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Bala A. ISKENDEROV, Vugar G. SARDAROV

MIXED PROBLEM FOR BOUSSINESKA
EQUATION IN A CYLINDRICAL DOMAIN AND

BEHAVIOR OF ITS SOLUTION AT t → +∞

Abstract

The existence and uniqueness of a mixed problem for Boussineska equation
was proved in multidimensional cylindric domain, convergence to zero of the
solution of mixed problem for t → +∞ when the longitudinal dimension of
cylinder is a unit was shown.

Introduction. Boussineska equation appears by describing longitudinal waves
in bars in the theory of long waves in water, and also by describing waves in plasma
[1-3].

Cauchy problem and various questions mixed and connected with it for a class
of Sobolev type equations were studied in [3-6] in which there is a large reference.
We note also paper [7] where main initial-boundary value problems were investi-
gated, and the existence of wave front is established for the equation describing the
dynamics of one-dimensional flow.

The uniqueness, existence and behaviour at great values of time of the solution
of mixed problem for Boussineska equation in multi-dimensional cylindrical domain
is studied. The results of the paper are new.

§1. Definition, notations and uniqueness of solution of mixed problem
for Boussineska equations.

LetRm (y) be am-dimensional Euclidean space with elements y = (y1, y2, ..., ym),
and Rn (x) is the similar space with elements x = (x1, x2, ..., xn). Denote by Π =
= Rn×Ω a cylindrical domain in Rn (x)×Rm (y), where Ω is a bounded domain in
Rm (y) with sufficiently smooth boundary ∂Ω. Consider in Π× (0,∞) the following
mixed problem

(
σ2∆n+m − 1

)
D2

t u (x, y, t) + γ2∆n+mu (x, y, t) = 0 (1.1)

with initial condition

u (x, y, 0) = ψ0 (x, y) , u′t (x, y, 0) = ψ1 (x, y) (1.2)

and with boundary condition

u (x, y, t) |∂Π×(0,∞) = 0 (1.3)

Here ∆n+m is a Laplace operator on variables (x, y) , ∂Π is a lateral surface
of cylinder Π, ψ0 (x, y) , ψ1 (x, y) ∈ C

(µ,v)
0 (Π) is a space of finite, continuously

differentiable with respect to (x, y) functions in Π up to the order µ with re-
spect to x and up to order v with respect to y, µ and v we’ll define below. By
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C(p,q,r) (Π× [0,∞)) denote a class of functions determined for (x, y, t) ∈ Π× [0,∞),
such that Dα

xD
β
yD

γ
zu (x, y, t) ∈ C(0,0,0) (Π× [0,∞)) and∣∣∣Dα

xD
β
yD

γ
zu (x, y, t)

∣∣∣ ≤ Ceεt−c0|x| (1.4)

uniformly on y ∈ Ω, where Dα
x = Dα1

x1
...Dαn

xn
, Dxj =

∂

∂xj
, Dβ

y = D
β1
y1 ...D

βn
yn ,

Dt =
∂

∂t
, 0 ≤ |α| ≤ p, 0 ≤ |β| ≤ q, γ ≤ r, |α| = α1 + ...+αn, |β| = β1 + ...+βn, ε

is sufficiently small number, c0 are some constants, C(0,0,0) (Π× [0,∞)) a space of
functions continuous in Π× [0,∞).

Definition. The function u (x, y, t) will be called a classic solution of problem
(1.1)-(1.3), if u (x, y, t) ∈ C2,2,2 (Π× (0,∞)) ∩ C1,1,1

(
Π× [0,∞)

)
and satisfies the

equation, initial and boundary conditions in an ordinary sense.
Theorem 1. Classic solution of problem (1.1)-(1.3) is unique, if it exists.
Proof. Show that the solution of homogeneous problem corresponding to prob-

lem (1.1)-(1.3) is only trivial solution. Multiplying equation (1.1) by ut (x, y, t) and
integrating with respect to Π× [0, t) , we get

t∫
0

∫
Π

[(
σ2∆n+m − 1

)
D2

t u+ γ2∆n+mu
]
utdΠdt = 0 (1.5)

Denote by σR (x) a ball of radius R with a center at the origin of coordinates in
Rn (x) and Π = Ω× σR (x) by Green’s first formula∫

ΠR

(
∆n+mD

2
t u
)
utdΠ =

= −
∫
ΠR

 n∑
i=1

∂

∂xi

(
D2

t u
) ∂ut

∂xi
+

m∑
j=1

∂

∂yj

(
D2

t u
) ∂ut

∂yj

+
∫

∂ΠR

ut
∂

∂n

(
D2

t u
)
ds ,

∫
ΠR

(∆n+mu)utdΠ = −
∫
ΠR

 n∑
i=1

∂u

∂xi

∂ut

∂xi
+

m∑
j=1

∂u

∂yj

∂ut

∂yj

 dΠ +
∫

∂ΠR

ut
∂

∂n
ds (1.6)

where
∂ΠR = ∂Ω× σR (x) ∪ Ω× ∂σR (x) ,

and ds is an element of the surface ∂ΠR.
Then by virtue of condition (1.3)∫

ΠR

ut
∂
∂n

(
D2

t u
)
ds =

∫
Ω×∂σR(x)

ut
∂
∂n

(
D2

t u
)
ds ,

∫
ΠR

ut
∂u
∂nds =

∫
Ω×∂σR(x)

ut
∂u
∂nds ,

(1.7)
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For R → ∞ by virtue of condition (1.4) the integrals in (1.7) tend to zero.
Passing in (1.6) to the limit for R →∞ and taking into account the above said we
get ∫

