .

If αi < 0, then
λi (x, t) ≤ aαi

0 Rαi ≤ aα−
0 Rαi ,

λi (x, t) ≥
(
17

2
2+α− n + 2

)αi

Rαi ≥
(
17

2
2+α− n + 2

)α−

Rαi .

Thus in any case

C1 (α, n, b) Rαi ≤ λi (x, t) ≤ C2 (α, n, b) Rαi ; i = 1, ..., n. (7)

Using (7) in (4) we obtain

J ≥ 1
4β (t− τ)

(
γC1

β
− 1
) n∑

i=1

(xi − yi)
2

Rαi
+ s− nC2

2βγ
− b0

2β

(
n∑

i=1

R1−αi
2

) 1
2

×

×

(
n∑

i=1

(xi − yi)
2

Rαi

) 1
2

R− 1
2 − 9b

8
b0R

2. (8)

Besides (
n∑

i=1

(xi − yi)
2

Rαi

) 1
2

≤

(
n∑

i=1

x2
i

Rαi

) 1
2

+

(
n∑

i=1

y2
i

Rαi

) 1
2

≤ 2
√

17R.

Therefore assuming in (8)
β = γC1 (9)

and subject to the fact that R ≤ 1 and α+ ≤ 2 we conclude

J ≥ s− nC2

2γ2C1
− b0

√
17n

γC1
− 9b0

8
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Now it’s sufficient to select

s =
nC2

2γ2C1
+ b0

(√
17n

γC1
+

9
8

)
(10)

and the lemma is proved.
Further, not specifying this we’ll assume that the parameters β and s of the

function Gs,β
R (x, t) are chosen according to the equalities (9) and (10).

From the proof of the lemma it follows that

bβs ≤ C3 (γ, α, n, b0) b1− |α
−|
2 .

allowing for |α−| < 2, we choose and fix an arbitrary number b∈ (0, 1) satisfying the
inequality

bβs ≤ 49
4

. (11)

Let E be a B-set disposed in C3. We call the measure µ on E (s, β,R) -
admissable, if ∫

E

Gs,β
R (x− y, t− τ) dµ (y, τ) ≤ 1, when (x, t) /∈ E.

The number ps,β
R (E) = supµ (E), where the exact upper bound is taken on all

the (s, β,R)- admissable measures, is called parabolic (s, β,R)- capacity of the set
E.

Later on for shortening of notation we’ll denote ps,β
R (E) simply by pR (E).

Lemma 2. Let B = Ct0−ρ2R2,t0

R;ρ

(
x0
)
, where B̄ ⊂ C3. Then

C4 (s, β) (ρR)2s ≤ pR (B) ≤ C5 (s, β) (ρR)2s .

Proof. We are restricted to proving of estimation of capacity below. Let µ be
singular measure with the density a, concentrated at the point

(
x0, t0 − ρ2R2

2

)
.

Consider the function

I (x, t) =
∫
B

Gs,β
R (x− y, t− τ) dµ (y, τ) =

=
∫

n�
x0,t0− ρ2R2

2

�o
Gs,β

R

(
x− x0, t− t0 + ρ2R2

)
dµ

(
x0, t0 − ρ2R2

2

)
.

For (x, t) ∈ S (B) we have

I (x, t) =
∫

n�
x0,t0− ρ2R2

2

�o

(
t− t0 +

ρ2R2

2

)−s

×
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× exp

− ρ2R2

4β
(
t− t0 + ρ2R2

2

)
 dµ

(
x0, t0 − ρ2R2

2

)
≤

≤
(

ρ2R2

4βs

)−s

e−4βsa = (ρR)−2s (4βs)s e−4βsa, (12)

since the function z−s exp
[
−ρ2R2

4βz

]
defined on the semi-axis (0,∞) attains its max-

imum value at z = ρ2R2

4βs . If the point (x, t) is disposed on upper foundation of B
then

I (x, t) ≤ (ρR)−2s 2sa. (13)

Now assume a = (ρR)2s min
{
(4βs)−s e4βs, 2−s

}
.

