Bala A. ISKENDEROV, Vugar G. SARDAROV

MIXED PROBLEM FOR BOUSSINESKA EQUATION IN A CYLINDRICAL DOMAIN AND BEHAVIOR OF ITS SOLUTION AT $t \to +\infty$

Abstract

The existence and uniqueness of a mixed problem for Boussineska equation was proved in multidimensional cylindric domain, convergence to zero of the solution of mixed problem for $t \to +\infty$ when the longitudinal dimension of cylinder is a unit was shown.

Introduction. Boussineska equation appears by describing longitudinal waves in bars in the theory of long waves in water, and also by describing waves in plasma [1-3].

Cauchy problem and various questions mixed and connected with it for a class of Sobolev type equations were studied in [3-6] in which there is a large reference. We note also paper [7] where main initial-boundary value problems were investigated, and the existence of wave front is established for the equation describing the dynamics of one-dimensional flow.

The uniqueness, existence and behaviour at great values of time of the solution of mixed problem for Boussineska equation in multi-dimensional cylindrical domain is studied. The results of the paper are new.

§1. Definition, notations and uniqueness of solution of mixed problem for Boussineska equations.

Let $R_m(y)$ be a *m*-dimensional Euclidean space with elements $y = (y_1, y_2, ..., y_m)$, and $R_n(x)$ is the similar space with elements $x = (x_1, x_2, ..., x_n)$. Denote by $\Pi = R_n \times \Omega$ a cylindrical domain in $R_n(x) \times R_m(y)$, where Ω is a bounded domain in $R_m(y)$ with sufficiently smooth boundary $\partial \Omega$. Consider in $\Pi \times (0, \infty)$ the following mixed problem

$$\left(\sigma^{2}\Delta_{n+m} - 1\right)D_{t}^{2}u\left(x, y, t\right) + \gamma^{2}\Delta_{n+m}u\left(x, y, t\right) = 0$$
(1.1)

with initial condition

$$u(x, y, 0) = \psi_0(x, y)$$
, $u'_t(x, y, 0) = \psi_1(x, y)$ (1.2)

and with boundary condition

$$u(x, y, t)|_{\partial \Pi \times (0, \infty)} = 0 \tag{1.3}$$

Here Δ_{n+m} is a Laplace operator on variables (x, y), $\partial \Pi$ is a lateral surface of cylinder Π , $\psi_0(x, y)$, $\psi_1(x, y) \in C_0^{(\mu, v)}(\Pi)$ is a space of finite, continuously differentiable with respect to (x, y) functions in Π up to the order μ with respect to x and up to order v with respect to y, μ and v we'll define below. By $C^{(p,q,r)}(\Pi \times [0,\infty))$ denote a class of functions determined for $(x, y, t) \in \Pi \times [0,\infty)$, such that $D_x^{\alpha} D_y^{\beta} D_z^{\gamma} u(x, y, t) \in C^{(0,0,0)}(\Pi \times [0, \infty))$ and

$$\left| D_x^{\alpha} D_y^{\beta} D_z^{\gamma} u\left(x, y, t\right) \right| \le C e^{\varepsilon t - c_0 |x|} \tag{1.4}$$

uniformly on $y \in \Omega$, where $D_x^{\alpha} = D_{x_1}^{\alpha_1} \dots D_{x_n}^{\alpha_n}, D_{x_j} = \frac{\partial}{\partial x_j}, D_y^{\beta} = D_{y_1}^{\beta_1} \dots D_{y_n}^{\beta_n},$ $D_t = \frac{\partial}{\partial t}, \ 0 \le |\alpha| \le p, \ 0 \le |\beta| \le q, \ \gamma \le r, \ |\alpha| = \alpha_1 + \ldots + \alpha_n, \ |\beta| = \beta_1 + \ldots + \beta_n, \ \varepsilon$ is sufficiently small number, c_0 are some constants, $C^{(0,0,0)}(\Pi \times [0,\infty))$ a space of functions continuous in $\Pi \times [0, \infty)$.

Definition. The function u(x, y, t) will be called a classic solution of problem (1.1)-(1.3), if $u(x, y, t) \in C^{2,2,2}(\Pi \times (0, \infty)) \cap C^{1,1,1}(\overline{\Pi} \times [0, \infty))$ and satisfies the equation, initial and boundary conditions in an ordinary sense.

Theorem 1. Classic solution of problem (1.1)-(1.3) is unique, if it exists.

Proof. Show that the solution of homogeneous problem corresponding to problem (1.1)-(1.3) is only trivial solution. Multiplying equation (1.1) by $u_t(x, y, t)$ and integrating with respect to $\Pi \times [0, t)$, we get

$$\int_{0}^{t} \int_{\Pi} \left[\left(\sigma^2 \Delta_{n+m} - 1 \right) D_t^2 u + \gamma^2 \Delta_{n+m} u \right] u_t d\Pi dt = 0$$
(1.5)

Denote by $\sigma_R(x)$ a ball of radius R with a center at the origin of coordinates in $R_n(x)$ and $\Pi = \Omega \times \sigma_R(x)$ by Green's first formula

ſ

$$\int_{\Pi_{R}} \left(\Delta_{n+m} D_{t}^{2} u \right) u_{t} d\Pi =$$

$$= -\int_{\Pi_{R}} \left[\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(D_{t}^{2} u \right) \frac{\partial u_{t}}{\partial x_{i}} + \sum_{j=1}^{m} \frac{\partial}{\partial y_{j}} \left(D_{t}^{2} u \right) \frac{\partial u_{t}}{\partial y_{j}} \right] + \int_{\partial\Pi_{R}} u_{t} \frac{\partial}{\partial n} \left(D_{t}^{2} u \right) ds ,$$

$$\int_{\Pi_{R}} \left(\Delta_{n+m} u \right) u_{t} d\Pi = -\int_{\Pi_{R}} \left[\sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}} \frac{\partial u_{t}}{\partial x_{i}} + \sum_{j=1}^{m} \frac{\partial u}{\partial y_{j}} \frac{\partial u_{t}}{\partial y_{j}} \right] d\Pi + \int_{\partial\Pi_{R}} u_{t} \frac{\partial}{\partial n} ds \quad (1.6)$$

where

$$\partial \Pi_{R} = \partial \Omega \times \sigma_{R} \left(x \right) \cup \Omega \times \partial \sigma_{R} \left(x \right) ,$$

and ds is an element of the surface $\partial \Pi_R$.

Then by virtue of condition (1.3)

$$\int_{\Pi_R} u_t \frac{\partial}{\partial n} \left(D_t^2 u \right) ds = \int_{\Omega \times \partial \sigma_R(x)} u_t \frac{\partial}{\partial n} \left(D_t^2 u \right) ds ,$$

$$\int_{\Pi_R} u_t \frac{\partial u}{\partial n} ds = \int_{\Omega \times \partial \sigma_R(x)} u_t \frac{\partial u}{\partial n} ds ,$$
(1.7)

Transactions of NAS Azerbaijan ________ [Mixed problem for Boussineska equation]

For $R \to \infty$ by virtue of condition (1.4) the integrals in (1.7) tend to zero. Passing in (1.6) to the limit for $R \to \infty$ and taking into account the above said we get ^

$$\int_{\Pi} \left(\Delta_{n+m} D_t^2 u \right) u_t d\Pi =$$

$$= -\int_{\Pi_R} \left[\sum_{i=1}^n \frac{\partial}{\partial x_i} \left(D_t^2 u \right) \frac{\partial u_t}{\partial x_i} + \sum_{j=1}^m \frac{\partial}{\partial y_j} \left(D_t^2 u \right) \frac{\partial u_t}{\partial y_j} \right] d\Pi =$$

$$= -\frac{1}{2} \int_{\Pi} D_t \left[\sum_{i=1}^n \left(\frac{\partial u_t}{\partial x_i} \right)^2 + \sum_{j=1}^m \left(\frac{\partial u_t}{\partial y_j} \right)^2 \right] d\Pi =$$

$$= -\frac{1}{2} D_t \int_{\Pi} \left[\sum_{i=1}^n \left(\frac{\partial u_t}{\partial x_i} \right)^2 + \sum_{j=1}^m \left(\frac{\partial u_t}{\partial y_j} \right)^2 \right] d\Pi .$$
(1.8)

