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Fakhri V. HAJIEV

ON A DIFFERENTIATION OPERATION IN
NORMED VECTOR LATTICES

Abstract

In the paper scheme of defining of a differential operation in normed vector
lattices is given. Properties of the introduced operation are studied. In par-
ticular mean value theorem and theorems on relation between total and partial
derivatives are studied.

1. V−differenriable mappings.
Questions on differential calculus in topological vector spaces were studied in

papers of many mathematicians (see review of Averbukh V.I. and Smaljanov O.G.
[1], [2] and also Balabanov’s V.A. monograph [3], see also [4], [5]). The given paper
is devoted to investigation of a differentiation operation in normed vector lattices.

Let X, Y− be normed vector lattices [7]. Suppose that V : X → Y is homoge-
neous isotopic continuous at zero point mapping. Isotone property of mapping V
implies its positiveness.

Definition 1. We’ll call linear mapping l : X → Y V -bounded if there exists
such non-negative number M that

|l (h)| 6 MV (|h|) for any h ∈ X.

Theorem 1. V -boundedness of linear mapping implies its continuity.
Proof. Let l : X → Y be V bounded linear mapping, then there exists a number

M ≥ 0 such that
∀h ∈ X |l (h)| ≤ MV (|h|) .
By virtue of monotonicity of norm in normed lattices we have:

‖l (h)‖ ≤ M ‖V (|h|)‖ .

Hence continuity at zero of mapping V implies that mapping l is continuous at
zero. Since l is linear then it is continuous in whole space X, Q.E.D.

Definition 2. A number

|l|v = inf {M ; M > 0, |l (h)| ≤ MV (|h|) ∀h ∈ X}

will be called a V -norm of V -bounded linear mapping l : X → Y .
The following relation holds

|l (h)| ≤ |l|v V (|h|) ∀h ∈ X.

Let’s denote by Lv (X, Y ) the set of linear V -bounded mappings from X into Y .
All the axiom of norm are satisfied on Lv (X, Y ), i.e. Lv (X, Y ) is a normed space.

Definition 3. Mapping f acting from X into Lv (X, Y ) will be called continuous
at the point x0 ∈ X if for any positive number ε there exists δ > 0 such that

|f (x)− f (x0)|v ≤ ε as soon as ‖x− x0‖ < δ.
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Definition 4. Mapping r : X → Y will be called V -small if ∀ε > 0 ∃δ > 0 such
that |r (h)| ≤ εV (|h|) as soon as ‖h‖ < δ.

We denote set of V -small mappings from the space X into the space Y by
Rv (X, Y ).

Theorem 2. The set of V -small mappings Rv (X, Y ) is a vector space.
Proof. It’s sufficient to prove that

ri ∈ Rv (X, Y ) (i = 1, 2) ⇒ r1 + r2 ∈ Rv (X, Y ) ;

ri ∈ Rv (X, Y ) and λ ∈ R ⇒ λ · r ∈ Rv (X, Y ).
Let’s assign number ε > 0. Let ri ∈ Rv (X, Y ), i.e. there exists δi > 0 such that

‖h‖ < δi ⇒ |ri (h)| ≤ ε

2
V (|h|) (i = 1, 2) .

Then for ‖h‖ < min {δ1, δ2} we have |(r1 + r2) (h)| ≤ |r1 (h)|+ |r2 (h)| ≤ εV (|h|)
so that r1 + r2 ∈ Rv (X, Y ).

Let now r ∈ Rv (X, Y ) and λ 6= 0. Then there exists δ > 0 such that

‖h‖ < δ ⇒ |r (h)| ≤ ε

|λ|
V (|h|) ,

i.e. |λ| |r (h)| = |λr (h)| ≤ εV (|h|) which means that λ · r ∈ Rv (X, Y ). For λ = 0
the statement is obvious, i.e. operator zero θ ∈ Rv (X, Y ).

Theorem 3. V -is small mapping r : X → Y is continuous at zero.
Definition 5. Mapping f : X → Y will be called V -differentiable at the point

x ∈ X if there exist mappings l ∈ Lv (X, Y ) and r ∈ Rv (X, Y ) such that for any
h ∈ X inequality f (x + h)− f (x) = l (h) + r (h) holds.

