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Fakhri V. HAJIEV

ON A DIFFERENTIATION OPERATION IN
NORMED VECTOR LATTICES

Abstract

In the paper scheme of defining of a differential operation in normed vector
lattices is given. Properties of the introduced operation are studied. In par-
ticular mean value theorem and theorems on relation between total and partial
derivatives are studied.

1. V—differenriable mappings.

Questions on differential calculus in topological vector spaces were studied in
papers of many mathematicians (see review of Averbukh V.I. and Smaljanov O.G.
[1], [2] and also Balabanov’s V.A. monograph [3], see also [4], [5]). The given paper
is devoted to investigation of a differentiation operation in normed vector lattices.

Let X,Y — be normed vector lattices [7]. Suppose that V' : X — Y is homoge-
neous isotopic continuous at zero point mapping. Isotone property of mapping V
implies its positiveness.

Definition 1. We’ll call linear mapping | : X — Y V-bounded if there exists
such non-negative number M that

[l (h)] < MV (Jh|) for any h € X.

Theorem 1. V-boundedness of linear mapping implies its continuity.

Proof. Let [ : X — Y be V bounded linear mapping, then there exists a number
M > 0 such that

Vh e X [L(h)] < MV (|h]).

By virtue of monotonicity of norm in normed lattices we have:

1) < MV (JaD]-

Hence continuity at zero of mapping V' implies that mapping [ is continuous at
zero. Since [ is linear then it is continuous in whole space X, Q.E.D.
Definition 2. A number

|, =inf {M; M >0, [[(h)] <MV (|h]) Vhe X}

will be called a V-norm of V-bounded linear mapping 1 : X — Y.
The following relation holds

(L)< (U, V(Ihl) Vh e X.

Let’s denote by L, (X,Y) the set of linear V-bounded mappings from X into Y.
All the axiom of norm are satisfied on L, (X,Y), i.e. L, (X,Y) is a normed space.

Definition 3. Mapping [ acting from X into L, (X,Y") will be called continuous
at the point xo € X if for any positive number € there exists § > 0 such that

|f () — f (z0)|, < € assoon as ||z — x| <.
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Definition 4. Mapping r : X — Y will be called V -small if Ye > 0 36 > 0 such
that |r (h)| < eV (|h]) as soon as ||h|| < 0.

We denote set of V-small mappings from the space X into the space Y by
R, (X,Y).

Theorem 2. The set of V-small mappings R, (X,Y) is a vector space.

Proof. It’s sufficient to prove that

TZ‘ERU(X,Y) (i:1,2):>7“1+T2€RU(X,Y);

rn€ Ry (X, Y)and A e R=X-re R, (X,Y).
Let’s assign number € > 0. Let r; € R, (X,Y), i.e. there exists §; > 0 such that

[Rll < 0i = |ri (R)] < %V(Ihl) (i=1,2).

Then for ||h]| < min {01, d2} we have |(r1 4+ r2) (k)| < |r1 (h)|+|r2 (R)| < eV (|h])
so that r1 + 79 € R, (X,Y).

Let now r € R, (X,Y) and A # 0. Then there exists § > 0 such that
€

[pll <é=1[r ()] < 5

V(Inl),
ie. |Al|r(h)] = |Ar(h)] < eV (Jh|) which means that A-r € R, (X,Y). For A =0
the statement is obvious, i.e. operator zero 6 € R, (X,Y).

Theorem 3. V-is small mapping r : X — Y is continuous at zero.

Definition 5. Mapping f: X — Y will be called V -differentiable at the point
x € X if there exist mappings | € L, (X,Y) and r € R, (X,Y) such that for any
h € X inequality f(x +h)— f(x) =1(h)+r(h) holds.

In that case linear V-bounded mapping [ will be called V-derivative of mapping
f at the point z and denote by f’ (z).

Theorem 4. There exists no more than one linear V-bounded mapping
l: X =Y such that mapping r : X — 'Y defined by the equality v (h) = f (x + h) —
—f(xz) —1(h) is V-small one.

Proof. Suppose that there exist two mappings l1,lo € L, (X,Y) for which
mapping r; defined by equality

ri(h) = f(z+h)=f(z)=li(h) (i=1,2),

is V-small. Then by virtue of Theorem 2 r; —ry € R, (X,Y), i.e. for any € > 0
there exists 0 > 0 such that

1Pl <8 =1l = l) ()] = [(r1 = 72) (A)| < eV ([R]).