Similarly

$$\int_{\Pi} (\Delta_{n+m}u) u_t d\Pi = -\frac{1}{2} D_t \int_{\Pi} \left[\sum_{i=1}^n \left(\frac{\partial u}{\partial x_i} \right)^2 + \sum_{j=1}^m \left(\frac{\partial u}{\partial y_j} \right)^2 \right] d\Pi$$
(1.9)

Introduce notations

$$\int_{\Pi} \sum_{i=1}^{n} \left(\frac{\partial u}{\partial x_{i}}\right)^{2} d\Pi = \left|\left|\nabla_{x} u\right|\right|^{2}_{L_{2}(\Pi)} ,$$

$$\int_{\Pi} \sum_{i=1}^{m} \left(\frac{\partial u}{\partial y_{i}}\right)^{2} d\Pi = \left|\left|\nabla_{y} u\right|\right|^{2}_{L_{2}(\Pi)} .$$
(1.10)

Transform the second addend in (1.5)

$$\int_{\Pi} (D_t^2 u) u_t d\Pi = \frac{1}{2} \int_{\Pi} D_t (D_t u)^2 d\Pi = \frac{1}{2} D_t \int_{\Pi} (D_t u)^2 d\Pi = \frac{1}{2} D_t ||D_t u||_{L_2}^2$$
(1.11)

we get from (1.5), (1.6), (1.8)-(1.11)

$$\int_{0}^{t} D_{t} \left\{ \frac{1}{2} \left[\sigma^{2} \left(||\nabla_{x} u_{t}||^{2}_{L_{2}(\Pi)} + ||\nabla_{y} u_{t}||^{2}_{L_{2}(\Pi)} \right) + ||u_{t}||^{2}_{L_{2}(\Pi)} \right] + \gamma^{2} \left(||\nabla_{x} u||^{2}_{L_{2}(\Pi)} + ||\nabla_{y} u||^{2}_{L_{2}(\Pi)} \right) \right\} dt = 0$$

$$(1.12)$$

Denote energy integral of problem (1.1)-(1.3) by E(t)

$$E(t) = \frac{1}{2} \left[\sigma^2 \left(||\nabla_x u_t||^2_{L_2(\Pi)} + ||\nabla_y u_t||^2_{L_2(\Pi)} \right) + \right]$$

[B.A.Iskenderov, V.G.Sardarov]

+
$$||u_t||^2_{L_2(\Pi)}]$$
 + $\gamma^2 ||\nabla_x u||^2_{L_2(\Pi)} + ||\nabla_y u||^2_{L_2(\Pi)}$

Then we get from (1.12)

$$E\left(t\right) = E\left(o\right).$$

since for a homogeneous problem E(0) = 0, then

$$E(t) \equiv 0 \quad for \quad t > 0$$

Hence it follows that $u(x, y, t) \equiv 0$. The theorem is proved.

§2. Construction of Green's function for the stationary problem.

By virtue of estimation (1.4) there exist Fourier transformation with respect to xand Laplace transformation with respect to t of function u(x, y, t) and its derivatives. Therefore performing Laplace transformation with respect to t in problem (1.1)-(1.3) we get

$$\left(\sigma^{2}\Delta_{n+m} - 1\right)k^{2}V(x, y, k) + \gamma^{2}\Delta_{n+m}V(x, y, k) = \Phi(x, y, k), \qquad (2.1)$$

$$V(x, y, k)|_{\partial \Pi} = 0 \tag{2.2}$$

where

$$\Phi(x, y, k) = (\sigma^2 \Delta_{n+m} - 1) (\psi_1(x, y) + k\psi_0(x, y)) \equiv f_1(x, y) + kf_2(x, y)$$
(2.3)

Further performing Fourier transformation in problem (2.1)-(2.2) with respect to x, we get the following boundary value problem

$$\left(\sigma^{2}k^{2}+\gamma^{2}\right)\Delta_{m}\widetilde{V}\left(s,y,k\right)-\left[|s|^{2}\left(\sigma^{2}k^{2}+\gamma^{2}\right)+k^{2}\right]\widetilde{V}\left(s,y,k\right)=\widetilde{\Phi}\left(s,y,k\right) \quad (2.4)$$

$$\tilde{V}(s,y,k)|_{\partial\Omega} = 0 \tag{2.5}$$

where $\widetilde{V}(s, y, k)$ and $\widetilde{\mathcal{F}}(s, y, k)$ is a Fourier transformation with respect to x of the functions V(x, y, k) and $\mathcal{F}(x, y, k)$, Re k > 0.

Consider a differential operator L, generalized by differential expression $L = \Delta_m$ with domain of definition

$$D(L) = \left\{ w(y) : w(y) \in C^{(2)}(\Omega) \cap C(\overline{\Omega}), \quad \Delta_m w(y) \in L_2(\Omega), \quad w(y)|_{\partial\Omega} = 0 \right\}$$

Operator \widetilde{L} is a negatively defined self-adjoint operator. It is known that [8, p.177-178], a spectrum of this operator is discrete and for its eigenvalues λ_l it holds the inequality

$$0 > \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_t \ge \dots, \qquad \lim_{l \to \infty} \lambda_l = -\infty$$
(2.6)

Eigenfunctions $\varphi_l(Y)$ of the operator L corresponding to eigenvalues λ_l forms a basis in space $L_2(\Omega)$. Using the abovesaid we prove the following theorem.

Let

$$C_{\delta} = \mathbb{C} \setminus \left[O_{\delta} \left(i \frac{\gamma}{\sigma} \right) \cup O_{\delta} \left(-i \frac{\gamma}{\sigma} \right) \right] ,$$

where $O_{\delta}(k)$ is a circle of radius δ with a centre at the point k and

Transactions of NAS Azerbaijan ______ [Mixed problem for Boussineska equation]

$$\mathbb{C}^+ = \{k : k \in \mathbb{C}, \operatorname{Re} k > 0\}$$

 \mathbb{C} is a space of complex number.

Theorem 2. Green's function of problem (2.1)-(2.2) is an analytical function of a complex parameter k excluding the points $k_{1,2}^{(1)} = \pm i \sqrt{\frac{\gamma}{\sigma}}$ and $k_{1,2}^{(2)} = \pm i \sqrt{\frac{\gamma^2}{\sigma^2 + |\lambda_l|^{-1}}}$ which are singular points and for it the representation holds

$$G(x, y, z, k) = -\frac{i}{4} \frac{(2\pi)^{-\frac{n}{2}}}{(k^2 \sigma^2 + \gamma^2)} |x|^{1-\frac{n}{2}} \sum_{l=1}^{\infty} \sqrt{\lambda_l - \frac{k^2}{k^2 \sigma^2 + \gamma^2}}^{\frac{n}{2}-1} \times \\ \times H^{(1)}_{\frac{n}{2}-1} \left(|x| \sqrt{\lambda_l - \frac{k^2}{k^2 \sigma^2 + \gamma^2}} \right) \varphi_l(Y) \varphi_l(z) , \qquad (2.7)$$

where $H_{\frac{n}{2}-1}^{(1)}(z)$ is the first-kind Hankel function of the first genus of order $\frac{n}{2}-1$. For $|x| \ge \delta_1 > 0$ series in (2.7) uniformly converges with respect to (k, x, y, z) in every compact $K \subset \overline{\Pi} \times \overline{C}_{\delta} \cap C^+$.

