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EMBEDDING THEOREMS IN ANISOTROPIC
WEIGHT TYPE Bn-SOBOLEV SPACE

Abstract

At the paper the anisotropic weight type Bn−Sobolev spaces
W l1,...,l1Γp,θ,γ

(
Rn

+, ϕ
)
, W l1,...,l1Γ∗

p,θ,γ

(
Rn

+ϕ
)

are constructed and some embed-
ding theorems in these spaces are obtained. By means of Bn−Riesz potential a
priori estimations are obtained.

A series of mathematical physics problems leads to the consideration of the
differential operators with the singularity on a boundary manifold. Example for
such an operator is a Bessel operator Bn = ∂2

∂x2
n

+ γ
xn

∂
∂xn

, γ > 0 with the property
xn = 0. The scale of Hilbert spaces constructed for such operators was studied
in [1] by the Fourier-Bessel thransformation method and there the corresponding
imbeddings theorems were proved.

At the given paper an anisotropic weight type Bn -Sobolev spaces
W l1,...,l1Γp,θ,γ

(
Rn+, ϕ

)
, W l1,...,l1Γ∗p,θ,γ

(
Rn+ϕ

)
were constructed and some imbedding

theorems in these spaces were obtained.
Let Rn+ denote a half-space xn > 0 of Euclidean n-dimensional space of the

points x = (x′, xn) = (x1, ..., xn−1, xn). Denote by C∞
e,0

(
Rn+
)

the set of infinitely
differentiable functions even by the variable xn and having in Rn+ a compact support.

Let a = (a1, an−1, an) = (a′, an) ai > 0 (i = 1, 2, ..., n) , and the function ρ (x) =

=
(∑n

i=1 |xi|
2
ai

) 1
2

be an anisotropic distance and the parameter ϑ ∈ (0, r]. Suppose

for the numbers li > 0, νi ≥ 0 (i = 1, 2, . . . , n), |a| =
n∑
i=1

ai, |a|γ = |a|+γan, (a, ν) =

=
n−1∑
i=1

aiνi+2anνn, λ0 = |a|γ +(a, ν), λi = 1+ |a|γ− liai+(a, ν) (i = 1, 2, . . . , n−1),

λn = 1 + |a|γ − 2lnan + (a, ν), ϑa = (ϑa1 , . . . , ϑan), x
ϑa =

(
x1
ϑa1 , . . . ,

xn
ϑan

)
and accept

Di = ∂
∂xi
, Dν′

x′ = Dv1
1 ...D

vn−1
n−1 , D

v
Bn

= Dν′
x′B

vn
n , where Dvi

i , B
vn
n −are iterations of

corresponding differential operators.
Suppose E+ (0, r) =

{
y ∈ Rn+ : ρ (y) < r

}
, |E+ (0, r)|γ =

∫
E+(0,r)

xγndx and

E∗
+ (0, r) = Rn+\E+ (0, r). Note, that |E+ (0, r)|γ = Cr|a|γ .

Consider received in [2] at γ 6= 1, 3, ..., 2ln−1 integral representation of the func-
tions f ∈ C∞

e,0

(
Rn+
)
.

Dv
Bn
f (x) =

c0
rλ0

∫
Rn

+

T xf (y)N (y, r) yγndy+

+
n∑
i=1

ci

r∫
0

dϑ

ϑλi

∫
Rn

+

T xgi (y)Mi

( y
ϑa

)
yγndy = J0 +

n∑
i=1

J1, (1)
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where N (y, τ) , Mi

( y
τa

)
are finite smooth in Rn+ functions and

gi (x) = Dli
i f (x) , i = 1, 2, ..., n− 1, gn (x) = Bln

n f (x) . (2)

Definition 1. Let the function f ∈ Lγp
(
E∗

+ (0, τ)
)

at any τ , 0 < τ < ∞.
Suppose

Ωp,γ (f, τ) =

 ∫
E∗

+(0,τ)

|f (x)|p xγndx


1
p

, τ > 0.

Definition 2. Let the function f ∈ Lγp (E+ (0, τ)) at any τ , 0 < τ <∞. Suppose

Ω∗
p,γ (f, τ) =

 ∫
E+(0,τ)

|f (x)|p xγndx


1
p

, τ > 0.

In terms of the characteristics Ωp,γ (f, τ) , Ω∗
p,γ (f, τ) the spaces Γpθ,γ

(
Rn+, ϕ

)
,

Γ∗pθ,γ
(
Rn+, ϕ

)
were investigated, which as is shown at θ = p coincide with some

weight spaces Lγp
(
Rn+, ω

)
= Lp

(
Rn+, ω (ρ (x))xγndx

)
([3], [4]).

Let ϕ be a positive measurable function on (0,∞). Denote by Γpθ,γ
(
Rn+, ϕ

)
,

Γ∗pθ,γ
(
Rn+, ϕ

)
, 1 ≤ p < ∞, 1 ≤ θ ≤ ∞, the set of measurable functions f in Rn+

with a finite norm ([3], [4]).