In that case linear V -bounded mapping l will be called V -derivative of mapping
f at the point x and denote by f ′ (x).

Theorem 4. There exists no more than one linear V -bounded mapping
l : X → Y such that mapping r : X → Y defined by the equality r (h) = f (x + h)−
−f (x)− l (h) is V -small one.

Proof. Suppose that there exist two mappings l1, l2 ∈ Lv (X, Y ) for which
mapping ri defined by equality

ri (h) = f (x + h)− f (x)− li (h) (i = 1, 2) ,

is V -small. Then by virtue of Theorem 2 r1 − r2 ∈ Rv (X, Y ), i.e. for any ε > 0
there exists δ > 0 such that

‖h‖ < δ ⇒ |(l2 − l1) (h)| = |(r1 − r2) (h)| ≤ εV (|h|) .

By virtue of monotonicity of norm we have ‖(l2 − l1) (h)‖ ≤ ε ‖V (|h|)‖. Since
ε is arbitrary, then ‖(l2 − l1) (h)‖ = 0 ∀h. Consequently, l2 = l1. The theorem is
proved.

Theorem 5. If mapping f : X → Y is V -differentiable at the point x ∈ X,
then it is continuous at this point.

This follows from theorems 1 and 3.
Theorem 6. If mapping f ∈ Lv (X, Y ), then it is V -differentiable at each point

x ∈ X and f ′ (x) = f .
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Theorem 7. If mapping f : X → Y is constant, then it is V -differentiable, and
at any point x ∈ X its V -derivative f ′ (x) is equal to operator zero.

Theorem 8. If mappings fi : X → Y (i = 1, 2) are V -differentiable at the
point x ∈ X, then mapping f = λ1f1 +λ2f2 (λ1, λ2 ∈ R) is also V -differentiable at
this point and

f ′ (x) = λ1f
′
1 (x) + λ2f

′
2 (x) .

Proof. By the hypothesis of the theorem we have:

fi (x + h)− fi (x) = f ′i (x) (h) + ri (h) (i = 1, 2) .

where f ′i (x) ∈ Lv (X, Y ) , ri ∈ Rv (X, Y ). Let λ1, λ2 ∈ R. Then by virtue of
Theorem 2 mapping

r (h) = (λ1r1 + λ2r2) (h) = (λ1f1 + λ2f2) (x + h)− (λ1f1 + λ2f2) (h)−

−
(
λ1f

′
1 + λ2f

′
2

)
(x) (h) = f (x + h)− f (x)−

(
λ1f

′
1 + λ2f

′
2

)
(x) (h)

is V -small.
Linear mapping λ1f

′
1 (x) + λ2f

′
2 (x) is V -bounded. Consequently, V -derivative

f ′ (x) exists and equals to λ1f
′
1 (x) + λ2f

′
2 (x). Q.E.D.

Theorem 9. V -differentiability of mapping f : X → Y implies its Frechet
differentiability.

Proof. Let mapping f : X → Y be V -differentiable. Let’s assign number ε > 0.
Then ∃δ > 0 such that ‖h‖ < δ ⇒ |r (h)| ≤ ε

cV (|h|) where c = 2
δ . Hence, by virtue

of monotonicity of the norm in normed lattices we have

‖h‖ < δ ⇒ ‖r (h)‖ ≤ ε

c
‖V (|h|)‖ . (1)

Since mapping V : X → Y is continuous at zero then ∃δ1 > 0 (without loss of
generality we assume that δ1 = δ) such that

‖h‖ < δ ⇒ ‖V (|h|)‖ ≤ 1.

Let’s take arbitrary element h ∈ X, h 6= 0x. Denote h̄ = δ·h
2‖h‖ . Then

∥∥h̄
∥∥ =

= δ
2 < δ. Therefore, we have

∥∥V
(∣∣h̄∣∣)∥∥ = δ

2‖h‖ ‖V (|h|)‖ ≤ 1. Hence,

‖V (|h|)‖ ≤ c ‖h‖ . (2)

Thus, taking into account (2) in (1) we have ‖h‖ < δ ⇒ ‖r (h)‖ ≤ ε ‖h‖, i.e.
lim
h→0

‖r(h)‖
‖h‖ = 0, Q.E.D.