Subject to the fact that the estimation (12) holds for (x, t) ∈ Rn+1, if
x /∈ ER;ρ

(
x0
)
, and the inequality (13) is valid for (x, t) ∈ Rn+1 when t ≥ t0 and if

we observe that I (x, t) = 0 when t ≤ t0 − ρ2R2, we conclude

I (x, t) ≤ 1 when (x, t) /∈ B.

From here it follows that the measure µ is (s, β,R)-admissable, and therefore

pR (B) ≥ µ

{(
x0, t0 − a2R2

2

)}
= (ρR)2s min

{
(4βs)−s e4βs, 2−s

}
.

The proof of the lemma is completed.
Let

C4 = C
− bR2

8
,0

R;9 (0) ,
(
x0, t0

)
∈ Γ

(
C4
)
, C5

(
x0, t0

)
= Ct0−bR2,t0

R;8

(
x0
)
,

C6
(
x0, t0

)
= C

t0− bR2

4
,t0

R;1

(
x0
)
, C7

(
x0, t0

)
= C

t0−bR2,t0− bR2

2
R;1

(
x0
)
.

Lemma 3. Let the domain C5
(
x0, t0

)
having the limiting points on Γ

(
C5
(
x0, t0

))
and intersecting with C6

(
x0, t0

)
is disposed in D. Let further the positive L-

subparabolic function u (x, t), continuous in D̄ vanishing on Γ (D) ∩ C5
(
x0, t0

)
be

determined in D. Then if ER = C7
(
x0, t0

)
\D and R ≤ 1 then

sup
D

u ≥
(
1 + η1 (γ, α, n, b0) R−2spR (ER)

)
sup

D∩C6(x0,t0)

u. (14)

Proof. For shortening of notation we’ll denote the cylinder Ci
(
x0, t0

)
simple by

Ci, i = 5, 6, 7. Without loss of generality we can assume that pR (ER) > 0, otherwise
the inequality (14) is obvious. Fix an arbitrary ε ∈ (0, pR (ER)) and let measure µ
on HR be such that

U (x, t) =
∫
ER

G (x− y, t− τ) dµ (y, τ) ≤ 1 when (x, t) /∈ ER, (15)

µ (ER) > pR (ER)− ε, (16)

where G (x, t) = Gs,β
R (x, t). Fix the point (y, τ) ∈ C7 and n-dimensional vector x

such that x ∈ ∂ER;8

(
x0
)
. Here and further ∂H is Euclidean boundary of the domain
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H. Now we find that value t > τ for which the function ϑ (t) = G (x− y, t− τ)
attains its maximum. By equaling the derivative ϑt to zero, we obtain

t− τ =
1

4βs

n∑
i=1

(xi − yi)
2

Rαi
.

On the other hand(
n∑

i=1

(xi − yi)
2

Rαi

) 1
2

≥

(
n∑

i=1

(
xi − x0

i

)2
Rαi

) 1
2

−

(
n∑

i=1

(
yi − x0

i

)2
Rαi

) 1
2

≥ 8R−R = 7R.

Thus t − τ ≥ 49
4βsR

2. Then from the inequality (11) follows that τ − τ ≥ bR2.
Subject to monotonicity of ϑ (t) upto the first maximum, we conclude

sup
(x,t)∈S(C5)

(y,τ)∈C7

G (x− y, t− τ) ≤
(
bR2

)−s exp
[
− 49R2

4βbR2

]
=
(
bR2

)−s exp
[
− 49

4βb

]
. (17)

Further we obtain

inf
(x,t)∈C6

(y,τ)∈C7

G (x− y, t− τ) ≤
(
bR2

)−s exp

[
− 4R2

4βbR2

4

]
=
(
bR2

)−s exp
[
− 4

4βb

]
, (18)

since if x, y ∈ ER;1

(
x0
)
, then(

n∑
i=1

(xi − yi)
2

Rαi

) 1
2

≤

(
n∑

i=1

(
xi − x0

i

)2
Rαi

) 1
2

+

(
n∑

i=1

(
yi − x0

i

)2
Rαi

) 1
2

≤ 2R.