Π

(
∆n+mD

2
t u
)
utdΠ =

= −
∫
ΠR

 n∑
i=1

∂
∂xi

(
D2

t u
)

∂ut
∂xi

+
m∑

j=1

∂
∂yj

(
D2

t u
)

∂ut
∂yj

 dΠ =

= −1
2

∫
Π

Dt

 n∑
i=1

(
∂ut
∂xi

)2
+

m∑
j=1

(
∂ut
∂yj

)2

 dΠ =

= −1
2Dt

∫
Π

 n∑
i=1

(
∂ut
∂xi

)2
+

m∑
j=1

(
∂ut
∂yj

)2

 dΠ .

(1.8)

Similarly

∫
Π

(∆n+mu)utdΠ = −1
2
Dt

∫
Π

 n∑
i=1

(
∂u

∂xi

)2

+
m∑

j=1

(
∂u

∂yj

)2
 dΠ (1.9)

Introduce notations ∫
Π

n∑
i=1

(
∂u
∂xi

)2
dΠ = ||∇xu||2L2(Π) ,

∫
Π

m∑
i=1

(
∂u
∂yi

)2
dΠ = ||∇yu||2L2(Π) .

(1.10)

Transform the second addend in (1.5)∫
Π

(
D2

t u
)
utdΠ =

1
2

∫
Π

Dt (Dtu)
2 dΠ =

1
2
Dt

∫
Π

(Dtu)
2 dΠ =

1
2
Dt ||Dtu||2L2

(1.11)

we get from (1.5), (1.6), (1.8)-(1.11)

t∫
0

Dt

{
1
2

[
σ2
(
||∇xut||2L2(Π) + ||∇yut||2L2(Π)

)
+ ||ut||2L2(Π)

]
+

+γ2
(
||∇xu||2L2(Π) + ||∇yu||2L2(Π)

)}
dt = 0

(1.12)

Denote energy integral of problem (1.1)-(1.3) by E (t)

E (t) =
1
2

[
σ2
(
||∇xut||2L2(Π) + ||∇yut||2L2(Π)

)
+
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+ ||ut||2L2(Π)

]
+ γ2 ||∇xu||2L2(Π) + ||∇yu||2L2(Π)

Then we get from (1.12)
E (t) = E (o) .

since for a homogeneous problem E (0) = 0, then

E (t) ≡ 0 for t > 0

Hence it follows that u (x, y, t) ≡ 0. The theorem is proved.

§2. Construction of Green’s function for the stationary problem.
By virtue of estimation (1.4) there exist Fourier transformation with respect to x

and Laplace transformation with respect to t of function u (x, y, t) and its derivatives.
Therefore performing Laplace transformation with respect to t in problem (1.1)-(1.3)
we get (

σ2∆n+m − 1
)
k2V (x, y, k) + γ2∆n+mV (x, y, k) = Φ (x, y, k) , (2.1)

V (x, y, k) |∂Π = 0 (2.2)

where

Φ (x, y, k) =
(
σ2∆n+m − 1

)
(ψ1 (x, y) + kψ0 (x, y)) ≡ f1 (x, y) + kf2 (x, y) (2.3)

Further performing Fourier transformation in problem (2.1)-(2.2) with respect
to x, we get the following boundary value problem(

σ2k2 + γ2
)
∆mṼ (s, y, k)−

[
|s|2

(
σ2k2 + γ2

)
+ k2

]
Ṽ (s, y, k) = Φ̃ (s, y, k) (2.4)

Ṽ (s, y, k) |∂Ω = 0 (2.5)

where Ṽ (s, y, k) and F̃ (s, y, k) is a Fourier transformation with respect to x of the
functions V (x, y, k) and F (x, y, k), Re k > 0.

Consider a differential operator L, generalized by differential expression L = ∆m

with domain of definition

D (L) =
{
w (y) : w (y) ∈ C(2) (Ω) ∩ C

(
Ω
)
, ∆mw (y) ∈ L2 (Ω) , w (y) |∂Ω = 0

}
Operator L̃ is a negatively defined self-adjoint operator. It is known that [8,

p.177-178], a spectrum of this operator is discrete and for its eigenvalues λl it holds
the inequality

0 > λ1 ≥ λ2 ≥ ... ≥ λt ≥ ..., lim
l→∞

λl = −∞ (2.6)

Eigenfunctions ϕl (Y ) of the operator L corresponding to eigenvalues λl forms a
basis in space L2 (Ω). Using the abovesaid we prove the following theorem.