Corollary. V -differentiability of mapping f : X → Y implies its weak differ-
entiability.

Let Z− be a normed vector lattice, V1 : X → Y and V2 : Y → Z be homogeneous
isotone mappings which are continuous at zero. Then mapping V3 = V2 ◦ V1 is
homogeneous isotone mapping from space X into Z continuous at zero.

Lemma 1. If l1 ∈ LV1 (X, Y ) , l2 ∈ LV2 (Y, Z), then l2 ◦ l1 ∈ LV3 (X, Z).
Proof. By assumption ∀h ∈ X, k ∈ Y we have

|l1 (h)| ≤ |l1|V1
V1 (|h|) , (3)
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|l2 (k)| ≤ |l2|V2
V2 (|k|) . (4)

Since V2 is isotone homogeneous mapping, then by using relation (3) in (4) we
have:

|l2 (l1 (h))| ≤ |l2|V2
V2 (|l1 (h)|) ≤ |l2|V2

|l1|V1
V3 (|h|) ∀h ∈ X.

i.e. l2 ◦ l1 is V3-bounded mapping.
Lemma 2. If l2 ∈ LV2 (Y, Z) , r1 ∈ RV1 (X, Y ), then l2 ◦ r1 ∈ RV3 (X, Z).
Proof. Let positive number ε be given. Then according to lemma’s condition

there exists δ > 0 such that

‖h‖ < δ ⇒ |r1 (h)| ≤ ε

|l2|V2

V1 (|h|) ; (5)

|l2 (r1 (h))| ≤ |l2|V2
V2 (|r1 (h)|) ∀h ∈ X.

Since V2 is isotone homogeneous mapping then by using relation (5) in the last
inequality we’ll obtain

‖h‖ < δ ⇒ |l2 (r1 (h))| ≤ |l2|V2
V2 (|r1 (h)|) ≤ εV3 (|h|) , i.e.l2 ◦ r1 ∈ RV3 (X, Z) .

Lemma 3. If r1 ∈ RV1 (X, Y ) , l1 ∈ LV1 (X, Y ) , r2 ∈ RV2 (Y, Z), then

r2 ◦ (l1 + r1) ∈ RV3 (X, Z) .

Proof. Let’s assign arbitrary number ε > 0. Let number ε1 satisfy the following
condition 0 < ε1 ≤ min

{
ε ·

(
1 + |l1|V1

)−1
, 1

}
. By virtue of theorems 1 and 3 a

mapping l1 + r1 is continuous at zero, i.e. ∀δ > 0 ∃ δ1 > 0 such that

‖h‖ < δ1 ⇒ ‖(l1 + r1) (h)‖ < δ. (6)

By lemma’s condition we have

∃ δ > 0 such that ‖k‖ < δ =⇒ |r2 (k)| ≤ ε1V2 (|k|) ; (7)

∃ δ2 > 0 such that ‖h‖ < δ2 =⇒ |r1 (h)| ≤ V1 (|h|) ; (8)

∀h ∈ X |`1 (h)| ≤ |`1|V1
V1 (|h|) . (9)

Denote δ̄ = min (δ1, δ2).
Then from relation (6)-(9) by virtue of isotonity property and homogeneity of

mapping V2 we have

‖h‖ < δ̄ =⇒ ‖`1 (h) + r1 (h)‖ < δ =⇒

=⇒ |r2 (`1 (h) + r1 (h))| ≤ ε1V2 (|`1 (h) + r1 (h)|) ≤

≤ ε1V2

((
|`1|V1

+ 1
)
· V1 (|h|)

)
= εV3 (|h|) ,

i.e. r2 ◦ (`1 + r1) ∈ RV3 (X, Z).
Theorem 10. Let mappings f : X → Y, g : Y → Z be given. If the following

f is V1-differentiable at the point a ∈ X, and g is V2-differentiable at the point
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b = f (a), then mapping p = g ◦ f is V3 = V2 ◦ V1-differentiable at the point a, and
the following inequality holds

p′ (a) = g′ (b) · f ′ (a) .