Now we consider the auxiliary function

W (x, t) = M

[
1− U (x, t) +

(
bR2

)−s exp
[
− 49

4βR

]
pR (ER)

]
− u (x, t) ,

where M = sup
D

u. It’s clear that the function W (x, t) is L-superparabolic in D by

virtue of lemma 1 and the condition c (x, t) ≤ 0. According to the inequality (17)
W (x, t) ≥ 0 for (x, t) ∈ Γ (D) ∩ S

(
C5
)
. Besides W (x, t) for (x, t) ∈ Γ (D) ∩ C5 by

virtue of the inequality (15). Finally W (x, t) ≥ 0 for (x, t) ∈ F
(
C5
)

outside of ER,
because there U (x, t) = 0. Thus W (x, t) ≥ 0 for (x, t) ∈ Γ (D) . By the maximum
principle W (x, t) ≥ 0 for (x, t) ∈ D and in particular allowing for (18) and (16)

sup
D∩C6

≤ M

[
1− inf

(x,t)∈C7
U (x, t) +

(
bR2

)−s exp
[
− 49

4βb

]
pR (ER)

]
≤

≤ M

[
1−

(
bR2

)−s
(

exp
[
− 4

βb

]
− exp

[
− 49

4βb

])
pR (ER) + ε

(
bR2

)−s exp
[
− 4

βb

]]
.

Now subject to arbitrariness of ε and denoting b−s
(
exp

[
− 4

βb

]
− exp

[
49
4βb

])
by

η1 we obtain
sup

D∩C6

u ≤ M
[
1− η1R

−2spR (ER)
]
.
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Hence the required estimation (14) follows. The lemma is proved.

Let C8 = C
−bR2,− 3bR2

4
R;9 (0).

Theorem 1. Let the domain C3 having the limiting points on parabolic bound-
aries of the both cylinders C1 and C2 be disposed in D. Let further the positive
L-subparabolic function u (x, t) continuous in D and vanishing on Γ (D) ∩ C3 be
determined in D. Then if HR = C8\D and R ≤ 1, then

sup
D

u ≥
(
1 + η2 (γ, α, n, b0) R−2spR (HR)

)
sup

D∩Γ(C4)

u.

Proof. Without loss of generality we can assume that sup
D∩Γ(C4)

u = 1. Let

(x∗, t∗) ∈ ∈ D ∩ Γ
(
C4
)

be a point in which u (x∗, t∗) = 1. At first assume that
(x∗, t∗) ∈ F̄

(
C4
)
, i.e. (x∗, t∗) =

(
x∗, t0

)
, where t0 = − bR2

8 . We choose on F̄
(
C4
)

a
minimum number of the points

(
x1, t0

)
, ...,

(
xm, t0

)
such that

i) C̄4 ⊂
m⋃

i=1

C7
(
xi, t0

)
;

ii) one of the points
(
xi, t0

)
coincides with the point

(
x∗, t0

)
;

iii) for any i, 1 ≤ i ≤ m there be found j, 1 ≤ 1 ≤ m such that xj ∈ ∂E R
Am ;1

(
xi
)
,

where the constant A > 1 will be chosen later.
It’s clear that the number m depends only on α and n. From properties of cover-

ing it follows that for any i0, 1 ≤ i0 ≤ m there exists the chain
(
xi1 , t0

)
, ...,

(
xik , t0

)
such that

(
xik , t0

)
=
(
x∗, t0

)
, xil+1 ∈ ∂E R

Am ;1

(
xil
)
; l = 0, ..., k − 1. From sub-

additivity of parabolic capacity we conclude on existence of i0, 1 ≤ i0 ≤ m, such
that

pR

(
HR ∩ C7

(
xi0 , to

))
≥ pR (HR)

m
.