Proof. For constructing Green's function of problem (1.1)-(2.2) we'll apply the method of [9]. Using theorem 3.6 from [8, p.177], for the solution of problem (2.4)-(2.5) we have

$$\widetilde{V}(s, y, k) = \sum_{l=1}^{\infty} \frac{C_l(s, k) \varphi_l(y)}{(k^2 \sigma^2 + \gamma^2) \lambda_l - [|s|^2 (\sigma^2 k^2 + \gamma^2) + k^2]}$$
(2.8)

where

$$C_{l}\left(s,k\right) = \int_{\Omega} \widetilde{\Phi}\left(s,y,k\right) \varphi_{l}\left(y\right) dy \ .$$

The solution of the problem (2.2)-(2.3) is defined as the inverse Fourier transformation from V(s, y, k)

$$V(x,y,k) = \frac{1}{(2\pi)^n} \sum_{l=1}^{\infty} \varphi_l(y) \int_{R_n} \frac{C_l(s,k) e^{-i(s,x)} ds}{(k^2 \sigma^2 + \gamma^2) \lambda_l - [|s|^2 (\sigma^2 k^2 + \gamma^2) + k^2]}, \quad (2.9)$$

here term by term integration is valid by virtue of uniform convergence of series (2.8) [10, p.253] and convergence of series (2.9) in \overline{C}_{δ} . Note that $C_l(s,k)$ sufficiently fast decrease over l and |s| by virtue of the fact that $\psi_0(x,y)$, $\psi_1(x,y)$ are finite and sufficiently smooth functions of (x, y). Allowing for

$$\Phi(s, y, k) = \mathcal{F}(\Phi(x, y, k)) ,$$

where \mathcal{F} is a Fourier transformation with respect to x from (2.9) we get

$$V(x, y, k) = \frac{1}{(2\pi)^n} \sum_{l=1}^{\infty} \varphi_l(y) \times \\ \times \int_{R_n} \Phi_l(\xi, k) \left[\int_{R_n} \frac{e^{-i(s, \xi - x)} ds}{(k^2 \sigma^2 + \gamma^2) \lambda_l - [|s|^2 (\sigma^2 k^2 + \gamma^2) + k^2]} \right] d\xi$$
(2.10)

Transactions of NAS Azerbaijan

[B.A.Iskenderov, V.G.Sardarov]

where

$$\Phi_{l}\left(\xi,k\right) = \int_{\Omega} \Phi\left(\xi,y,k\right)\varphi_{l}\left(y\right)dy$$

Here change of integration order is valid, and it is performed as in [11, p.377-382]. Moreover, it is required that functions $\psi_0(x, y)$, $\psi_1(x, y)$ have absolutely summable on the whole space R_n derivatives with respect to x up to the order $\left[\frac{n}{2}\right]+1$. Calculate intrinsic integral in (2.10). For this aim denote $\tau = \xi - x$ and

$$\mathcal{J}_{l}(\tau,k) = \frac{1}{(2\pi)^{n}} \lim_{N \to \infty} \int_{|s| \le N} \frac{e^{i(s,\tau)}}{(k^{2}\sigma^{2} + \gamma^{2})\lambda_{l} - [|s|^{2}(\sigma^{2}k^{2} + \gamma^{2}) + k^{2}]} \equiv \frac{1}{(2\pi)^{n}} \lim_{N \to \infty} \mathcal{J}_{l,N}(\tau,k)$$

$$(2.11)$$

Passing to spherical coordinates in (2.11) and allowing for spherical symmetry of integrand in (2.11) we get

$$\mathcal{J}_{l,N}(\tau,k) = (2\pi)^{-\left(\frac{n}{2}+1\right)} |\tau|^{1-\frac{n}{2}} \int_{0}^{N} \frac{|s|^{\frac{n}{2}} J_{\frac{n}{2}-1}\left(|\tau| |s|\right) d|s|}{(k^2 \sigma^2 + \gamma^2) \lambda_l - \left[|s|^2 \left(\sigma^2 k^2 + \gamma^2\right) + k^2\right]} \quad (2.12)$$

where $J_{\frac{n}{2}-1}(z)$ is a Bessel function of order $\frac{n}{2}-1$.

Applying a residue method, we calculate the integral in (2.12). Let n be an odd number. Then $z^{\frac{n}{2}}J_{\frac{n}{2}-1}(z)$ is an even function. Therefore

$$\mathcal{J}_{l,N}(\tau,k) = \frac{1}{2} (2\pi)^{-\left(\frac{n}{2}+1\right)} |\tau|^{1-\frac{n}{2}} \times$$

$$\times \int_{-N}^{N} \frac{|s|^{\frac{n}{2}} J_{\frac{n}{2}-1}\left(|\tau| \ |s|\right) d|s|}{(k^{2} \sigma^{2} + \gamma^{2}) \lambda_{l} - [|s|^{2} (\sigma^{2} k^{2} + \gamma^{2}) + k^{2}]}$$
(2.13)

Now, using formula [12, p.175]

$$J_{\frac{n}{2}-1}(z) = \frac{1}{2} \left(H_{\frac{n}{2}-1}^{(1)}(z) + H_{\frac{n}{2}-1}^{(2)}(z) \right)$$
(2.14)

we get from (2.13)

$$\mathcal{J}_{l,N}(\tau,k) = \frac{1}{4} (2\pi)^{-\left(\frac{n}{2}+1\right)} |\tau|^{1-\frac{n}{2}} \times \\ \times \int_{-N}^{N} \frac{|s|^{\frac{n}{2}} \left[H_{\frac{n}{2}-2}^{(1)}(|\tau| |s|) + H_{\frac{n}{2}-2}^{(2)}(|\tau| |s|) \right] d|s|}{(k^{2}\sigma^{2}+\gamma^{2}) \lambda_{l} - [|s|^{2} (\sigma^{2}k^{2}+\gamma^{2}) + k^{2}]}$$
(2.15)

The poles of integrand in (2.15) are at the points

$$|S|_{1,2}^{(l)} = \pm \sqrt{\lambda_l - \frac{k^2}{k^2 \sigma^2 + \gamma^2}}$$
(2.16)

Transactions of NAS Azerbaijan ______ [Mixed problem for Boussineska equation]

here we take a branch for the root, for which $\sqrt{-1} = i$. For Re k > 0 the roots are equally arranged in upper and lower half-planes symmetrically with respect to origin of coordinates. Allowing for the analyticity of integrand in (2.15) and asymptotics of Hankel functions at $z \to \infty$ (for $H_{\frac{n}{2}-1}^{(1)}(z)$ at $\operatorname{Im} z > 0$ and for $H_{\frac{n}{2}-1}^{(2)}(z)$ at $\operatorname{Im} z < 0$) and using a residue method we get

$$\mathcal{J}_{l}(\tau,k) = -\frac{(2\pi)^{-\frac{n}{2}}i}{8(k^{2}\sigma^{2}+\gamma^{2})}|\tau|^{1-\frac{n}{2}}\times \\ \times \left[\sqrt{\lambda_{l} - \frac{k^{2}}{k^{2}\sigma^{2}+\gamma^{2}}}^{\frac{n}{2}-1}H_{\frac{n}{2}-1}^{(1)}\left(|\tau|\sqrt{\lambda_{l} - \frac{k^{2}}{k^{2}\sigma^{2}+\gamma^{2}}}\right) - \left(-\sqrt{\lambda_{l} - \frac{k^{2}}{k^{2}\sigma^{2}+\gamma^{2}}}\right)^{\frac{n}{2}-1}H_{\frac{n}{2}-1}^{(2)}\left(-|\tau|\sqrt{\lambda_{l} - \frac{k^{2}}{k^{2}\sigma^{2}+\gamma^{2}}}\right)$$
(2.17)

allowing for [12, p.218]

$$H_{\frac{n}{2}-1}^{(2)}(-z) = (-1)^{\frac{n}{2}-1} H_{\frac{n}{2}-1}^{(1)}(z), \qquad (2.18)$$

for $\mathcal{J}_{l}(\tau, k)$ we get from (2.17)

$$\mathcal{J}_{l}(\tau,k) = -\frac{(2\pi)^{-\frac{n}{2}} i |\tau|^{1-\frac{n}{2}}}{4 (k^{2} \sigma^{2} + \gamma^{2})} \times \sqrt{\lambda_{l} - \frac{k^{2}}{k^{2} \sigma^{2} + \gamma^{2}}} H^{(1)}_{\frac{n}{2} - 1} \left(|\tau| \sqrt{\lambda_{l} - \frac{k^{2}}{k^{2} \sigma^{2} + \gamma^{2}}} \right)$$
(2.19)