Proof. By the assumption we have

f (a + h)− f (a) = `1 (h) + r1 (h) ; (10)

g (b + k)− g (b) = `2 (k) + r2 (k) , (11)

where

`1 = f ′ (a) ∈ LV1 (X, Y ) , r1 ∈ RV1 (X, Y ) ,

`2 = f ′ (b) ∈ LV2 (Y, Z) , r2 ∈ RV2 (Y, Z) .

In order to prove theorem it’s sufficient to show that in equality

p (a + h)− p (a)− `2 (`1 (h)) = r (h) ,

r ∈ RV3 (X, Z) , `2 ◦ `1 ∈ LV3 (X, Z) .

By changing b + k by f (a + h) to b by f (a) in relation (11) we have

g ◦ f (a + h)− g ◦ f (a)− `2 (f (a + h)− f (a)) = r2 (f (a + h)− f (a)) .

Putting (10) into the last equality we obtain 7

g ◦ f (a + h)− g ◦ f (a)− `2 (r1 (h) + `1 (h)) = r2 (`1 (h) + r1 (h)) .

Hence,

p (a + h)− p (a)− `2 (`1 (h)) = `2 (r1 (h)) + r2 (`1 (h) + r1 (h)) .

By virtue of lemma 1

p′ (a) = `2 ◦ `1 ∈ LV3 (X, Z) .

Further it follows from lemma 2 and 3 that the mapping

r = `2 ◦ r1 + r2 ◦ `1 + r2 ◦ r1

is V3-small.
The theorem is proved.
Theorem 11. Let mappings fi : X → Y (i = 1, 2) coincide in some neigh-

bourhood D of the point x0 ∈ X. If mapping f1 is V -differentiable at this point x0,
then mapping f2 is also V−differentiable at this point and

f ′1 (x0) = f ′2 (x0) .

Proof. By virtue of hypothesis, for any h ∈ X we have

f1 (x0 + h) = f1 (x0) + f ′1 (x0) (h) + r1 (h)
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where r1 ∈ RV (X, Y ). Put

r2 (h) = f2 (x0 + h)− f2 (x0)− f ′1 (x0) (h) . (12)

Let’s prove that r2 is V -small mapping.
Since f1 (x) = f2 (x) for x ∈ D, then we haver2 (h) = r1 (h) for all

h ∈ D − x0 = W .
Let number ε > 0 be given. Since mapping r1 is V−small, then exists δ > 0 such

that
‖h‖ < δ =⇒ |r1 (h)| ≤ εV (|h|) .

Denote U = {y : ‖y‖ < δ}. Consequently, for h ∈ (W ∩ U) we have

|r2 (h)| ≤ εV (|h|) .

It means that r2 ∈ RV (X, Y ). Therefore by virtue of (12) and Theorem 4 we
conclude that f2 is V -differentiable at the point x0 and f ′2 (x0) = f ′1 (x0), Q.E.D.

2. Mean value theorem.
Let E be a normed vector lattice, F be a locally convex lattice, V : E → F be

a homogeneous isotone mapping continuous at zero.
Definition 6. A mapping f : R →F is called differentiable at the point if there

exists limit
f ′ (t) = lim

k→0

f (t + k)− f (t)
k

.

Lemma 4. If a mapping ϕ : E → F is weak differentiable at each point of the
segment S = [x, x + h] ⊂ E, then mapping f : [0, 1] → F, where f : [0, 1] → F,
f (ξ) = ϕ (x + ξh) is differentiable, moreover,

f ′ (ξ) = ϕ′ (x + ξh) .

Proof. If the mapping ϕ is weak differentiable at the each point x+ξh (0 ≤ ξ ≤ 1),
then by virtue of the corollary to Theorem 9, we have

lim
∆ξ→0

f (ξ + ∆ξ)− f (ξ)
∆ξ

= lim
∆ξ→0

ϕ (x + ξh + ∆ξh)− ϕ (x + ξh)
∆ξ

=

= ϕ′ (x + ξh) (h) ,

so,
f ′ (ξ) = ϕ′ (x + ξh) (h) = Dϕ (x + ξh, h) ,

where Dϕ is a weak differential. The lemma is proved.
Theorem 12. Let ϕ : E → F be mapping of some neighbourhood of the segment

S = [x, x + h] ⊂ E into the space F, weak differentiable at the each point of this
segment, where Dϕ (x, h) is linear with respect to h and

Dϕ (x, ◦) ≡ ϕ′ (x) ∈ LV (E,F ) ∀x ∈ S.