Let δ = η1R−2spR(HR)

2m(1+
η1
m

C6) , where the constant C6 (γ, α, n, b0) is such that pR (HR) ≤

C6R
2s (see lemma 2). Denote C7

(
xi0 , t0

)
\D by H. Then

pR (H) ≥ pR (HR)
m

. (19)

Assume that sup
D∩C6(xi0 ,t0)

u ≥ 1−δ. Then according to lemma 3 and the inequality

(19)
sup
D

u ≥ sup
D∩C5(xi0 ,t0)

u ≥
(
1 + η1R

−2spR (H)
)
(1− δ) ≥

≥
(

1 +
η1R

−2spR (HR)
m

)1− η1R
−2spR (HR)

2m
(
1 + η1R−2spR(HR)

m

)
 = 1 +

η1

2m
R−2spR (HR) ,

and in this case the statement of the theorem is proved.
Let now u (x, t) < 1 − δ for (x, t) ∈ C6

(
xi0 , t0

)
∩ D. Consider the function

ϑ1 (x, t) = u (x, t)−1+δ. It’s easy to see that the function ϑ1 (x, t) is L- subparabolic
in D, since δ < 1.
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Let D1 ={(x, t) : (x, t) ∈ D,ϑ1 (x, t) > 0}. By assumption C6
(
xi0 , t0

)
⊂Rn+1\D1.

For (x′, t′) ∈ Γ
(
C4
)

denote by Ci
R′ (x

′, t′) the cylinder Ci (x′, t′) ; i = 4, ..., 8, em-
phasizing that in it R = R′. Now we find such A > 1 that C5

R (x′, t′) ⊂ C6
AR (x′, t′).

It’s clear that for the validity of inclusion it’s sufficient that

b (AR)2

4
≥ bR2, AR (AR)

αi
2 ≥ 8R1+

αi
2 ; i = 1, ..., n.

The last inequalities are satisfied, if we fix A = 8
2

2+α− . Then the statement of
lemma 3 is valid, if all its conditions are satisfied, but the domain D is disposed in
the cylinder C6

AR

(
x0, t0

)
.

Let
(
xi1 , t0

)
, ...,

(
xik , t0

)
− be abovementioned chain. By construction

C7
R
A

(
xi1 , t0

)
\D1 contains the cylinder C

t′−b(R
A

ρ)2
,t′

x
A

;ρ (x′) , and the parabolic
(
s, β, R

A

)
-

capacity of which according to lemma 2, is not less than C7 (ρ, γ, α, n, b0)
(

R
A

)2s. For
this ρ depends only on α and n. Let

σ =
η1C7

2 (1 + η1C7)
.

Assume that sup
D1∩C6

R
A
(xi1 ,t0)

ϑ1 ≥ δ (1− σ), i.e. sup
D1∩C6

R
A
(xi1 ,t0)

u ≥ 1 − δσ. Using

lemma 3 we obtain sup
D1∩C6

R(xi1 ,t0)
ϑ1 ≥ (1 + η1C7) δ (1− σ).

Thus

sup
D

u ≥ sup
D∩C6

R(xi1 ,t0)
u ≥ 1− δ + (1 + η1C7) δ (1− σ) = 1 + δη1C7−

−δσ (1 + η1C7) = 1 +
δη1C7

2
and in this case the statement of the theorem is proved.

Assume that u (x, t) < 1 − δσ for (x, t) ∈ D ∩ C6
R
A

(
xi1 , t0

)
. Consider the L-

superparabolic function ϑ2 (x, t) = u (x, t)− 1 + δσ in D. Let

D2 = {(x, t) : (x, t) ∈ D,ϑ2 (x, t) > 0} .