By virtue of monotonicity of norm we have [|(lo — 1) (h)|| < ||V (|h])||. Since
e is arbitrary, then ||(I2 — 1) (h)|| = 0 Yh. Consequently, Iy = ;. The theorem is
proved.

Theorem 5. If mapping f : X — Y is V-differentiable at the point r € X,
then it is continuous at this point.

This follows from theorems 1 and 3.

Theorem 6. If mapping f € L, (X,Y), then it is V -differentiable at each point
ze X and f'(x)=f.
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Theorem 7. If mapping f: X — Y is constant, then it is V -differentiable, and
at any point x € X its V-derivative f'(z) is equal to operator zero.

Theorem 8. If mappings f;i : X — Y (i=1,2) are V-differentiable at the
point x € X, then mapping f = A\ f1+ Xafo (A1, A2 € R) is also V-differentiable at
this point and

I (@) = MF (@) + of (@)

Proof. By the hypothesis of the theorem we have:
fi(w+h)— fi(x)=fl(x)(h) +r(h) (i=1,2).

where f/(z) € L,(X,Y), r; € R,(X,Y). Let A;,A2 € R. Then by virtue of
Theorem 2 mapping

r(h) = (M1 + Aer2) (R) = (Aufi + Aafe) (@ + h) — (A fi + Aafe) (R) —
— (Ml + Xafz) (@) (h) = f (@ 4+ h) = f(x) = (S + Aafs) () (h)

is V-small.

Linear mapping A1 f] (z) + Aaf5 (z) is V-bounded. Consequently, V-derivative
[’ (z) exists and equals to A1 f] () + A2 f5 (z). Q.E.D.

Theorem 9. V -differentiability of mapping f : X — Y implies its Frechet
differentiability.

Proof. Let mapping f : X — Y be V-differentiable. Let’s assign number £ > 0.
Then 36 > 0 such that [|h]| < § = |r (k)| < £V (|h|) where ¢ = 2. Hence, by virtue
of monotonicity of the norm in normed lattices we have

[pll <= lr (R < Z IV (1aDI- (1)

Since mapping V : X — Y is continuous at zero then 367 > 0 (without loss of
generality we assume that §; = §) such that

[p]l <o = [V ([RDIl < 1.

Let’s take arbitrary element h € X, h # 0,. Denote h = %. Then HEH =
= § < 4. Therefore, we have ||V (|a])|| = ﬁ |V (|h])|| < 1. Hence,

IV ((RDIF < elln]- (2)

Thus, taking into account (2) in (1) we have ||h|| < § = ||r ()| < ]|h], ie.

S 0]
}lblir(l) Tl =0, Q.E.D.

Corollary. V-differentiability of mapping f : X — Y implies its weak differ-
entiability.

Let Z— be a normed vector lattice, V1 : X — Y and V5 : Y — Z be homogeneous
isotone mappings which are continuous at zero. Then mapping V3 = V5 0 V] is
homogeneous isotone mapping from space X into Z continuous at zero.

Lemma 1. If [; € LV1 (X, Y), I € LV2 (}/, Z), then looly € LV3 (X, Z).

Proof. By assumption Vh € X, k € Y we have

11 (h)] < [laly, VA (|R]), (3)
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L2 (B)| < |l2ly, Va ([K]) - (4)

Since Vj; is isotone homogeneous mapping, then by using relation (3) in (4) we
have:

lla (L ()] < llaly, Va ([l (B)]) < [laly, llaly, Va ([R)  Vh e X.

i.e. l9 0oly is V3-bounded mapping.
Lemma 2. If lo € Ly, (Y,Z), 71 € Ry, (X,Y), then laory € Ry, (X, Z).
Proof. Let positive number ¢ be given. Then according to lemma’s condition
there exists 0 > 0 such that

[Pl <& = [r1(h)| Vi([hl); ()

3
S -
2]y,

|2 (r1 (h))| < [laly, Va (Jr1 (B)])  Vhe X.

Since V4 is isotone homogeneous mapping then by using relation (5) in the last
inequality we’ll obtain

[Pl <& = [la (re (M)] < llaly, Va (Ir1 (B)]) < eVa (|hl) siedz o € Ry (X, Z).
Lemma 3. If m € Ry, (X,Y), lh € Ly, (X,Y), rp€ Ry, (Y,Z), then
79 O (ll + 7'1) S RV3 (X, Z) .