Now let n be an even number. Then $z^{\frac{n}{2}}J_{\frac{n}{2}-1}(z)$ is an odd function. Expressing the Bessel function by Hankel function according to formula (2.14), in addition performing a cut $(-\infty, 0)$, since Hankel functions have a logarithmic branching point at the point z = 0 for entire indices, and allowing for (2.18) we get

$$\mathcal{J}_{l,N}\left(\tau,k\right) = \frac{(2\pi)^{-\left(\frac{n}{2}+1\right)}}{2} |\tau|^{1-\frac{n}{2}} \int_{0}^{N} \frac{|s|^{\frac{n}{2}} \left[H_{\frac{n}{2}-1}^{(1)}\left(|\tau| \ |s|\right) + H_{\frac{n}{2}-1}^{(2)}\left(|\tau| \ |s|\right)\right] ds}{(k^{2}\sigma^{2} + \gamma^{2}) \lambda_{l} - [|s|^{2} \left(\sigma^{2}k^{2} + \gamma^{2}\right) + k^{2}]}$$

Using (2.18) we get

$$\mathcal{J}_{l,N}\left(\tau,k\right) = \frac{(2\pi)^{-\left(\frac{n}{2}+1\right)}}{2} |\tau|^{1-\frac{n}{2}} \int_{-N}^{N} \frac{|s|^{\frac{n}{2}} H_{\frac{n}{2}-1}^{(1)}\left(|\tau| |s|\right) ds}{(k^2 \sigma^2 + \gamma^2) \lambda_l - [|s|^2 \left(\sigma^2 k^2 + \gamma^2\right) + k^2]}.$$
 (2.20)

Applying a residue method to integral (2.20), going out to upper half-plane, and tending $N \to \infty$ we get

$$\mathcal{J}_{l}(\tau,k) = \frac{(2\pi)^{-\frac{n}{2}}i}{4}|\tau|^{1-\frac{n}{2}}\frac{\sqrt{\lambda_{l} - \frac{k^{2}}{k^{2}\sigma^{2} + \gamma^{2}}}}{k^{2}\sigma^{2} + \gamma^{2}} \times$$

Transactions of NAS Azerbaijan

124 [B.A.Iskenderov, V.G.Sardarov]

$$\times H_{\frac{n}{2}-1}^{(1)} \left(|\tau| \sqrt{\lambda_l - \frac{k^2}{k^2 \sigma^2 + \gamma^2}} \right)$$
(2.21)

Thus, for $\mathcal{J}_{l}(\tau, k)$ at even and odd *n* we got the same expression (2.19), (2.21).

Substituting this expressions into (2.10) and changing the order of integration and summation, for the solution of problem (2.1)-(2.2) we get

$$V(x,y,k) = -\frac{(2\pi)^{-\frac{n}{2}}i}{4}\frac{i}{k^{2}\sigma^{2}+\gamma^{2}}\int_{\Pi}|x-\xi|^{1-\frac{n}{2}}\sum_{l=1}^{\infty}\sqrt{\lambda_{l}-\frac{k^{2}}{k^{2}\sigma^{2}+\gamma^{2}}} \times K^{(1)}_{\mu}(x-\xi)\sqrt{\lambda_{l}-\frac{k^{2}}{k^{2}\sigma^{2}+\gamma^{2}}}\varphi_{l}(y)\varphi_{l}(z)\Phi(\xi,z,k)d\Pi$$

$$(2.22)$$

Hence for the Green's function of problem (2.1)-(2.2) for $\operatorname{Re} k > 0$ we get the following expression

$$G(x, y, z, k) = -\frac{(2\pi)^{-\frac{n}{2}} i |x|^{1-\frac{n}{2}}}{4 (k^2 \sigma^2 + \gamma^2)} \sum_{l=1}^{\infty} \sqrt{\lambda_l - \frac{k^2}{k^2 \sigma^2 + \gamma^2}} \times H_{\frac{n}{2}-1}^{(1)} \left(|x| \sqrt{\lambda_l - \frac{k^2}{k^2 \sigma^2 + \gamma^2}} \right) \varphi_l(y) \varphi_l(z) .$$

Now study the convergence of series in (2.7) and its derivatives up to the second order. To this end we prove the following lemma.

Lemma 1. At sufficiently large l and $k \in \overline{C}_{\delta_1}$ the asymptotics

$$\sqrt{-\lambda_l + \frac{k^2}{k^2 \sigma^2 + \gamma^2}} = \sqrt{-\lambda_l} (1 + o(1))$$
(2.23)

holds.

Represent the left hand side of (2.23) in the form

$$\sqrt{-\lambda_l + \frac{k^2}{k^2 \sigma^2 + \gamma^2}} = \sqrt{-\lambda_l \left(1 + \frac{k^2}{\lambda_l \left(k^2 \sigma^2 + \gamma^2\right)}\right)}$$
(2.24)

For $k \in \mathbb{C}_{\delta_1}$

$$\left|\frac{k^2}{k^2\sigma^2 + \gamma^2}\right| \le M \;,$$

M is some number. Therefore for $l \to \infty$ by virtue of (2.6) we have

$$\left|\frac{k^2}{\lambda_l \left(k^2 \sigma^2 + \gamma^2\right)}\right| = o\left(1\right) \ .$$

Then we get from (2.24)

$$\sqrt{-\lambda_l + \frac{k^2}{k^2 \sigma^2 + \gamma^2}} = \sqrt{-\lambda_l} \left(1 + o\left(1\right)\right) \; .$$

Transactions of NAS Azerbaijan ______ [Mixed problem for Boussineska equation]

Lemma 1 is proved.

Now continue the proof of theorem 1. In [9] it is shown that

$$\left\|\varphi_{l}\left(Y\right)\right\|_{H_{\left(\Omega\right)}^{\left(\left[\frac{m}{2}\right]+1\right)}} \leq C\left|\lambda_{l}\right|^{\left(\left[\frac{m}{2}\right]+1\right)/2}$$

where parenthesis $[\tau]$ means the entire part of τ .

Hence by means of Sobolev's embedding theorem we get

$$\left\|\varphi_{l}\left(Y\right)\right\|_{C\left(\overline{\Omega}\right)} \leq C\left|\lambda_{l}\right|^{\left(\left[\frac{m}{2}\right]+1\right)/2} \tag{2.25}$$

It is known that [10, p.190]

$$c_0 l^{\frac{2}{m}} \le |\lambda_l| \le c_1 l^{\frac{2}{m}} \tag{2.26}$$

where c_0, c_1 are constants not depending on l. Then it follows from (2.25) and (2.26)

$$\left\|\varphi_l\left(Y\right)\right\|_{C\left(\overline{\Omega}\right)} \le Cl^{\left(\left[\frac{m}{2}\right]+1\right)/m} \tag{2.27}$$

Since $\Delta^{v}\varphi_{l}(y)$ $(v \ge 1)$ is also an eigenfunction of the operator L with eigenvalue $\lambda_l^v,$ then as above, we can show that

$$\left\|\varphi_{l}\left(Y\right)\right\|_{C^{(v)}\left(\overline{\Omega}\right)} \leq Cl^{\left(\left[\frac{m}{2}\right]+1\right)/m}$$

$$(2.28)$$

Now prove a uniform convergence of the series (2.7) with respect to (x, y, z, k)in each compact $K \subset \overline{\Pi} \times \overline{C}_{\delta}$ for $|x| \ge \delta_1 > 0$.

Estimating on modulus, we get

$$|G(x, y, z, k)| \leq C_0 \left[1 + \sum_{l=l_0}^{\infty} \left| \sqrt{\lambda_l - \frac{k^2}{k^2 \sigma^2 + \gamma^2}} \right|^{\frac{n}{2} - 1} \times H_{\frac{n}{2} - 1}^{(1)} \left(|x| \sqrt{\lambda_l - \frac{k^2}{k^2 \sigma^2 + \gamma^2}} \right) ||\varphi_l(Y)||_{C(\overline{\Omega})}^2 \right],$$
(2.29)

 C_0 is a constant and l_0 is sufficiently large number.