Let
Cδ = C\

[
Oδ

(
i
γ

σ

)
∪Oδ

(
−iγ
σ

)]
,

where Oδ (k) is a circle of radius δ with a centre at the point k and
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C+ = {k : k ∈ C, Re k > 0}

C is a space of complex number.
Theorem 2. Green’s function of problem (2.1)-(2.2) is an analytical function of

a complex parameter k excluding the points k(1)
1,2 = ±i

√
γ

σ
and k

(2)
1,2 = ±i

√
γ2

σ2+|λl|−1

which are singular points and for it the representation holds

G (x, y, z, k) = − i
4

(2π)−
n
2

(k2σ2+γ2)
|x|1−

n
2

∞∑
l=1

√
λl − k2

k2σ2+γ2

n
2
−1

×

×H(1)
n
2
−1

(
|x|
√
λl − k2

k2σ2+γ2

)
ϕl (Y )ϕl (z) ,

(2.7)

where H
(1)
n
2
−1 (z) is the first-kind Hankel function of the first genus of order n

2 − 1.
For |x| ≥ δ1 > 0 series in (2.7) uniformly converges with respect to (k, x, y, z) in
every compact K ⊂ Π× Cδ ∩ C+.

Proof. For constructing Green’s function of problem (1.1)-(2.2) we’ll apply
the method of [9]. Using theorem 3.6 from [8, p.177], for the solution of problem
(2.4)-(2.5) we have

Ṽ (s, y, k) =
∞∑
l=1

Cl (s, k)ϕl (y)
(k2σ2 + γ2)λl − [|s|2 (σ2k2 + γ2) + k2]

(2.8)

where
Cl (s, k) =

∫
Ω

Φ̃ (s, y, k)ϕl (y) dy .

The solution of the problem (2.2)-(2.3) is defined as the inverse Fourier transfor-
mation from Ṽ (s, y, k)

V (x, y, k) =
1

(2π)n

∞∑
l=1

ϕl (y)
∫
Rn

Cl (s, k) e−i(s,x)ds

(k2σ2 + γ2)λl − [|s|2 (σ2k2 + γ2) + k2]
, (2.9)

here term by term integration is valid by virtue of uniform convergence of series
(2.8) [10, p.253] and convergence of series (2.9) in Cδ. Note that Cl (s, k) sufficiently
fast decrease over l and |s| by virtue of the fact that ψ0 (x, y) , ψ1 (x, y) are finite
and sufficiently smooth functions of (x, y). Allowing for

Φ̃ (s, y, k) = F (Φ (x, y, k)) ,

where F is a Fourier transformation with respect to x from (2.9) we get

V (x, y, k) =
1

(2π)n

∞∑
l=1

ϕl (y)×

×
∫
Rn

Φl (ξ, k)

∫
Rn

e−i(s,ξ−x)ds

(k2σ2 + γ2)λl − [|s|2 (σ2k2 + γ2) + k2]

 dξ (2.10)
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where
Φl (ξ, k) =

∫
Ω

Φ (ξ, y, k)ϕl (y) dy

Here change of integration order is valid, and it is performed as in [11, p.377-382].
Moreover, it is required that functions ψ0 (x, y) , ψ1 (x, y) have absolutely summable
on the whole space Rn derivatives with respect to x up to the order

[
n
2

]
+1. Calculate

intrinsic integral in (2.10). For this aim denote τ = ξ − x and

Jl (τ , k) =
1

(2π)n lim
N→∞

∫
|s|≤N

ei(s,τ)

(k2σ2 + γ2)λl − [|s|2 (σ2k2 + γ2) + k2]
≡

≡ 1
(2π)n lim

N→∞
Jl,N (τ , k) (2.11)

Passing to spherical coordinates in (2.11) and allowing for spherical symmetry
of integrand in (2.11) we get

Jl,N (τ , k) = (2π)−(n
2
+1) |τ |1−

n
2

N∫
0

|s|
n
2 Jn

2
−1 (|τ | |s|) d|s|

(k2σ2 + γ2)λl − [|s|2 (σ2k2 + γ2) + k2]
(2.12)

where Jn
2
−1 (z) is a Bessel function of order n

2 − 1.
Applying a residue method, we calculate the integral in (2.12). Let n be an odd

number. Then z
n
2 Jn

2
−1 (z) is an even function. Therefore

Jl,N (τ , k) =
1
2

(2π)−(n
2
+1) |τ |1−

n
2×

×
N∫
−N

|s|
n
2 Jn

2
−1 (|τ | |s|) d|s|

(k2σ2 + γ2)λl − [|s|2 (σ2k2 + γ2) + k2]
(2.13)

Now, using formula [12, p.175]

Jn
2
−1 (z) =

1
2

(
H

(1)
n
2
−1 (z) +H

(2)
n
2
−1 (z)

)
(2.14)

we get from (2.13)

Jl,N (τ , k) =
1
4

(2π)−(n
2
+1) |τ |1−

n
2×

×
N∫
−N

|s|
n
2

[
H

(1)
n
2
−2 (|τ | |s|) +H

(2)
n
2
−2 (|τ | |s|)

]
d|s|

(k2σ2 + γ2)λl − [|s|2 (σ2k2 + γ2) + k2]
(2.15)