‖f‖Γpθ,γ(Rn
+,ϕ) =

 ∞∫
0

(Ωp,γ(f, t))
θ ϕ(t)dt

1/θ

, 1 ≤ θ <∞

‖f‖Γpθ,γ(Rn
+,ϕ) = sup

t>0
Ωp,γ(f, t)ϕ(t), θ = ∞,

‖f‖Γ∗
pθ,γ(Rn

+,ϕ) =

 ∞∫
0

(
Ω∗
p,γ(f, t)

)θ
ϕ(t)dt

1/θ

, 1 ≤ θ <∞,

‖f‖Γ∗
pθ,γ(Rn

+,ϕ) = sup
t>0

Ω∗
p,γ(f, t)ϕ(t) , θ = ∞.

Note, that the corresponding spaces Γpθ (X,ϕ) ,Γ∗pθ (X,ϕ) in case, when X-is a
homogeneous group in Folland-Stein sense, were introduced and studied relative to
singular integral operator and integral operator of potential type in [5].

Definition 3. We’ll say, that the function f determined on Rn+ belongs to the

anisotropic weight space W l1,...,lnΓp,θ,γ
(
Rn+, ϕ

) (
W l1,...,l1Γ∗p,θ,γ

(
Rn+ϕ

))
, if f has on

Rn+ generalized by the S.L. Sobolev derivatives Dli
i , i = 1, 2, ..., n− 1, Bln

n f and the
norms

‖f‖W l1,...,lnΓp,θ,γ(Rn
+,ϕ) = ‖f‖Γpθ,γ(Rn

+,ϕ) +

+
n−1∑
i=1

∥∥∥Dli
i f
∥∥∥

Γpθ,γ(Rn
+,ϕ)

+
∥∥∥Bln

n f
∥∥∥

Γpθ,γ(Rn
+,ϕ)



Transactions of NAS Azerbaijan
[Embedding theorems in Bn-Sobolev spaces]

71(
‖f‖W l1,...,lnΓ∗

p,θ,γ(Rn
+,ϕ) = ‖f‖Γ∗

pθ,γ(Rn
+,ϕ) +

+
n−1∑
i=1

∥∥∥Dli
i f
∥∥∥

Γ∗
pθ,γ(Rn

+,ϕ)
+
∥∥∥Bln

n f
∥∥∥

Γ∗
pθ,γ(Rn

+,ϕ)

)
.

are finite.
Such functional spaces adapted to work with generalized shift of the form (Bn−

is a shift) (see ex. [1], [6]).

T yf (x) = Cγ

π∫
0

f
(
x′ − y′,

√
x2
n + y2

n − 2xnyn cosα
)

sinγ−1 αdα,

where x = (x′, xn) , y = (y′, yn) , Cγ = π−
1
2

Γ(γ+ 1
2)

Γ(γ) .
By means of Bn−shift anisotropic Bn−Riesz potential

RαBn
f (x) =

∫
Rn

+

T yρ (x)α−|a|γ f (y) yγndy, 0 < α < |a|γ

and isotropic Bn−Riesz potential

IαBn
f (x) =

∫
Rn

+

T y |x|α−n−γ f (y) yγndy, 0 < α < n+ γ.

are determined.

Let 4Bn =
n−1∑
i=1

∂2/∂x2
i +Bn. The folloving theorems are true.

Theorem 1. [7] If α is an even non-negative integer, f (x)-is a finite, even by
the variable xn function having α/2 continuous derivatives by the variables x1, ..., xn−1

and α are continuous derivatives by xn, then the potential IαBn
f (x) is a solution of

the equation
4α/2
Bn

u (x) = f (x)

Note, that in [8] the boundedness of isotropic Bn-Riesz potential IαBn
from

Lγp
(
Rn+
)

in Lγq
(
Rn+
)
, 1 < p < q <∞, 1/p− 1/q = α/ (n+ γ) and in [9] the bound-

edness anisotropic Bn−Riesz potential from Lγp
(
Rn+
)

in Lγq
(
Rn+
)
, 1 < p < q < ∞,

1/p− 1/q = α/ |a|γ was proved.
Theorem 2. [3] [9] Let 1 < p < q < ∞, 0 < α < |a|γ , 1 < θ < θ1 <

∞, 1
p −

1
q = α

|a|γ
.

If

sup
t>0

∞∫
t

ψ (τ) τ−
|a|γθ1

p′ dτ

 θ
θ1

 t∫
0

ϕ (τ)1−θ
′
τ

θ′
p′ (θ−p

′)
dτ

θ−1

<∞,

then ∥∥RαBn
f
∥∥

Γqθ1,γ(Rn
+,ψ)

6 C ‖f‖Γpθ,γ(Rn
+,ϕ)

with the constant C independent of the function f .
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Theorem 3. [4] [9] Let 1 < p < q < ∞, 0 < α < |a|γ , 1 < θ < θ1 <

<∞, 1
p −

1
q = α

|a|γ
.