Proof. Let’s assign arbitrary number € > 0. Let number ¢ satisfy the following
condition 0 < &1 < min {5. (1 + \ll\vl)fl , 1}. By virtue of theorems 1 and 3 a
mapping [y + r1 is continuous at zero, i.e. ¥d > 0 94 61 > 0 such that

12l < b1 = (|l +71) (W) < 6. (6)

By lemma’s condition we have

3 §>0 suchthat [k <d=|r2(k)| <e1Va(|k]); (7)
3 63>0 suchthat [h| <ds=|r1(h)] <Vi(|h]); (8)
Vhe X [t (h)] < by, Vi(lhl) (9)

Denote § = min (61, d2).
Then from relation (6)-(9) by virtue of isotonity property and homogeneity of
mapping Vo we have

|h|| <6 = ||t1 (h) +71(h)]| <6 =

= |ro (€1 (h) + 71 (R))] < e1Va (|61 (h) + 71 (R)]) <
<eVa ((Ialy, +1) - Vi (lh])) = eV (|hl),

i.e. rg0 (61 + 7“1) S RV3 (X, Z)
Theorem 10. Let mappings f: X — Y, g: Y — Z be given. If the following
[ is Vi-differentiable at the point a € X, and g is Va-differentiable at the point
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b= f(a), then mapping p = go f is V3 = Vi o Vi-differentiable at the point a, and
the following inequality holds

Proof. By the assumption we have
fla+h) = f(a) =t (h)+r(h); (10)
g+k)—g(®)=1L2(k)+r2(k), (11)
where

51 = f/(CL)ELVl (X,Y), 1 ERV1 (X,Y),
52 = f/(b)ELV2(Y,Z), TQERVZ(Y,Z).

In order to prove theorem it’s sufficient to show that in equality
pla+h)—p(a) =L (lr(h)) =7 (h),
re€ Ry, (X,Z), laoly €Ly, (X,Z).
By changing b+ k by f (a+ h) to b by f (a) in relation (11) we have
goflath)—gofla)=La(flath)=fla))=ra(flath)—f(a)).
Putting (10) into the last equality we obtain 7
gofla+h)—gof(a)=La(ri(h)+Li(h)=r2(lr(h)+71(h)).
Hence,
pla+h)—p(a) =Lz (41 (h)) =La(r1 (h)) + 712 (41 (h) + 71 ().
By virtue of lemma 1
p(a)=14ly00l € Ly, (X, 7).
Further it follows from lemma 2 and 3 that the mapping
r=~F»ori+rqol; +r9071]

is V3-small.

The theorem is proved.

Theorem 11. Let mappings f; : X — Y (i =1,2) coincide in some neigh-
bourhood D of the point xg € X. If mapping f1 is V -differentiable at this point xg,
then mapping fa is also V —differentiable at this point and

f1 (o) = f5 (o) -

Proof. By virtue of hypothesis, for any h € X we have

fi (o 4+ h) = fi (zo) + fi (o) (h) + 71 (R)
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where 1 € Ry (X,Y). Put

7o (h) = fa (vo 4+ h) — fa (z0) — fi (x0) (R). (12)

Let’s prove that ry is V-small mapping.
Since fi(z) = fa(z) for x € D, then we haverp (h) = ri(h) for all
heD—xy=W.
Let number € > 0 be given. Since mapping ry is V' —small, then exists § > 0 such
that
|2l <6 = [r1 (R)] < eV (|h]).

Denote U = {y : |ly|| < d}. Consequently, for h € (W NU) we have
[ra (h)| < eV (|h]).

It means that ro € Ry (X,Y). Therefore by virtue of (12) and Theorem 4 we
conclude that fy is V-differentiable at the point zp and f} (zo) = fi (z0), Q.E.D.

2. Mean value theorem.

Let E be a normed vector lattice, F' be a locally convex lattice, V : E — F be
a homogeneous isotone mapping continuous at zero.

Definition 6. A mapping f : R —F is called differentiable at the point if there

exists limit ft+k)— f(t)
f(t) = lim i '

Lemma 4. If a mapping ¢ : E — F is weak differentiable at each point of the
segment S = [z,x + h| C E, then mapping f : [0,1] — F, where f : [0,1] — F,
f (&) =@ (x+&h) is differentiable, moreover,

&) =¢ (x+n).