The poles of integrand in (2.15) are at the points

|S|(l)1,2 = ±

√
λl −

k2

k2σ2 + γ2
(2.16)
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here we take a branch for the root, for which
√
−1 = i. For Re k > 0 the roots are

equally arranged in upper and lower half-planes symmetrically with respect to origin
of coordinates. Allowing for the analyticity of integrand in (2.15) and asymptotics of
Hankel functions at z →∞ (for H(1)

n
2
−1 (z) at Im z > 0 and for H(2)

n
2
−1 (z) at Im z < 0)

and using a residue method we get

Jl (τ , k) = − (2π)−
n
2 i

8 (k2σ2 + γ2)
|τ |1−

n
2×

×

√λl −
k2

k2σ2 + γ2

n
2
−1

H
(1)
n
2
−1

(
|τ |

√
λl −

k2

k2σ2 + γ2

)
−

−

(
−

√
λl −

k2

k2σ2 + γ2

)n
2
−1

H
(2)
n
2
−1

(
−|τ |

√
λl −

k2

k2σ2 + γ2

)
(2.17)

allowing for [12, p.218]

H
(2)
n
2
−1 (−z) = (−1)

n
2
−1H

(1)
n
2
−1 (z) , (2.18)

for Jl (τ , k) we get from (2.17)

Jl (τ , k) = −(2π)−
n
2 i |τ |1−

n
2

4 (k2σ2 + γ2)
×

×

√
λl −

k2

k2σ2 + γ2

n
2
−1

H
(1)
n
2
−1

(
|τ |

√
λl −

k2

k2σ2 + γ2

)
(2.19)

Now let n be an even number. Then z
n
2 Jn

2
−1 (z) is an odd function. Expressing

the Bessel function by Hankel function according to formula (2.14), in addition
performing a cut (−∞, 0), since Hankel functions have a logarithmic branching point
at the point z = 0 for entire indices, and allowing for (2.18) we get

Jl,N (τ , k) =
(2π)−(n

2
+1)

2
|τ |1−

n
2

N∫
0

|s|
n
2

[
H

(1)
n
2
−1 (|τ | |s|) +H

(2)
n
2
−1 (|τ | |s|)

]
ds

(k2σ2 + γ2)λl − [|s|2 (σ2k2 + γ2) + k2]

Using (2.18) we get

Jl,N (τ , k) =
(2π)−(n

2
+1)

2
|τ |1−

n
2

N∫
−N

|s|
n
2H

(1)
n
2
−1 (|τ | |s|) ds

(k2σ2 + γ2)λl − [|s|2 (σ2k2 + γ2) + k2]
. (2.20)

Applying a residue method to integral (2.20), going out to upper half-plane, and
tending N →∞ we get

Jl (τ , k) =
(2π)−

n
2 i

4
|τ |1−

n
2

√
λl −

k2

k2σ2 + γ2

n
2
−1

k2σ2 + γ2
×
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×H(1)
n
2
−1

(
|τ |

√
λl −

k2

k2σ2 + γ2

)
(2.21)

Thus, for Jl (τ , k) at even and odd n we got the same expression (2.19), (2.21).
Substituting this expressions into (2.10) and changing the order of integration

and summation, for the solution of problem (2.1)-(2.2) we get

V (x, y, k) = −(2π)−
n
2 i

4
i

k2σ2+γ2

∫
Π

|x− ξ|1−
n
2

∞∑
l=1

√
λl −

k2

k2σ2 + γ2

n
2
−1

×

×H(1)
n
2
−1

(
|x− ξ|

√
λl −

k2

k2σ2 + γ2

)
ϕl (y)ϕl (z) Φ (ξ, z, k) dΠ

(2.22)

Hence for the Green’s function of problem (2.1)-(2.2) for Re k > 0 we get the
following expression

G (x, y, z, k) = −(2π)−
n
2 i |x|1−

n
2

4 (k2σ2 + γ2)

∞∑
l=1

√
λl −

k2

k2σ2 + γ2

n
2
−1

×

×H(1)
n
2
−1

|x|
√
λl −

k2

k2σ2 + γ2

ϕl (y)ϕl (z) .

Now study the convergence of series in (2.7) and its derivatives up to the second
order. To this end we prove the following lemma.

Lemma 1. At sufficiently large l and k ∈ Cδ1 the asymptotics√
−λl +

k2

k2σ2 + γ2
=
√
−λl− (1 + o (1)) (2.23)

holds.
Represent the left hand side of (2.23) in the form√

−λl +
k2

k2σ2 + γ2
=

√
−λl

(
1 +

k2

λl (k2σ2 + γ2)

)
(2.24)

For k ∈ Cδ1 ∣∣∣∣ k2

k2σ2 + γ2

∣∣∣∣ ≤M ,

M is some number. Therefore for l→∞ by virtue of (2.6) we have∣∣∣∣ k2

λl (k2σ2 + γ2)

∣∣∣∣ = o (1) .