If

sup
t>0

 t∫
0

ψ (τ) τ
|a|γθ1

q dτ


θ

θ1
∞∫

t

ϕ (τ)1−θ
′
τ
−

|a|γθ′

q
−θ′
dτ

θ−1

<∞,

then ∥∥RαBn
f
∥∥

Γ∗
qθ1,γ(Rn

+,ψ)
6 C2 ‖f‖Γ∗

pθ,γ(Rn
+,ϕ)

with the constant C2 independent of the function f .
Note, that in case θ = θ1 = ∞ the analogy of theorem 1,2 is also true (see [3],

[4]).
Theorem 4. Let the function f ∈W l1,...,lnΓp,θ,γ

(
Rn+, ϕ

)
the weight pairs (ϕ,ψ)

satisfy the conditions of theorem 1. Let li > 0, vi > 0 be integers, such, that

σ1 = 1−
n∑
i=1

vi
li
−
(

1
p
− 1
q

)(n−1∑
i=1

1
li

+
γ + 1
2ln

)
> 0.

Then, the operator Dv
Bn
f as the operator from W l1,...,lnΓp,θ,γ

(
Rn+, ϕ

)
in

Γqθ1,γ
(
Rn+, ψ

)
(1 < p < q <∞, 1 < θ < θ1 <∞, γ 6= 1, 3, ..., 2ln−1) is bounded,

moreover ∥∥Dv
Bn
f
∥∥

Γqθ1,γ(Rn
+,ψ)

6 C ‖f‖W l1,...,lnΓp,θ,γ(Rn
+,ϕ)

with the constant C, not depending on f .
Proof. According to (1) we have at γ 6= 1, 3, ..., 2ln−1

∥∥Dv
Bn
f
∥∥

Γqθ1,γ(Rn
+,ψ)

6 c

‖J0‖Γqθ1,γ(Rn
+,ψ) +

∥∥∥∥∥
n∑
i=1

Ji

∥∥∥∥∥
Γqθ1,γ(Rn

+,ψ)

 .

Accept in (1) ai = 1
li

(i = 1, 2, ..., n− 1) , an = 1
2ln

. By virtue of theorem 1 we
have

‖Ji‖Γqθ1,γ(Rn
+,ψ) 6 C ‖gi‖Γqθ1,γ(Rn

+,ψ) , i = 1, 2, ..., n,

and also
‖J0‖Γqθ1,γ(Rn

+,ψ) 6 C ‖f‖Γpθ,γ(Rn
+,ϕ)

Theorem is proved.
The proof of following theorem is analogous to lastone.
Theorem 5. Let the function f ∈W l1,...,lnΓp,θ,γ

(
Rn+, ϕ

)
the weight pairs (ϕ,ψ)

satisfy the conditions of theorem 2. Let li > 0, vi > 0 be integers such that

σ1 = 1−
n∑
i=1

vi
li
−
(

1
p
− 1
q

)(n−1∑
i=1

1
li

+
γ + 1
2ln

)
> 0.

Then the operator Dv
Bn
f as operator fromW l1,...,lnΓ∗p,θ,γ

(
Rn+, ϕ

)
in Γ∗qθ1,γ

(
Rn+, ψ

)
(1 < p < q <∞, 1 < θ < θ1 <∞, γ 6= 1, 3, ..., 2ln−1)is bounded, moreover∥∥Dv

Bn
f
∥∥

Γ∗
qθ1,γ(Rn

+,ψ)
6 C ‖f‖W l1,...,lnΓ∗

p,θ,γ(Rn
+,ϕ)
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with the constant C independent of f .
Note, that the analogy of theorem 4,5 is also true in case θ = θ1 = ∞.
From theorem 1 and theorem 2 we have.
Theorem 6. Let 1 < p < q < ∞, 1 < θ < θ1 < ∞, 1

p −
1
q = 2

n+γ and the
positive functions ϕ, ψ be summable on every interval (0, τ) ⊂ (0,∞).

If

sup
t>0

∞∫
t

ψ (τ) τ−
(n+γ)θ1

p′ dτ

 θ
θ1

 t∫
0

ϕ (τ)1−θ
′
τ

θ′
p′ (θ−p

′)
dτ

θ−1

<∞,

Then, the following a priori estimations:

‖u‖Γqθ1,γ(Rn
+,ψ) ≤ C ‖∆Bnu‖Γp,θ,γ(Rn

+,ϕ) .

are true.
And also from theorem 1 and theorem 3 we have.
Theorem 7. Let 1 < p < q <∞, 1 < θ < θ1 <∞, 1

p −
1
q = 2

n+γ and the positive
functions ϕ, ψ be summable on every interval (0, τ) ⊂ (0,∞).

If

sup
t>0

 t∫
0

ψ (τ) τ
(n+γ)θ1

q dτ


θ

θ1
∞∫

t

ϕ (τ)1−θ
′
τ
− (n+γ)θ′

q
−θ′
dτ

θ−1

<∞,

Then, the following a priori estimations:

‖u‖Γ∗
qθ1,γ(Rn

+,ψ) ≤ C ‖∆Bnu‖Γ∗
p,θ,γ(Rn

+,ϕ) .

are true.
The author expresses his gratitude to the academician A.D. Gadjiev and prof.

V.S. Guliyev for discussion of the obtained results.
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