By assumption C6
R
A

(
xi1 , t0

)
⊂ Rn+1\D2. If now

sup
D2∩C6

R
A2

(xi2 ,t0)
ϑ2 ≥ δσ (1− σ) , i.e. sup

D∩C6
R

A2
(xi2 ,t0)

u ≥ 1− δσ2,

then using lemma 3 we obtain

sup
D

u ≥ sup
D∩C6

R
A
(xi2 ,t0)

u ≥ 1− δσ + (1 + η1C7) δσ (1− σ) = 1 +
δση1C7

2
,

and in this case the statement of the theorem is proved. If u (x, t) < 1 − δσ2 for
(x, t) ∈ C6

R
A2

(
xi2 , t0

)
, then we continue this process analogously. At the latest than
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in k-th step we’ll prove the theorem, since u
(
xik , t0

)
= u

(
x∗, t0

)
= 1. Thus the

theorem is proved, if (x∗, t∗) ∈ F̄
(
C4
)
. Let now (x∗, t∗) ∈ S

(
C4
)

and t∗ > t0. It’s
clear that x∗ ∈ ∂ER;9 (0). From above mentioned reasonings it follows that either
the theorem is proved or u (x, t) < 1− δσm for (x, t) ∈ D ∩ C6

R
Am

(
x∗, t0

)
.

We choose the minimum number p of points
(
x∗, t1

)
, ..., (x∗, tp) on the segment

l connecting the points
(
x∗, t0

)
and (x∗, t∗) such that

j) l ⊂
p⋃

i=1

C6
R

Am

(
x∗, ti

)
; tp = t∗;

jj) the cylinder C7
R

Am+1

(
x∗, ti+1

)
; i = 0, ..., p− 1 is contained in the intersection

C6
R

Am

(
x∗, ti

)
∩ C6

R
Am

(
x∗, ti+1

)
.

It’s clear that p depends only on α and n. By construction and lemma 2

p R
Am

(
C7

R
A

x∗, ti\D
)
≥ C8 (γ, α, n, b0)

(
R

Am

)2s. Consider the L-subparabolic function

w1 (x, t) = u (x, t) − 1 + δσm
1 in D, where σ1 = min

{
σ, η1C8

2(1+η1C8)

}
. Let D1 =

{(x, t) : (x, t) ∈ ∈ D,w1 (x, t) > 0}. By assumption C6
R

Am

(
x∗, ti

)
⊂ Rn+1\D. If

sup
D1∩C6

R
Am

(x∗,t1)

w1 ≥ δσm
1 (1− σ1) , i.e. sup

D∩C6
R

Am
(x∗,t1)

u ≥ 1− δσm+1
1 ,

then using lemma 3 we obtain

sup
D1∩C6

R
Am−1

(x∗,t1)

w1 ≥ (1 + η1C8) δσm
1 (1− σ1) .

Thus

sup
D

u ≥ sup
D∩C6

R
Am−1

(x∗,t1)

u ≥ 1− δσm
1 + (1 + η1C8) δσm

1 (1− σ1) ≥ 1 +
δσm

1 η1C8

2
,

and in this case the statement of the theorem is proved. If u (x, t) < 1 − δσm+1
1

for (x, t) ∈ D ∩ C6
R

Am

(
x∗, t1

)
, then we continue the process analogously. At the

latest than on p-th step we prove the theorem, since u (x∗, tp) = u (x∗, t∗) = 1. The
theorem is completely proved.

Corollary 1. The statement of theorem remains valid, if all its conditions
are satisfied, but the domain D disposed in C1, has the limiting points on Γ

(
C1
)
,

intersects C4 and u|Γ(D)∩C1 = 0. In addition sup
D∩Γ(C4)

u = sup
D∩C4

u.

This corollary follows from theorem 1 and maximum principle.