Then we get from (2.24)√
−λl +

k2

k2σ2 + γ2
=
√
−λl (1 + o (1)) .
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Lemma 1 is proved.
Now continue the proof of theorem 1. In [9] it is shown that

||ϕl (Y )||
H

([m
2 ]+1)

(Ω)

≤ C |λl|([
m
2 ]+1)/2

where parenthesis [τ ] means the entire part of τ .
Hence by means of Sobolev’s embedding theorem we get

||ϕl (Y )||C(Ω) ≤ C |λl|([
m
2 ]+1)/2 (2.25)

It is known that [10, p.190]

c0l
2
m ≤ |λl| ≤ c1l

2
m (2.26)

where c0, c1 are constants not depending on l. Then it follows from (2.25) and (2.26)

||ϕl (Y )||C(Ω) ≤ Cl([
m
2 ]+1)/m (2.27)

Since ∆vϕl (y) (v ≥ 1) is also an eigenfunction of the operator L with eigenvalue
λv

l , then as above, we can show that

||ϕl (Y )||C(v)(Ω) ≤ Cl([
m
2 ]+1)/m (2.28)

Now prove a uniform convergence of the series (2.7) with respect to (x, y, z, k)
in each compact K ⊂ Π× Cδ for |x| ≥ δ1 > 0.

Estimating on modulus, we get

|G (x, y, z, k)| ≤ C0

1 +
∞∑

l=l0

∣∣∣∣∣∣
√
λl −

k2

k2σ2 + γ2

∣∣∣∣∣∣
n
2
−1

×

× H
(1)
n
2
−1

|x|
√
λl −

k2

k2σ2 + γ2

 ||ϕl (Y )||2
C(Ω)

 , (2.29)

C0 is a constant and l0 is sufficiently large number.
Further, using the asymptotics of Hankel function H

(1)
n
2
−1 (z) for z → ∞ lemma

1 and estimates (2.25), (2.27) we get from (2.29)

||G (x, y, z, k)||C(K) ≤ C0

1 +
∞∑

l=l0

|λl|
n+1

4
+[m

2 ] e−δ1

q
−λl
2

 ≤

≤ C0

1 +
∞∑

l=l0

l
n+1
2m

+1e−δ1

√
c0
2

l
1
m

 .

Hence, it follows a uniform convergence of series in (2.7) in the compact K for
|x| ≥ δ1 > 0. Using the estimate (2.26) we can show as above that the series in (2.7)
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may be term-by-term differentiated with respect to (x, y, z) for |x| ≥ δ1 > 0, k ∈
Cδ ∩ C+.

Theorem 2 is proved.
Corollary 1. The Green function G (x, y, z, k) is an even function with respect

to k. Therefore we can evenly continue it to the left half-plane. Thus, G (x, y, z, k) is
defined with respect to k on the all complex plane with singular points k = ± iδ

σ , k =

±iδ
(
σ2 − 1

λl

)− 1
2 .

Putting the expression Φ (x, y, k) from (2.3) to (2.22), for the solution of the
problem (2.1)-(2.2) we get

V (x, y, k) =
∫
Π

G (x− ξ, y, z, k) f1 (ξ, z) dΠ+

+k
∫
Π

G (x− ξ, y, z, k) f2 (ξ, z) dΠ ≡ V1 (x, y, k) + kV2 (x, y, k)
(2.30)

§3. Behaviour of solution of mixed problem for Boussineska equation.
Solution u (x, y, k) of nonstationary problem (1.1)-(1.3) is defined as the inverse
Laplace transformation with respect to k from V (x, y, k). Then we have form (2.33)

u (x, y, t) = u1 (x, y, t) + u2 (x, y, t) , (3.1)

where uj (x, y, t) is the inverse Laplace transformation with respect to k from
Vj (x, y, k) , j = 1, 2, in this u1 (x, y, k) is a solution of problem (1.1)-(1.3) with
initial data

u1 (x, y, 0) = ψ0 (x, y) , u′1t (x, y, 0) = 0 (3.2)1

and u2 (x, y, k) is a solution of problem (1.1)-(1.3) with initial data

u2 (x, y, 0) = 0, u′2t (x, y, 0) = ψ1 (x, y) (3.2)2

Now we get estimate (1.4) for the solution of problem (1.1)-(1.3). To this end
the following lemmas are necessary

Lemma 2. For |k| ≥ N for all l

Re

√
−λl +

k2

k2σ2 + γ2
>
√
−λl >

√
−λ1,

where N is a sufficiently large number.
Proof. Using the formula for a real part of a quadratic root of complex number,

and relation (2.6) we have

Re

√
−λl +

k2

k2σ2 + γ2
= Re

√
−λl + |µ (k)| eiθ >

>
√
−λl + |µ (k)| cos θ >

√
−λl >

√
−λ1,
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where

µ (k) =
(
σ2 +

γ2

k2

)−1

, θ = argµ (k) (3.3)

Since |k| ≥ N where N is sufficiently large number, then θ will be sufficiently
small angle. Lemma 2 is proved.

Lemma 3. For Re k ≥ ε > 0 for all l the estimate

Re

√
−λl +

k2

k2σ2 + γ2
≥ c2 > 0

is valid, where c2 is a constant independent of l.
Proof. For l > l0 or for |k| > N , where l0, N are sufficiently large numbers, the

proof of lemma follows from lemmas 1 and 2 respectively. Therefore we’ll assume
that l < l0 and |k| ≤ N . Then for Re k ≥ ε > 0

−π
2

+ δ ≤ arg k ≤ π

2
− δ

and for the points k2 and k2σ2 + γ2 we have

0 ≤ arg
(
k2σ2 + γ2

)
≤ arg k2 < π − 2δ, 0 < θ ≤ π − 2δ

for Im k ≥ 0 and for Im k ≤ 0

−π + 2δ ≤ arg k2 ≤ arg
(
k2σ2 + γ2

)
≤ 0, −π + 2δ ≤ θ < 0

where δ = δ (ε) and δ (ε) → 0 for ε→ 0, θ is defined in (3.3). Denote

θ1 = arg
(
−λl +

k2

k2σ2 + γ2

)
analogously

0 ≤ θ1 < π − 2δ for Im k ≥ 0, Re k ≥ ε > 0,
−π + 2δ < θ1 ≤ 0, for Im k < 0 , Re k ≥> 0 .