Further, using the asymptotics of Hankel function $H_{\frac{n}{2}-1}^{(1)}(z)$ for $z \to \infty$ lemma 1 and estimates (2.25), (2.27) we get from (2.29)

$$\begin{split} ||G(x,y,z,k)||_{C(K)} &\leq C_0 \left[1 + \sum_{l=l_0}^{\infty} |\lambda_l|^{\frac{n+1}{4} + \left[\frac{m}{2}\right]} e^{-\delta_1 \sqrt{\frac{-\lambda_l}{2}}} \right] \leq \\ &\leq C_0 \left[1 + \sum_{l=l_0}^{\infty} l^{\frac{n+1}{2m} + 1} e^{-\delta_1 \sqrt{\frac{c_0}{2}} l^{\frac{1}{m}}} \right] \,. \end{split}$$

Hence, it follows a uniform convergence of series in (2.7) in the compact K for $|x| \ge \delta_1 > 0$. Using the estimate (2.26) we can show as above that the series in (2.7)

Transactions of NAS Azerbaijan

[B.A.Iskenderov, V.G.Sardarov]

may be term-by-term differentiated with respect to (x, y, z) for $|x| \ge \delta_1 > 0$, $k \in$ $\overline{C}_{\delta} \cap C^+.$

Theorem 2 is proved.

Corollary 1. The Green function G(x, y, z, k) is an even function with respect to k. Therefore we can evenly continue it to the left half-plane. Thus, G(x, y, z, k) is defined with respect to k on the all complex plane with singular points $k = \pm \frac{i\delta}{\sigma}, \ k =$

 $\pm i\delta\left(\sigma^2-\tfrac{1}{\lambda_l}\right)^{-\tfrac{1}{2}}$

Putting the expression $\Phi(x, y, k)$ from (2.3) to (2.22), for the solution of the problem (2.1)-(2.2) we get

$$V(x, y, k) = \int_{\Pi} G(x - \xi, y, z, k) f_1(\xi, z) d\Pi + k \int_{\Pi} G(x - \xi, y, z, k) f_2(\xi, z) d\Pi \equiv V_1(x, y, k) + k V_2(x, y, k)$$
(2.30)

§3. Behaviour of solution of mixed problem for Boussineska equation. Solution u(x, y, k) of nonstationary problem (1.1)-(1.3) is defined as the inverse Laplace transformation with respect to k from V(x, y, k). Then we have form (2.33)

$$u(x, y, t) = u_1(x, y, t) + u_2(x, y, t), \qquad (3.1)$$

where $u_i(x, y, t)$ is the inverse Laplace transformation with respect to k from $V_{i}(x, y, k)$, j = 1, 2, in this $u_{1}(x, y, k)$ is a solution of problem (1.1)-(1.3) with initial data

$$u_1(x, y, 0) = \psi_0(x, y), \quad u'_{1t}(x, y, 0) = 0$$
(3.2)₁

and $u_2(x, y, k)$ is a solution of problem (1.1)-(1.3) with initial data

$$u_2(x, y, 0) = 0, \quad u'_{2t}(x, y, 0) = \psi_1(x, y)$$
(3.2)₂

Now we get estimate (1.4) for the solution of problem (1.1)-(1.3). To this end the following lemmas are necessary

Lemma 2. For $|k| \ge N$ for all l

$$\operatorname{Re} \sqrt{-\lambda_l + \frac{k^2}{k^2 \sigma^2 + \gamma^2}} > \sqrt{-\lambda_l} > \sqrt{-\lambda_1},$$

where N is a sufficiently large number.

Proof. Using the formula for a real part of a quadratic root of complex number, and relation (2.6) we have

$$\operatorname{Re}\sqrt{-\lambda_{l} + \frac{k^{2}}{k^{2}\sigma^{2} + \gamma^{2}}} = \operatorname{Re}\sqrt{-\lambda_{l} + |\mu(k)| e^{i\theta}} >$$
$$> \sqrt{-\lambda_{l} + |\mu(k)| \cos\theta} > \sqrt{-\lambda_{l}} > \sqrt{-\lambda_{1}},$$

Transactions of NAS Azerbaijan ______ [Mixed problem for Boussineska equation]

where

$$\mu(k) = \left(\sigma^2 + \frac{\gamma^2}{k^2}\right)^{-1}, \quad \theta = \arg \mu(k)$$
(3.3)

Since $|k| \geq N$ where N is sufficiently large number, then θ will be sufficiently small angle. Lemma 2 is proved.

Lemma 3. For $\operatorname{Re} k \geq \varepsilon > 0$ for all *l* the estimate

$$\operatorname{Re}\sqrt{-\lambda_l + \frac{k^2}{k^2\sigma^2 + \gamma^2}} \ge c_2 > 0$$

is valid, where c_2 is a constant independent of l.

Proof. For $l > l_0$ or for |k| > N, where l_0, N are sufficiently large numbers, the proof of lemma follows from lemmas 1 and 2 respectively. Therefore we'll assume that $l < l_0$ and $|k| \leq N$. Then for $\operatorname{Re} k \geq \varepsilon > 0$

$$-\frac{\pi}{2} + \delta \le \arg k \le \frac{\pi}{2} - \delta$$

and for the points k^2 and $k^2\sigma^2 + \gamma^2$ we have

$$0 \le \arg \left(k^2 \sigma^2 + \gamma^2\right) \le \arg k^2 < \pi - 2\delta, \quad 0 < \theta \le \pi - 2\delta$$

for Im $k \ge 0$ and for Im $k \le 0$

$$-\pi + 2\delta \le \arg k^2 \le \arg \left(k^2 \sigma^2 + \gamma^2\right) \le 0, \quad -\pi + 2\delta \le \theta < 0$$

where $\delta = \delta(\varepsilon)$ and $\delta(\varepsilon) \to 0$ for $\varepsilon \to 0$, θ is defined in (3.3). Denote

$$\theta_1 = \arg\left(-\lambda_l + \frac{k^2}{k^2\sigma^2 + \gamma^2}\right)$$

analogously

$$\begin{array}{rrrr} 0 & \leq & \theta_1 < \pi - 2\delta & for & \operatorname{Im} \, k \geq 0, & \operatorname{Re} k \geq \varepsilon > 0, \\ -\pi + 2\delta & < & \theta_1 \leq 0, & for & \operatorname{Im} k < 0 \;, & \operatorname{Re} k \geq > 0 \;. \end{array}$$

Hence

$$\operatorname{Re} \sqrt{-\lambda_{l} + \frac{k^{2}}{k^{2}\sigma^{2} + \gamma^{2}}} = \left| -\lambda_{l} + \frac{k^{2}}{k^{2}\sigma^{2} + \gamma^{2}} \right|^{\frac{1}{2}} \cos \frac{\theta_{1}}{2} \geq \\ \geq \left| -\lambda_{l} + \frac{k^{2}}{k^{2}\sigma^{2} + \gamma^{2}} \right|^{\frac{1}{2}} \cos \left(\frac{\pi}{2} - \delta\right) = \left| -\lambda_{l} + \frac{k^{2}}{k^{2}\sigma^{2} + \gamma^{2}} \right|^{\frac{1}{2}} \sin \delta$$

$$(3.4)$$

The zeros of the function

$$F(l,k) = \left|-\lambda_l + \frac{k^2}{k^2\sigma^2 + \gamma^2}\right|$$

are on the imaginary axis at points

$$k_{1,2} = \pm i \sqrt{\frac{-\lambda_l \gamma^2}{1 - \lambda_l \sigma^2}}$$

128 ______ [B.A.Iskenderov, V.G.Sardarov]

since $\lambda_l < 0$. Therefore for $k \leq N$ (Re $k \geq \varepsilon > 0$) and $l \leq l_0$ there exists a number M_0 , such that

$$F\left(l,k\right) \ge M_0 \tag{3.5}$$

Then it follows form (3.4), (3.5) that

$$\operatorname{Re}\sqrt{-\lambda_l + \frac{k^2}{k^2\sigma^2 + \gamma^2}} \ge M_0^{1/2}\sin\delta$$

If we assume

$$c_2 = \min\left\{ |\lambda_1|^{1/2}, M_0^{1/2} \sin \delta \right\},\$$

then we get the proof of lemma 3 from lemmas 1,2 and (36).