Corollary 2. Let A1 = max
{

3, 17
2

2+α−

9

}
. Then the statement of the theorem

remains valid, if all its conditions are satisfied, but the domain D disposed in C4
A1R,

has the limiting points on Γ
(
C4

A1R

)
, intersects C4 and u|Γ(D)∩C4

A1R
= 0.

For the proving it’s sufficient to note that C1 ⊂ C4
A1R.

Consider the first boundary value problem for the equation (1)

Lu = 0, (x, t) ∈ D; u|Γ(D) = ϕ, ϕ ∈ [Γ (D)] . (20)



16
[N.Yu.Abbasov]

Transactions of NAS Azerbaijan

Let uϕ (x, t) be a generalized solution by Wiener-Landis [5] of this problem. We
shall assume its existence not specifying this.

The point (0, 0) is called regular with respect to the first boundary value problem
(19), if for any ϕ (x, t) ∈ C [Γ (D)] the limiting equality

lim
(x,t)→(0,0)

(x,t)∈D

uϕ (x, t) = ϕ (0, 0)

is valid.
Let for natural numbers j H (j) = C8

A−j
1

\D, pj = p
A−j

1
(H (j)).

Theorem 2. If relative to the coefficients of the operator L the conditions (2)-
(3) are satisfied in the domain D, then for regularity of the point (0, 0) with respect
to the first boundary value problem (19) it’s sufficient that

∞∑
j=1

A2sj
1 pj = ∞. (21)

Proof. According to [5] it’s sufficient to show the following: whatever were the
numbers ε1 > 0, ε2 > 0, the subdomain D′ of the domain D completely disposed
in the halfspace t < 0 and L-subparabolic function u (x, t) ≤ 1 in D′, there exists
δ > 0 such that from u|Γ(D′)∩C4

ε1
≤ 0 it follows u|D′∩C4

δ
≤ ε2 .

Let j0 be the least natural number for which A−j0
1 < ε1, and j > j0 be a natural

number such that there exists a point (x′, t′) in D′ ∩ C4
A−j

1

, where u (x′, t′) ≥ ε2.

Allowing for H (j) ⊂ C8
A−j

1

\D′ and using corollary 2 from from the theorem 1 we

obtain

1 ≥ Mj0 ≥
(
1 + η2A

2s(j0+1)
1 pj0+1

)
Mj0+1 ≥ · · · ≥

j−1∏
i=j0

(
1 + η2A

2s(i+1)
1 pi+1

)
Mj ≥

≥
j∏

i=j0+1

(
1 + η2A

2si
1 pi

)
ε2,

where Mi = sup
D′∩C4

A−i
1

u+; i = j0, ..., j; u+ (x, t) = max {u (x, t) , 0}. Hence it follows

that
j∑

i=j0+1

ln
(
1 + η2A

2si
1 pi

)
≤ ln

1
ε2

. (22)

On the other hand, according lemma 2

pi ≤ C9 (γ, α, n, b0) A−2si
1 ; i = j0, ..., j.

So we have

ln
(
1 + η2A

2si
1 pi

)
≥ C10 (γ, α, n, b0) A2si

1 pi; i = j0, ..., j.
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Therefore, we conclude from (21)

j∑
i=j0+1

A2si
1 pi ≤ C−1

10 ln
1
ε2

.

By virtue of the condition (20) the last inequality can’t be satisfied when j ≥
j∗ (ε1, ε2, γ, α, n, b0). Now it’s sufficient to choose δ = A−j∗

1 , and the theorem is
proved.

Remark. We can write the condition (20) in integral form. Namely, for regu-
larity of the point (0, 0) with respect to the first boundary value problem (19) it’s
sufficient that

1∫
0

pz (Hz)
z2s+1

dz = ∞.

The author expresses his gratitude to his supervisor correspondent-member of
NAS of Azerbaijan, Prof. I.T.Mamedov for his constant attention to the work.
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