Proof. If the mapping ¢ is weak differentiable at the each point x+&h (0 < € < 1),
then by virtue of the corollary to Theorem 9, we have

. fEFA—f() . p(@+Eh+ ALh) —p(x+Eh)
Algilo A _Algilo A€

= ¢ (x+¢h) (h),

| £1(€) = ¢ (+€h) (h) = Dip (w+ €n, h)

where Dy is a weak differential. The lemma is proved.

Theorem 12. Let ¢ : E — F be mapping of some neighbourhood of the segment
S =[x,z + h] C E into the space F, weak differentiable at the each point of this
segment, where Dy (x,h) is linear with respect to h and

Dy (z,0)=¢' () € Ly (E,F) Vz € S.

Then
lp(z+h)—p ()| <MV (h]),
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where
M = sup ’cp' (m—i—fh)’v :
0<£<1
Proof. Let’s introduce into consideration the mapping f : [0, 1] — F assumming
that f (§) = ¢ (x + &h). Lemma 4 implies

f1 (&) =¢ (x+Eh) (h).

Since by hypothesis of the theorem ¢’ (z + &h) € Ly (E, F), then its obvious
that

[F1(©] = |¢' (& +€h) (h)| < [ (x +€R)|, V (IR]) < MV (JR]),

where
M = sup |¢' (x+§h)‘v :
0<e<1

Let’s denote B = {z: |z| <V (|h])}. B is a convex set. Now we’ll show that B
is a closed set.

Let z,, € B and 2, — z. Then by virtue of the continuity of lattice’s operations
we have |z,| — |z|. Since |z,| < V (]h|), then by virtue of the closure of positive
cone in F' we have |z| < V (|h]), i.e. z € B. Thus, B is a closed convex set.

So

F©eMB (0<€£<1).

Thus, all the conditions of Freilicher-Boocher theorem ([6], p.54) are satisfied by
virtue of which f (1) — f(0) € M - B, i.e.
o(x+h)—p(x)e M- B.
In other words,
o (z+h) =@ ()] € MV (|h]).

The theorem is proved.
Theorem 13. If a mapping ¢ : E — F is V-differentiable in neighbourhood D
of the segment S = [x1,x3], then for each point o € D we have

o (21) — @ (22) — @' (20) (w1 — 22)| < sup ¢’ () = ¢ (w0)|}, V (|21 — 2]) -

Proof. Let’s consider the mapping  — ¢ (z) — ¢’ (zg) - x of the segment S into
the space F.
This mapping is V-differentiable and has V-derivative

t— (! (2) — ¢ (20) - t).

By virtue of the previous theorem,
o (z1) — @ (z2) — @' (x0) (z1 — x2)| < Sup @' (2) = ¢ (x0) ]}, V (l21 — x2]) -
xe

Definition 7. A mapping ¢ : E — F is called continuously V -differentiable at
the point xg, if it is V -differentiable at each point of neighbourhood W of the point
xg, and the mapping x — ¢’ (x) is continuous at the point x.
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Corollary. If a mapping ¢ : E — F is continuously V -differentiable at the
point xg, then Ye > 0 3 neighbourhood D of the point xg such that

o (21) — @ (22) — ¢ (w0) (21 — 22)| <&V (|1 — 22]),

as soon as x1, xo € D.

3. Partial derivatives.

Let E1, Es, F be normed vector lattices. Let’s define on product E; X Es the
structure of normed vector lattice.

Put Vai,y1 € E1; 20, yo € E5; AXER

(71, 22) + (Y1,%2) = (1 + Y1, 72 + 42)
)\(3}1,1‘2) = (/\xl,)\xg),

[(z1, 22) || = max ([Jz1]], [l22]]) -

We’ll assume that

(x1,22) < (y1,y2) if 21 <wyi, 22 < yo.

Then
inf ((z1,72), (y1,92)) = (inf (21, y1) , inf (z2,92))

sup ((w1,72) , (Y1,y2)) = (sup (z1,y1) ,sup (z2,92)),

in particular, |(x1,x2)| = (|z1|, |x2]).

Let V : By x Fy — F be a homogeneous isotone continuous at zero mapping.
Let’s denote natural embedding z; — (z1,0p,),22 — (0g,,x2) by ijand iz, re-
spectively. Then V (z1,0g,) = Vi (z1), V (0g,,x2) = Va(x2), where Vi = V oy,
Vo = V oi9. It’s obvious that V; is a mapping of the space E; onto F, V5 is a
mapping of Fs onto F..