Theorem 3. If $\psi_0(x,y)$, $\psi_1(x,y) \in C_0^{2,\mu}(\Pi)$, where $\mu = \left[\frac{m}{2}\right] + m + \frac{n+3}{2}$ then for solution of the problem it holds estimate (1.4).

Proof. By integrating the series term-by-term in (2.9) we get

$$u_{j}(x, y, t) = -\frac{i}{4} (2\pi)^{-\frac{n}{2}} \sum_{l=1}^{\infty} \varphi_{l}(y) \times \\ \times \int_{R_{n}} |x - \xi|^{1 - \frac{n}{2}} \left[\frac{1}{2\pi i} \int_{\varepsilon - i\infty}^{\varepsilon + i\infty} \sqrt{\lambda_{l} - \frac{k^{2}}{k^{2}\sigma^{2} + \gamma^{2}}} \frac{n}{2} H_{\frac{n}{2} - 1}^{(1)} \times (3.7) \right] \\ \times \left(|x - \xi| \sqrt{\lambda_{l} - \frac{k^{2}}{k^{2}\sigma^{2} + \gamma^{2}}} \right) \frac{k^{i-1}}{k^{2}\sigma^{2} + \gamma^{2}} e^{kt} dk dt dt$$

where

$$f_{jl}(\xi) = \int_{\Omega} f_j(\xi, z) \varphi_l(z) dz, \qquad j = 1, 2.$$

here term by term integration is valid by virtue of uniform convergence of series (2.9) and (3.7) that will be shown later. Denote

$$B_{jl}(\eta,t) = \frac{1}{2\pi i} \int_{\varepsilon-i\infty}^{\varepsilon+i\infty} \sqrt{\lambda_l - \frac{k^2}{k^2\sigma^2 + \gamma^2}} \times \\ \times H_{\frac{n}{2}-1}^{(1)} \left(\eta \sqrt{\lambda_l - \frac{k^2}{k^2\sigma^2 + \gamma^2}}\right) \frac{k^{i-1}}{k^2\sigma^2 + \gamma^2} dk,$$
(3.8)

where $\eta = |x - \xi|$, j = 1, 2. Estimate $B_{jl}(\eta, t)$ at large l and η . To this end we introduce the following contour

$$\Gamma_{\varepsilon} = L_{\varepsilon}^{-} \cup (\varepsilon - iN, \ \varepsilon + iN) \cup L_{\varepsilon}^{+},$$

where L_{ε}^{-} is a ray starting from the point $\varepsilon - iN$ and composing with negative imaginary semi-axis the angle $-\frac{\pi}{6}$ and L_{ε}^+ is a ray starting form the point $\varepsilon + iN$ and composing with positive imaginary semi-axis the angle $+\frac{\pi}{6}$. Further by Cauchy theorem we substitute in the expression $B_{jl}(\eta, t)$ an integration contour into Γ_{ε} , along which integrand for $k \to \infty$ decreases exponentially. Estimating by modulus

Transactions of NAS Azerbaijan _______ [Mixed problem for Boussineska equation]

 $B_{jl}(\eta, t)$ and its derivatives with respect to t, assuming here η sufficiently large, taking into account asymptotics of Hankel function $H_{\frac{n}{2}-1}^{(1)}(z)$ for $z \to \infty$ and lemmas 1-3, we get

$$|D_t^v B_{jl}(\eta, t)| \le C |\lambda_l|^{\frac{n-3}{4}} e^{\varepsilon t - c_2 \eta},$$

$$v = 0, 1, 2; \quad j = 1, 2; \quad l = 1, 2, \dots$$
(3.9)

Estimating (3.7) by modulus, where integration contour with respect to k is substituted into Γ_{ε} and using estimate (3.9) we get

$$|u_{j}(x, y, t)| \leq C e^{\varepsilon t - c_{2}|x|} \sum_{l=1}^{\infty} ||\varphi_{l}(y)||_{C(\overline{\Omega})} |\lambda_{l}|^{\frac{n-3}{4}} \times \int_{Q_{j}} e^{c_{2}|\xi|} |x - \xi|^{1-\frac{n}{2}} |f_{jl}(\xi)| d\xi$$
(3.10)

 Q_j is a support of the function $\psi_j(\xi, \eta)$ with respect to ξ . Using estimate (2.25), we get from (3.10)

$$|u_{j}(x,y,t)| \leq C e^{\varepsilon t - c_{2}|x|} \sum_{l=1}^{\infty} |\lambda_{l}|^{\left[\frac{m}{2}\right] + m + \frac{n-1}{2}} \int_{Q_{j}} e^{c_{2}|\xi|} |x - \xi|^{1 - \frac{n}{2}} |f_{jl}(\xi)| d\xi \qquad (3.11)$$

Represent (3.11) in the form

$$|u_{j}(x,y,t)| \leq Ce^{\varepsilon t - c_{2}|x|} \times \left[\sum_{l=1}^{\infty} |\lambda_{l}|^{-m} + \sum_{l=1}^{\infty} |\lambda_{l}|^{\left[\frac{m}{2}\right] + m + \frac{n-1}{2}} \left(\int_{Q_{j}} e^{c_{2}|\xi|} |x - \xi|^{1 - \frac{n}{2}} |f_{jl}(\xi)| d\xi \right)^{2} \right]$$
(3.12)

Applying Cauchy-Bunyakovski inequality to inequality (3.12) taking into account, that at large |x|

$$\int_{Q_j} e^{2c_2|\xi|} |x - \xi|^{2-n} d\xi \le C|x|^{2-n}$$

then we get

$$|u_{j}(x,y,t)| \leq Ce^{\varepsilon t - c_{2}|x|} \left[\sum_{l=1}^{\infty} |\lambda_{l}|^{-m} + \sum_{l=1}^{\infty} |\lambda_{l}|^{\left[\frac{m}{2}\right] + m + \frac{n-1}{2}} \int_{Q_{j}} f_{jl}^{2}(\xi) \, d\xi \right]$$
(3.13)

By B.Levi theroem [13, p.142] we get from (3.13)

$$|u_{j}(x,y,t)| \leq Ce^{\varepsilon t - c_{2}|x|} \left[\sum_{l=1}^{\infty} |\lambda_{l}|^{-m} + \int_{Q_{j}} \sum_{l=1}^{\infty} |\lambda_{l}|^{\left[\frac{m}{2}\right] + m + \frac{n-1}{2}} f_{jl}^{2}(\xi) d\xi \right]$$
(3.14)

[B.A.Iskenderov, V.G.Sardarov]

Since the functions $f_j(\xi, z)$, j = 1, 2 with respect to z satisfy the conditions of theorem [8] from [10, p.253], then

$$\sum_{l=1}^{\infty} |\lambda_l|^{\mu} f_{jl}^2(\xi) = ||f_j(\xi, z)||_{H^{\mu}(\Omega)}^2, \quad \mu = \left[\frac{m}{2}\right] + m + \frac{n-1}{2}$$
(3.15)

From (3.14) and (3.15) it follows

$$|u_{j}(x,y,t)| \leq C e^{\varepsilon t - c_{2}|x|} \left[\sum_{l=1}^{\infty} |\lambda_{l}|^{-m} + \int_{Q_{j}} ||f_{j}(\xi,z)|| d\xi \right], \quad j = 1,2$$
(3.16)

Series $\sum_{l=1}^{\infty} |\lambda_l|^{-m}$ in (3.16) converges by virtue of estimate (2.26). We have from (3.1) and (3.16)

$$|u(x,y,t)| \le Ce^{\varepsilon t - c_2|x|} \tag{3.17}$$

By virtue of estimate (2.28), smoothness of functions $f_l(\xi)$ in the same way as above we can get estimate (3.17) of derivatives u(x, y, t) contained in equation (1.1). For this in formula (3.7) $\varphi_l(y)$ should be substituted into $D_y^{\beta}\varphi_l(y)$ and $f_l(\xi)$ into $D_{\xi}^{\alpha}f_l(\xi)$. Thus, estimate (1.4) for the solution of problem (1.1)-(1.3) is proved.