Then
|ϕ (x + h)− ϕ (x)| ≤ MV (|h|) ,
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where
M = sup

0≤ξ≤1

∣∣ϕ′ (x + ξh)
∣∣
V

.

Proof. Let’s introduce into consideration the mapping f : [0, 1] → F assumming
that f (ξ) = ϕ (x + ξh). Lemma 4 implies

f ′ (ξ) = ϕ′ (x + ξh) (h) .

Since by hypothesis of the theorem ϕ′ (x + ξh) ∈ LV (E,F ), then its obvious
that ∣∣f ′ (ξ)∣∣ =

∣∣ϕ′ (x + ξh) (h)
∣∣ ≤ ∣∣ϕ′ (x + ξh)

∣∣
V

V (|h|) ≤ MV (|h|) ,

where
M = sup

0≤ξ≤1

∣∣ϕ′ (x + ξh)
∣∣
V

.

Let’s denote B = {z : |z| ≤ V (|h|)}. B is a convex set. Now we’ll show that B
is a closed set.

Let zn ∈ B and zn → z. Then by virtue of the continuity of lattice’s operations
we have |zn| → |z|. Since |zn| ≤ V (|h|), then by virtue of the closure of positive
cone in F we have |z| ≤ V (|h|), i.e. z ∈ B. Thus, B is a closed convex set.

So
f ′ (ξ) ∈ MB (0 ≤ ξ ≤ 1) .

Thus, all the conditions of Freilicher-Boocher theorem ([6], p.54) are satisfied by
virtue of which f (1)− f (0) ∈ M ·B, i.e.

ϕ (x + h)− ϕ (x) ∈ M ·B.

In other words,
|ϕ (x + h)− ϕ (x)| ∈ MV (|h|) .

The theorem is proved.
Theorem 13. If a mapping ϕ : E → F is V -differentiable in neighbourhood D

of the segment S = [x1, x2], then for each point x0 ∈ D we have∣∣ϕ (x1)− ϕ (x2)− ϕ′ (x0) (x1 − x2)
∣∣ ≤ sup

x∈S

∣∣ϕ′ (x)− ϕ′ (x0)
∣∣
V

V (|x1 − x2|) .

Proof. Let’s consider the mapping x → ϕ (x)−ϕ′ (x0) · x of the segment S into
the space F .

This mapping is V -differentiable and has V -derivative

t →
(
ϕ′ (x)− ϕ′ (x0) · t

)
.

By virtue of the previous theorem,∣∣ϕ (x1)− ϕ (x2)− ϕ′ (x0) (x1 − x2)
∣∣ ≤ sup

x∈S

∣∣ϕ′ (x)− ϕ′ (x0)
∣∣
V

V (|x1 − x2|) .

Definition 7. A mapping ϕ : E → F is called continuously V -differentiable at
the point x0, if it is V -differentiable at each point of neighbourhood W of the point
x0, and the mapping x → ϕ′ (x) is continuous at the point x0.
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Corollary. If a mapping ϕ : E → F is continuously V -differentiable at the
point x0, then ∀ε > 0 ∃ neighbourhood D of the point x0 such that∣∣ϕ (x1)− ϕ (x2)− ϕ′ (x0) (x1 − x2)

∣∣ ≤ ε · V (|x1 − x2|) ,

as soon as x1, x2 ∈ D.

3. Partial derivatives.
Let E1, E2, F be normed vector lattices. Let’s define on product E1 × E2 the

structure of normed vector lattice.
Put ∀x1, y1 ∈ E1; x2, y2 ∈ E2; λ ∈ R

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2) ,

λ (x1, x2) = (λx1, λx2) ,

‖(x1, x2)‖ = max (‖x1‖ , ‖x2‖) .