Hence

Re
√
−λl + k2

k2σ2+γ2 =
∣∣∣−λl + k2

k2σ2+γ2

∣∣∣ 12 cos θ1
2 ≥

≥
∣∣∣−λl + k2

k2σ2+γ2

∣∣∣ 12 cos
(

π
2 − δ

)
=
∣∣∣−λl + k2

k2σ2+γ2

∣∣∣ 12 sin δ
(3.4)

The zeros of the function

F (l, k) =
∣∣∣∣−λl +

k2

k2σ2 + γ2

∣∣∣∣
are on the imaginary axis at points

k1,2 = ±i

√
−λlγ2

1− λlσ2
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since λl < 0. Therefore for k ≤ N (Re k ≥ ε > 0) and l ≤ l0 there exists a number
M0, such that

F (l, k) ≥M0 (3.5)

Then it follows form (3.4), (3.5) that

Re

√
−λl +

k2

k2σ2 + γ2
≥M

1/2
0 sin δ

If we assume
c2 = min

{
|λ1|1/2,M

1/2
0 sin δ

}
,

then we get the proof of lemma 3 from lemmas 1,2 and (36).
Theorem 3. If ψ0 (x, y) , ψ1 (x, y) ∈ C2,µ

0 (Π), where µ =
[

m
2

]
+m+ n+3

2 then
for solution of the problem it holds estimate (1.4).

Proof. By integrating the series term-by-term in (2.9) we get

uj (x, y, t) = − i
4 (2π)−

n
2
∑∞

l=1 ϕl (y)×

×
∫
Rn

|x− ξ|1−
n
2

 1
2πi

ε+i∞∫
ε−i∞

√
λl − k2

k2σ2+γ2

n
2
−1

H
(1)
n
2
−1×

×
(
|x− ξ|

√
λl − k2

k2σ2+γ2

)
ki−1

k2σ2+γ2 e
ktdk

]
fjl (ξ) dξ ,

(3.7)

where
fjl (ξ) =

∫
Ω

fj (ξ, z)ϕl (z) dz, j = 1, 2 .

here term by term integration is valid by virtue of uniform convergence of series
(2.9) and (3.7) that will be shown later. Denote

Bjl (η, t) =
1

2πi

ε+i∞∫
ε−i∞

√
λl −

k2

k2σ2 + γ2

n
2
−1

×

×H(1)
n
2
−1

(
η

√
λl −

k2

k2σ2 + γ2

)
ki−1

k2σ2 + γ2
dk, (3.8)

where η = |x − ξ|, j = 1, 2. Estimate Bjl (η, t) at large l and η. To this end we
introduce the following contour

Γε = L−ε ∪ (ε− iN, ε+ iN) ∪ L+
ε ,

where L−ε is a ray starting from the point ε − iN and composing with negative
imaginary semi-axis the angle -π

6 and L+
ε is a ray starting form the point ε + iN

and composing with positive imaginary semi-axis the angle +π
6 . Further by Cauchy

theorem we substitute in the expression Bjl (η, t) an integration contour into Γε,
along which integrand for k → ∞ decreases exponentially. Estimating by modulus
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Bjl (η, t) and its derivatives with respect to t, assuming here η sufficiently large,
taking into account asymptotics of Hankel function H(1)

n
2
−1 (z) for z →∞ and lemmas

1-3, we get
|Dv

tBjl (η, t)| ≤ C|λl|
n−3

4 eεt−c2η, (3.9)

v = 0, 1, 2; j = 1, 2; l = 1, 2, ...

Estimating (3.7) by modulus, where integration contour with respect to k is
substituted into Γε and using estimate (3.9) we get

|uj (x, y, t) | ≤ Ceεt−c2|x|
∞∑
l=1

||ϕl (y)||C(Ω) |λl|
n−3

4 ×

×
∫
Qj

ec2|ξ||x− ξ|1−
n
2 |fjl (ξ) |dξ (3.10)

Qj is a support of the function ψj (ξ, η) with respect to ξ. Using estimate (2.25), we
get from (3.10)

|uj (x, y, t) | ≤ Ceεt−c2|x|
∞∑
l=1

|λl|[
m
2 ]+m+n−1

2

∫
Qj

ec2|ξ||x− ξ|1−
n
2 |fjl (ξ) |dξ (3.11)

Represent (3.11) in the form

|uj (x, y, t) | ≤ Ceεt−c2|x|×

×

 ∞∑
l=1

|λl|−m +
∞∑
l=1

|λl|[
m
2 ]+m+n−1

2

∫
Qj

ec2|ξ||x− ξ|1−
n
2 |fjl (ξ) |dξ


2 (3.12)