Theorem 4. Let n = 1 $\psi_0(x, y)$, $\psi_1(x, y) \in C_0^{(2,\mu)}(\Pi)$, $\mu = \left[\frac{m}{2}\right] + m + 1$. Then at $t \to +\infty$ for the solution of problem (1.1)-(1.3) it holds asymptotic estimate

$$u\left(x, y, t\right) = o\left(1\right)$$

uniformly with respect to (x, y) in each compact from Π .

Proof. To study the asymptotics of solution of problem (1.1)-(1.3) at $t \to +\infty$ it is sufficient to study an asymptotics of integrals (3.8) at $t \to +\infty$. The integrand in (3.8) have singular points $k_{1,2}^{(1)} = \pm i \frac{\gamma}{\sigma}$, $k_{1,2}^{(2)} = \pm i \sqrt{\frac{\gamma^2}{\sigma^2 - \lambda_l^{-1}}}$. Let's perform the cut $\left(k_1^{(1)}, k_2^{(1)}\right)$ on the plane k. By $C_{\varepsilon}^{(1),(2)}$ denote a circle of radius ε with a center at points $k_{1,2}^{(1)}$ and by $C_{\varepsilon}^{(3),(4)}$ a circle of radius ε with a center at points $k_{1,2}^{(2)}$. We also denote

$$\begin{array}{rcl} L_{\varepsilon}^{(1)} & = & C_{\varepsilon}^{(1)} \cup J_{1\varepsilon}^{+} \cup C_{\varepsilon}^{(3)} \cup J_{2\varepsilon}^{+} \cup C_{\varepsilon}^{+(4)} \cup J_{3\varepsilon}^{+} \cup C_{\varepsilon}^{(2)} \\ L_{\varepsilon}^{(2)} & = & J_{3\varepsilon}^{-} \cup C_{\varepsilon}^{-(1)} \cup J_{2\varepsilon}^{-} \cup C_{\varepsilon}^{-(3)} \cup J_{1\varepsilon}^{-} \end{array} ,$$

where $J_{1\varepsilon}^{\pm\pm}$, $J_{2\varepsilon}^{\pm}$, $J_{3\varepsilon}^{\pm}$ compose the left and right banks of the cut $(k_1^{(1)}, k_2^{(1)})$, respectively, and $C_{\varepsilon}^{\pm(3),(4)}$ -semi-circles of circles $C_{\varepsilon}^{(3),(4)}$, arranged in the right and left half-planes k respectively.

Assuming in (3.8) n = 1, taking into account the obvious from of $H_{-\frac{1}{2}}^{(1)}(z)$ and that integrand decreases exponentially at $\operatorname{Re} k < 0$, applying Cauchy theorem we get

$$B_{jl}(\eta,t) = -\frac{\left(\sqrt{\lambda_l + \frac{1}{\sigma^2}}\right)^{-1}}{\sqrt{2}\pi^{3/2}\sigma^2\eta^{1/2}} \left(\int_{L_{\varepsilon}^{(1)}} + \int_{L_{\varepsilon}^{(2)}}\right) \sqrt{k^2 + \frac{\gamma^2}{\sigma^2 + \frac{1}{|\lambda_l|}}}^{-1} \frac{k^{j-1}e^{kt}}{\left(k^2 + \frac{\gamma^2}{\sigma^2}\right)^{1/2}}$$

Transactions of NAS Azerbaijan _______ [Mixed problem for Boussineska equation]

$$\exp\left[-\eta\sqrt{|\lambda_l| + \frac{1}{\sigma^2}} \sqrt{\frac{k^2 + \frac{\gamma^2}{\sigma^2 + \frac{1}{|\lambda_l|}}}{k^2 + \frac{\gamma^2}{\sigma^2}}}\right] dk$$
(3.18)

Let

$$\theta_2 = \frac{1}{2} \arg \frac{k^2 + \frac{\gamma^2}{\sigma^2 + \frac{1}{|\lambda_l|}}}{k^2 + \frac{\gamma^2}{\sigma^2}}$$

Consider the change of θ_2 at moving k in the positive direction along the banks of the cut $(k_1^{(1)}, k_2^{(1)})$. Then

$$\theta_{2} = \begin{cases} from -\frac{\pi}{2} & to \quad \frac{\pi}{2}, \quad at \quad k \in C_{\varepsilon}^{(1)} \cup J_{1\varepsilon}^{+}, \\ from \quad \frac{\pi}{2} & to \quad 0, \quad at \quad k \in C_{\varepsilon}^{+(3)} \cup J_{2\varepsilon}^{+}, \\ from \quad 0 \quad to \quad -\frac{\pi}{2}, \quad at \quad k \in C_{\varepsilon}^{+(4)} \cup J_{3\varepsilon}^{+}, \\ from \quad -\frac{\pi}{2} & to \quad \frac{\pi}{2}, \quad at \quad k \in C_{\varepsilon}^{(2)} \cup J_{3\varepsilon}^{-}, \\ from \quad \frac{\pi}{2} & to \quad 0, \quad at \quad k \in C_{\varepsilon}^{-(4)} \cup J_{2\varepsilon}^{-}, \\ from \quad 0 \quad to \quad -\frac{\pi}{2}, \quad at \quad k \in C_{\varepsilon}^{-(3)} \cup J_{1\varepsilon}^{-}, \end{cases}$$
(3.19)

Allowing for (3.19) we get that at $k \in L_{\varepsilon}^{(1)} \cup L_{\varepsilon}^{(2)}$

$$\operatorname{Re} \sqrt{\frac{k^2 + \frac{\gamma^2}{\sigma^2 + \frac{1}{|\lambda_l|}}}{k^2 + \frac{\gamma^2}{\sigma^2}}} \ge 0$$

and integrand in (3.18) has a summable singularity. Therefore in (3.18) we can pass to the limit at $\varepsilon \to 0$. Then integrals along circles $C_{\varepsilon}^{(1),(2)}$ and semicircles $C_{\varepsilon}^{+(3),(4)}$ tend to zero. Then integral in (3.18) will be on contour $L^{(1)} \cup L^{(2)}$ where $L^{(1)} = \sum_{\tau=1}^{3} J_{\tau}^{+}, \ L^{(2)} = \sum_{\tau=1}^{3} J_{\tau}^{-}, \ J_{\tau}^{\pm} = \lim_{\varepsilon \to 0} J_{\tau\varepsilon}^{\pm} .$ Now consider the change

$$\theta_3 = -\frac{1}{2} \arg\left(k^2 + \frac{\gamma^2}{\sigma^2 + \frac{1}{|\lambda_l|}}\right) \left(k^2 + \frac{\gamma^2}{\sigma^2}\right)$$

at passing from J_{τ}^{-} to J_{τ}^{+} ($\tau = 1, 2, 3$) that is necessary at estimating integrals on the banks of the cut $\left(k_{1}^{(1)}, k_{2}^{(1)}\right)$

on
$$J_1^ \theta_3 = -\frac{3\pi}{2};$$
 on J_1^+ $\theta_3 = -\frac{\pi}{2};$
on $J_2^ \theta_3 = -2\pi;$ on J_2^+ $\theta_3 = 0;$
on $J_3^ \theta_3 = -\frac{\pi}{2};$ on J_3^+ $\theta_3 = \frac{\pi}{2};$ (3.20)