We’ll assume that

(x1, x2) ≤ (y1, y2) if x1 ≤ y1, x2 ≤ y2.

Then
inf ((x1, x2) , (y1, y2)) = (inf (x1, y1) , inf (x2, y2)) ,

sup ((x1, x2) , (y1, y2)) = (sup (x1, y1) , sup (x2, y2)) ,

in particular, |(x1, x2)| = (|x1| , |x2|).
Let V : E1 × E2 → F be a homogeneous isotone continuous at zero mapping.

Let’s denote natural embedding x1 → (x1, 0E2) , x2 → (0E1 , x2) by i1and i2, re-
spectively. Then V (x1, 0E2) = V1 (x1) , V (0E1 , x2) = V2 (x2) , where V1 = V ◦ i1,
V2 = V ◦ i2. It’s obvious that V1 is a mapping of the space E1 onto F, V2 is a
mapping of E2 onto F..

Consider a mapping f : E1 × E2 → F . For each fixed point (a1, a2) ∈ E1 × E2

we’ll define partial mappings x1 → f (x1, a2) , x2 → f (a1, x2). If these mappings
V1 and V2 are differentiable at the points a1 ∈ E1 and a2 ∈ E2 respectively then
we’ll say that f has partial V -derivatives at the point (a1, a2), these derivatives will
be denoted by D1f (a1, a2) and D2f (a1, a2).

Theorem 14. If a mapping f : E1 × E2 → F is V -differentiable at the point
(a1, a2), then it has partial V -derivatives at this point and

f ′ (a1, a2) (h1, h2) = D1f (a1, a2) (h1) + D2f (a1, a2) (h2) .

At that continuity of f ′ (a1, a2) implies continuity of D1f (a1, a2) and D2 (a1, a2) .

Proof. By virtue of hypothesis of the theorem we have

f (a1 + h1, a2 + h2) = f (a1, a2) + ` (h1, h2) + r (h1, h2) ,

where
` = f ′ (a1, a2) ∈ LV (E1 × E2, F ) , r ∈ RV (E1 × E2, F ) .
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By virtue of V -smallness of mapping r ∀ε > 0 ∃δ > 0 such that

‖(h1, h2)‖ < δ =⇒ |r (h1, h2)| ≤ εV (|h1, h2|) .

We also have |` (h1, h2)| ≤ |`|V V (|h1, h2|) ∀ (h1, h2) ∈ E1 × E2.. Put

r1 (h1) = r (h1, 0E2) , `1 (h1) = ` (h1, 0E2) .

Then we have ∀h1 ∈ E1 `1 (h1) ≤ |`|V V (|(h1, 0E2)|) = |`|V V1 (|h1|) ;
∀ε > 0 ∃δ > 0 such that ‖h‖ < δ =⇒ |r1 (h1)| ≤ εV (|(h1, 0E2)|) = εV1 (|h1|) ,
i.e. `1 ∈ LV1 (E1, F ) , r1 ∈ RV1 (E1, F ). Besides we have

f (a1 + h1, a2) = f (a1, a2) + `1 (h1) + r1 (h1) ,

which implies that mapping has partial V -derivative with respect to the first argu-
ment at the point (a1, a2) and D1f (a1, a2) (h1) = `1 (h1) = f ′ (a1, a2) (h1, 0E2).

The existence of partial V -derivative with respect to the second argument and
equality D2f (a1, a2) (h2) = f ′ (a1, a2) (0E1 , h2) are established analogously. Further

D1f (a1, a2) (h1) + D2f (a1, a2) (h2) = f ′ (a1, a2) (h1, h2) .

The theorem is proved.
Remark. Since (|h1| , 0E2) ≤ (|h1| , |h2|), then by virtue of isotonic property of

mapping V we have

V1 (|h1|) ≤ V (|(h1, h2)|) , V2 (|h2|) ≤ V (|(h1, h2)|) ∀h1 ∈ E1, h2 ∈ E2.