Applying Cauchy-Bunyakovski inequality to inequality (3.12) taking into ac-
count, that at large |x| ∫

Qj

e2c2|ξ| |x− ξ|2−n dξ ≤ C|x|2−n

then we get

|uj (x, y, t) | ≤ Ceεt−c2|x|

 ∞∑
l=1

|λl|−m +
∞∑
l=1

|λl|[
m
2 ]+m+n−1

2

∫
Qj

f2
jl (ξ) dξ

 (3.13)

By B.Levi theroem [13, p.142] we get from (3.13)

|uj (x, y, t) | ≤ Ceεt−c2|x|

 ∞∑
l=1

|λl|−m +
∫
Qj

∞∑
l=1

|λl|[
m
2 ]+m+n−1

2 f2
jl (ξ) dξ

 (3.14)
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Since the functions fj (ξ, z) , j = 1, 2 with respect to z satisfy the conditions of
theorem [8] from [10, p.253], then

∞∑
l=1

|λl|µf2
jl (ξ) = ||fj (ξ, z)||2Hµ(Ω) , µ =

[m
2

]
+m+

n− 1
2

(3.15)

From (3.14) and (3.15) it follows

|uj (x, y, t) | ≤ Ceεt−c2|x|

 ∞∑
l=1

|λl|−m +
∫
Qj

||fj (ξ, z)|| dξ

 , j = 1, 2 (3.16)

Series
∑∞

l=1 |λl|−m in (3.16) converges by virtue of estimate (2.26).
We have from (3.1) and (3.16)

|u (x, y, t) | ≤ Ceεt−c2|x| (3.17)

By virtue of estimate (2.28), smoothness of functions fl (ξ) in the same way as
above we can get estimate (3.17) of derivatives u (x, y, t) contained in equation (1.1).
For this in formula (3.7) ϕl (y)should be substituted into Dβ

yϕl (y) and fl (ξ) into
Dα

ξ fl (ξ). Thus, estimate (1.4) for the solution of problem (1.1)-(1.3) is proved.

Theorem 4. Let n = 1 ψ0 (x, y) , ψ1 (x, y) ∈ C
(2,µ)
0 (Π) , µ =

[
m
2

]
+m + 1.

Then at t→ +∞ for the solution of problem (1.1)-(1.3) it holds asymptotic estimate

u (x, y, t) = o (1)

uniformly with respect to (x, y) in each compact from Π.
Proof. To study the asymptotics of solution of problem (1.1)-(1.3) at t→ +∞

it is sufficient to study an asymptotics of integrals (3.8) at t→ +∞. The integrand

in (3.8) have singular points k(1)
1,2 = ±i γ

σ , k(2)
1,2 = ±i

√
γ2

σ2−λ−1
l

. Let’s perform the cut(
k

(1)
1 , k

(1)
2

)
on the plane k. By C(1),(2)

ε denote a circle of radius ε with a center at

points k(1)
1,2 and by C(3),(4)

ε a circle of radius ε with a center at points k(2)
1,2.

We also denote

L(1)
ε = C(1)

ε ∪ J+
1ε ∪ C

(3)
ε ∪ J+

2ε ∪ C
+(4)
ε ∪ J+

3ε ∪ C
(2)
ε ,

L(2)
ε = J−3ε ∪ C

−(1)
ε ∪ J−2ε ∪ C

−(3)
ε ∪ J−1ε ,

where J+±
1ε , J±2ε, J

±
3ε compose the left and right banks of the cut

(
k

(1)
1 , k

(1)
2

)
, respec-

tively, and C
±(3),(4)
ε -semi-circles of circles C(3),(4)

ε , arranged in the right and left
half-planes k respectively.

Assuming in (3.8) n = 1, taking into account the obvious from of H(1)

− 1
2

(z) and

that integrand decreases exponentially at Re k < 0, applying Cauchy theorem we
get

Bjl (η, t) = −

(√
λl + 1

σ2

)−1

√
2π3/2σ2η1/2

 ∫
L

(1)
ε

+
∫
L

(2)
ε

√k2 +
γ2

σ2 + 1
|λl|

−1
kj−1ekt(

k2 + γ2

σ2

)1/2
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exp

−η
√
|λl|+

1
σ2

√√√√√k2 + γ2

σ2+ 1
|λl|

k2 + γ2

σ2

 dk (3.18)

Let

θ2 =
1
2

arg
k2 + γ2

σ2+ 1
|λl|

k2 + γ2

σ2

.