Consider the integrals on J_1^- and J_1^+ . Allowing for (3.19), (3.20) for $\varepsilon = 0$ we get from (3.18)

$$Q_{jl}(t) = \left(\int_{J_1^-} + \int_{J_1^+}\right) k^{j-1} e^{kt} \sqrt{\left(k^2 + \frac{\gamma^2}{\sigma^2 + \frac{1}{|\lambda_l|}}\right) \left(k^2 + \frac{\gamma^2}{\sigma^2}\right)^{-1}} \times$$

132 [B.A.Iskenderov, V.G.Sardarov]

$$\times \exp\left[-\eta \sqrt{|\lambda_l| + \frac{1}{\sigma^2}} \sqrt{\frac{k^2 + \frac{\gamma^2}{\sigma^2 + \frac{1}{|\lambda_l|}}}{k^2 + \frac{\gamma^2}{\sigma^2}}}\right] =$$

$$= 2i \int_{J_1^-} k^{j-1} e^{kt} \sqrt{\left(k^2 + \frac{\gamma^2}{\sigma^2 + \frac{1}{|\lambda_l|}}\right) \left(k^2 + \frac{\gamma^2}{\sigma^2}\right)^{-1}} \times$$

$$\times \sin \eta \sqrt{|\lambda_l| + \frac{1}{\sigma^2}} \left| \sqrt{\frac{k^2 + \frac{\gamma^2}{\sigma^2 + \frac{1}{|\lambda_l|}}}{k^2 + \frac{\gamma^2}{\sigma^2}}} \right| dk$$

Since the integrand in the expression Q_{1j} has a summable singularity, then by Riemann-Lebesque lemma at $t \to +\infty$

$$Q_{1j}(t) = o(1), \quad j = 1,2$$
 (3.21)

Analogously, allowing for (3.19), (3.20) we prove that at $t \to +\infty$

$$Q_{3j}(t) = o(1), \quad j = 1,2$$
 (3.22)

It follows from (3.20) that

$$Q_{2j}(t) = 2 \int_{J_2^-} dk = -2 \int_{k_2^{(1)}}^{k_2^{(2)}} k^{j-1} e^{kt} \sqrt{\left(k^2 + \frac{\gamma^2}{\sigma^2 + \frac{1}{|\lambda_l|}}\right) \left(k^2 + \frac{\gamma^2}{\sigma^2}\right)^{-1}} \times \exp\left[-\eta \sqrt{|\lambda_l| + \frac{1}{\sigma^2}} \left| \sqrt{\frac{k^2 + \frac{\gamma^2}{\sigma^2 + \frac{1}{|\lambda_l|}}}{k^2 + \frac{\gamma^2}{\sigma^2}}} \right| \right] dk, \quad j = 1, 2$$
(3.22)

Since in (3.22) $k = i\tau$, τ is a real variable, and assuming

$$c(l) = \eta \sqrt{|\lambda_l| + \frac{1}{\sigma^2}} , \qquad \tau_{1,2} = \pm \sqrt{k^2 + \frac{\gamma^2}{\sigma^2 + \frac{1}{|\lambda_l|}}}$$

we get

$$Q_{2j}(t) = -2(i)^{j} \int_{-\tau_{1}}^{\tau_{1}} \frac{\tau^{j} e^{i\tau t}}{\sqrt{\frac{\gamma^{2}}{\sigma^{2}} - \tau^{2}}} (\tau_{1} - \tau)^{-\frac{1}{2}} (\tau_{1} + \tau)^{-\frac{1}{2}} \times \\ \times \exp\left[-\frac{c(l)}{\sqrt{\frac{\gamma^{2}}{\sigma^{2}} - \tau^{2}}} (\tau_{1} - \tau)^{\frac{1}{2}} (\tau_{1} + \tau)^{\frac{1}{2}}\right] d\tau$$
(3.23)

where $\tau_1 < \frac{\gamma}{\sigma}$. We estimate the integral in (3.23) by the following way: dividing it to intervals $(-\tau_1, -\tau_1 + \delta_1)$, $(-\tau_1 + \delta_1, \tau_1 - \delta_1)$, $(\tau_1 - \delta_1, \tau_1)$, where δ_1 is a sufficiently small number, estimating the first and third integral by modulus, and

Transactions of NAS Azerbaijan _______ [Mixed problem for Boussineska equation]

once integrating the second ones by parts, and then estimating by modulus, at $t \to +\infty$ we get

$$Q_{2j}(t) = |\lambda_l|^{\frac{1}{2}} \eta o(1)$$
(3.24)

It follows from (3.18), (3.21), (3.22), 3.24) that at $t \to +\infty$

$$B_{jl}(\eta, t) = \eta^{\frac{1}{2}} o(1) \tag{3.25}$$

Putting asymptotics (3.25) in (3.7) for $u_i(x, y, t)$ at $t \to +\infty$ we receive, that

$$u_{j}(x,y,t) = o(1) \sum_{l=1}^{\infty} \varphi_{l}(y) \int_{-\infty}^{\infty} |x-\xi| f_{jl}(\xi) d\xi , \quad j = 1, 2.$$
 (3.26)

Since functions $f_{jl}(\xi)$ are finite and sufficiently smooth, then acting as at receiveing estimation (1.4) we show that series in (3.26) converges uniformly with respect to $y \in \overline{\Omega}$. We get from (3.1) and (3.26) that at $t \to +\infty$

$$u\left(x,y,t\right) = o\left(1\right)$$

uniformly with respect to (x, y) at each compact from Π .

Theorem 4 is proved.

Remark. Behaviour of solution of mixed problem (3.1)-(3.3) at $t \to +\infty$ and $n \geq 2$ will be obtained in another paper.

In conclusion the authors express their gratitude to corresponding member of NAS of Azerbaijan prof. Mamedov Yu.A. for useful discussions of the results.

References

[1]. Wisem J. Linear and nonlinear waves. M.: Mir, 1977 (Russian)

[2]. Ikezi Kh. Experimental investigation of solutions in plasma // Solutions in action. M.: Mir, 1981, p.163-184 (Russian)

[3]. Demidenko G.V., Uspenskii S.V. Equations and systems unsolved with respect to higher derivative. Novosibirsk, Nauchnava kniga, 1998 (Russian)

[4]. Gabov S.A., Sveshnikov A.G. Problems of dynamics of stratified liquids. M.: Nauka, 1986 (Russian)

[5]. Gabov S.A., Sveshnikov A.G. Linear problems of the theory of nonstationary *intrinsic waves.* M.: Nauka, 1990 (Russian)

[6]. Mamedov Y.A., Can M. Application of the residue method to a mixed problem // Tirkish Journal of mathematics, 1996, v.20, No3, p.305-321.

[7]. Gabov S.A., Orazov B.B. On the equation $\frac{\partial^2}{\partial t^2} [u_{xx} - u] + u_{xx} = 0$ and some related problem // Zhurnal vychislitelnoi matem. i matem. fiziki, 1986, v.26, 1, p.92-102. (Russian)

[8]. Mizohata S. Theory of partial differential equations. M.: Mir, 1977 (Russian)

[9]. Iskenderov B.A. Principles of radiation for elliptic equation in the cylindrical domain // Colloquia mathematica sociotatis Janos Bolyai. Szeged, Hungary, 1988, p.249-261

[10]. Mikhaylov V.P. Partial differential equations. M.: Nauka, 1983 (Russian)

134 _____[B.A.Iskenderov, V.G.Sardarov]

[11]. Shilov G.E. Mathematical analysis. Special course. M., Nauka, 1974.

[12]. Nikoforov A.V., Uvarov V.V. Special functions of mathematical physics. M.: Nauka, 1974 (Russian)

[13]. Natanson P. Theory of real variable functions. M.: Nauka, 1987 (Russian)

Bala A. Iskenderov, Vugar G. Sardarov

Institute of Mathematics & Mechanics of NAS Azerbaijan. 9, F.Agayev str., 370141, Baku, Azerbaijan. Tel.: 38-72-50 (off.)

Received June 17, 2002; Revised November 20, 2002. Translated by Aliyeva E.T.