Theorem 15. Let mapping f : E1 × E2 → F have partial V -derivatives in the
neighbourhood W of the point (a1, a2), and mapping D2f : W → LV2 (E2, F ) be
continuous at the point (a1, a2). Then is V -differentiable at the point (a1, a2) and

f ′ (a1, a2) (h1, h2) = D1f (a1, a2) (h1) + D2f (a1, a2) (h2) .

At that continuity of mappings D1f (a1, a2) (h1) and D2f (a1, a2) (h2) implies
continuity of f ′ (a1a2).

Proof. We have

f (a1 + h1, a2 + h2)− f (a1, a2) = f (a1 + h1, a2 + h2)−

−f (a1 + h1, a2) + f (a1 + h1, a2)− f (a1, a2) . (13)

Let’s assign number ε > 0. By virtue of V1-differentiability of the mapping
x1 → f (x1, a2)at the point a1∈E1 ∃δ1 > 0, such that for ‖h1‖ < δ1 and h2 ∈ E2 .

|f (a1 + h1, a2)− f (a1, a2)−D1f (a1, a2) (h1)| ≤
ε

3
V (|h1, h2|) . (14)

By virtue of V2-differentiability of the mapping x2 → f (a1 + h1, x2) at the point
a2 ∈ E2 ∃δ2 > 0 such that for ‖h2‖ < δ2and h1 ∈ E1

|f (a1 + h1, a2 + h2)− f (a1 + h1, a2)−D2f (a1 + h1, a2) (h2)| ≤
ε

3
V (|(h1, h2)|) .

(15)
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Since the mapping D2f (a1, a2) is continuous at the point (a1, a2), then by defi-
nition 3 there exists δ3 > 0 such that

|D2f (a1 + h1, a2)−D2f (a1, a2)|V2
<

ε

3
as soon as ‖h1‖ < δ3.

Therefore, since D2f (a1 + h1, a2) − D2f (a1, a2) ∈ LV2 (E2, F ), then for
‖h1‖ < δ3 and h2 ∈ E2 we have

|D2f (a1 + h1, a2) (h2)−D2f (a1, a2) (h2)| ≤

|D2f (a1 + h1, a2)−D2f (a1, a2)|V2
V2 (|h2|) ≤

ε

3
V (|(h1, h2)|) . (16)

Let’s denote δ = min (δ1, δ2, δ3). By virtue of relations (13)-(16) we have

|f (a1 + h1, a2 + h2)− f (a1, a2)−D1f (a1, a2) (h1)−D2f (a1, a2) (h2)| =

= |(f (a1 + h1, a2 + h2)− f (a1 + h1, a2)−D2f (a1 + h1, a2) (h2))+

+ (D2f (a1 + h1, a2) (h2)−D2f (a1, a2) (h2))+

+ (f (a1 + h1, a2)− f (a1, a2)−D1f (a1, a2) (h1))| ≤ εV (|(h1, h2)|) ,

as soon as ‖(h1, h2)‖ < δ.
By the hypothesis of the theorem linear mappings D1f (a1, a2) and D2f (a1, a2)

are V1 and V2-bounded respectively, so that

|D1f (a1, a2) (h1)| ≤ |D1f (a1, a2)|V1
V (|(h1, h2)|) ∀h1 ∈ E1,

|D2f (a1, a2) (h2)| ≤ |D2f (a1, a2)|V2
V (|(h1, h2)|) ∀h2 ∈ E2,

Hence,
|D1f (a1, a2) (h1) + D2f (a1, a2) (h2)| ≤

≤
(
|D1f (a1, a2)|V1

+ |D2f (a1, a2)|V2

)
V (|(h1, h2)|) .

for any (h1, h2) ∈ E1 × E2.
Thus, ∀ε > 0 ∃ δ > 0 such that

‖(h1, h2)‖ < δ ⇒

⇒
∣∣f (a1 + h1, a2 + h2)− f (a1, a2)− f ′ (a1, a2) (h1, h2)

∣∣ ≤ εV (|(h1, h2)|) ,

where f ′ (a1, a2) (h1, h2) = D1f (a1, a2) (h1) + D2f (a1, a2) (h2)−is the linear V -
bounded mapping of E1 × E2 into F , i.e. the mapping f is V -differentiable at
the point (a1, a2).

The theorem is proved.
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