Consider the change of θ2 at moving k in the positive direction along the banks
of the cut

(
k

(1)
1 , k

(1)
2

)
. Then

θ2 =



from − π
2 to π

2 , at k ∈ C(1)
ε ∪ J+

1ε ,

from π
2 to 0, at k ∈ C+(3)

ε ∪ J+
2ε ,

from 0 to − π
2 , at k ∈ C+(4)

ε ∪ J+
3ε ,

from − π
2 to π

2 , at k ∈ C(2)
ε ∪ J−3ε ,

from π
2 to 0, at k ∈ C−(4)

ε ∪ J−2ε ,

from 0 to − π
2 , at k ∈ C−(3)

ε ∪ J−1ε ,

(3.19)

Allowing for (3.19) we get that at k ∈ L(1)
ε ∪ L(2)

ε

Re

√√√√√k2 + γ2

σ2+ 1
|λl|

k2 + γ2

σ2

≥ 0

and integrand in (3.18) has a summable singularity. Therefore in (3.18) we can
pass to the limit at ε → 0. Then integrals along circles C(1),(2)

ε and semicircles
C

+(3),(4)
ε tend to zero. Then integral in (3.18) will be on contour L(1) ∪ L(2) where

L(1) =
3∑

τ=1
J+

τ , L
(2) =

3∑
τ=1

J−τ , J
±
τ = lim

ε→0
J±τε .

Now consider the change

θ3 = −1
2

arg

(
k2 +

γ2

σ2 + 1
|λl|

)(
k2 +

γ2

σ2

)
at passing from J−τ to J+

τ (τ = 1, 2, 3) that is necessary at estimating integrals on
the banks of the cut

(
k

(1)
1 , k

(1)
2

)
on J−1 θ3 = −3π

2 ; on J+
1 θ3 = −π

2 ;
on J−2 θ3 = −2π; on J+

2 θ3 = 0;
on J−3 θ3 = −π

2 ; on J+
3 θ3 = π

2 ;
(3.20)

Consider the integrals on J−1 and J+
1 . Allowing for (3.19), (3.20) for ε = 0 we

get from (3.18)

Qjl (t) =

∫
J−1

+
∫
J+
1

 kj−1ekt

√√√√(k2 +
γ2

σ2 + 1
|λl|

)(
k2 +

γ2

σ2

)−1

×
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× exp

−η
√
|λl|+

1
σ2

√√√√√k2 + γ2

σ2+ 1
|λl|

k2 + γ2

σ2

 =

= 2i
∫
J−1

kj−1ekt

√√√√(k2 +
γ2

σ2 + 1
|λl|

)(
k2 +

γ2

σ2

)−1

×

× sin η

√
|λl|+

1
σ2

∣∣∣∣∣∣∣∣
√√√√√k2 + γ2

σ2+ 1
|λl|

k2 + γ2

σ2

∣∣∣∣∣∣∣∣ dk
Since the integrand in the expression Q1j has a summable singularity, then by

Riemann-Lebesque lemma at t→ +∞

Q1j (t) = o (1) , j = 1, 2 (3.21)

Analogously, allowing for (3.19), (3.20) we prove that at t→ +∞

Q3j (t) = o (1) , j = 1, 2 (3.22)

It follows from (3.20) that

Q2j (t) = 2
∫
J−2

dk = −2

k
(2)
2∫

k
(1)
2

kj−1ekt

√(
k2 + γ2

σ2+ 1
|λl|

)(
k2 + γ2

σ2

)−1

×

× exp

−η√|λl|+ 1
σ2

∣∣∣∣∣∣∣
√√√√k2+ γ2

σ2+ 1
|λl|

k2+ γ2

σ2

∣∣∣∣∣∣∣
 dk, j = 1, 2

(3.22)

Since in (3.22) k = iτ , τ is a real variable, and assuming

c (l) = η

√
|λl|+

1
σ2

, τ1,2 = ±
√
k2 +

γ2

σ2 + 1
|λl|

we get

Q2j (t) = −2 (i)j

τ1∫
−τ1

τ jeiτt√
γ2

σ2 − τ2
(τ1 − τ)−

1
2 (τ1 + τ)−

1
2 ×

× exp

− c (l)√
γ2

σ2 − τ2
(τ1 − τ)

1
2 (τ1 + τ)

1
2

 dτ (3.23)

where τ1 <
γ
σ . We estimate the integral in (3.23) by the following way: dividing

it to intervals (−τ1,−τ1 + δ1), (−τ1 + δ1, τ1 − δ1) , (τ1 − δ1, τ1) , where δ1 is a
sufficiently small number, estimating the first and third integral by modulus, and
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once integrating the second ones by parts, and then estimating by modulus, at
t→ +∞ we get

Q2j (t) = |λl|
1
2 ηo (1) (3.24)

It follows from (3.18), (3.21), (3.22), 3.24) that at t→ +∞

Bjl (η, t) = η
1
2 o (1) (3.25)

Putting asymptotics (3.25) in (3.7) for uj (x, y, t) at t→ +∞ we receive, that

uj (x, y, t) = o (1)
∞∑
l=1

ϕl (y)

∞∫
−∞

|x− ξ| fjl (ξ) dξ , j = 1, 2. (3.26)

Since functions fjl (ξ) are finite and sufficiently smooth, then acting as at receive-
ing estimation (1.4) we show that series in (3.26) converges uniformly with respect
to y ∈ Ω. We get from (3.1) and (3.26) that at t→ +∞

u (x, y, t) = o (1)

uniformly with respect to (x, y) at each compact from Π.
Theorem 4 is proved.
Remark. Behaviour of solution of mixed problem (3.1)-(3.3) at t → +∞ and

n ≥ 2 will be obtained in another paper.
In conclusion the authors express their gratitude to corresponding member of

NAS of Azerbaijan prof. Mamedov Yu.A. for useful discussions of the results.
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