Consider a mapping f : E1 x Ey — F. For each fixed point (aj,as) € E1 X E»
we’ll define partial mappings z1 — f (x1,a2), 2 — f (a1,x2). If these mappings
Vi and V5 are differentiable at the points a1 € Ey and as € E5 respectively then
we’ll say that f has partial V-derivatives at the point (a1, a2), these derivatives will
be denoted by D1 f (a1,a2) and Daf (a1, as).

Theorem 14. If a mapping f : E1 X Eo — F is V-differentiable at the point
(a1,a2), then it has partial V-derivatives at this point and

f' (a1, a2) (h1, ha) = D1f (a1, a2) (h1) + Daf (a1, az) (ha) .

At that continuity of f' (a1, az2) implies continuity of D1 f (a1,az2) and Ds (a1, as) .
Proof. By virtue of hypothesis of the theorem we have

f a1+ hi,a2 + ho) = f (a1,a2) + £ (h1, ha) +r (h1, ha),

where
(= f"(a1,a2) € Ly (Ey x B3, F), r€ Ry (E; x B3, F).
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By virtue of V-smallness of mapping r Ve > 0 3§ > 0 such that
[(h1, ho)ll <6 = [r (ha, ha)| < €V (|1, hal) -

We also have |€ (h1, ho)| < €]y, V (|h1, ha|) ¥ (h1,ho) € Ey X Es.. Put
r1(h1) =7 (h1,0g,), ¢1(h1)=1"¢(h1,0g,).

Then we have Vhl S E1 51 (hl) < |€|VV(|(h1,OE2)|) = ‘€|V V1 (|h1|),
Ve > 0 35 > 0 such that ||k < § = |r1(h1)| < eV (|(h1,08,)]) = Vi (|hi]),
ie. ¢y € Ly, (E1,F), r1 € Ry, (E1,F). Besides we have

f (a1 + hl,ag) = f(al,ag) + 01 (hl) + 7 (hl),

which implies that mapping has partial V-derivative with respect to the first argu-

ment at the point (a1,a2) and Dy f (a1,az2) (h1) = 41 (h1) = f' (a1,a2) (h1,0g,).
The existence of partial V-derivative with respect to the second argument and

equality Do f (a1, a2) (h2) = f' (a1, a2) (0g,, he) are established analogously. Further

D1 f (a1, a2) (h1) + Daf (a1, a2) (ha) = f' (a1, az2) (hi, ha) .

The theorem is proved.
Remark. Since (|hi|,0g,) < (|h1],]h2]), then by virtue of isotonic property of
mapping V we have

Vi(lhal) < V(I(ha, ho)l) s Va (Jha]) <V ([(ha, h2)]) Yhi € Ev, hs € E.

Theorem 15. Let mapping f : E1 X Fo — F have partial V-derivatives in the
neighbourhood W of the point (a1,as), and mapping Dof : W — Ly, (Ea, F) be
continuous at the point (a1, a2). Then is V -differentiable at the point (a1, asz) and

f'(a1,a2) (h1,h2) = D1f (a1,a2) (h1) + Daf (a1, az) (ha) .

At that continuity of mappings Dif (a1,a2) (h1) and Daf (a1, a2) (he) implies
continuity of ' (ajag).
Proof. We have

f(a1 + hi,a2 + hg) — f(al,ag) = f(a1 + h1,a9 +h2) —

—f (a1 + hi,a2) + f (a1 + h1,a2) — f (a1, a2) . (13)

Let’s assign number ¢ > 0. By virtue of Vj-differentiability of the mapping
x1 — f(x1,a2)at the point 4, cp, 301 > 0, such that for ||h1]] < 01 and hy € Es .

1 (@1 + hy02) = f (a1, a2) = Dif (ar,a2) ()] < SV (B Jal) . (1)

By virtue of Va-differentiability of the mapping zo — f (a1 + h1,x2) at the point
ay € Ey 305 > 0 such that for ||hs]| < d2and hy € E;

|f (a1 + h1,a2 + ha) — f (a1 + hi1,a2) — Daf (a1 + hi,a2) (ho)| < %V ([(h1, h2)]) -
(15)
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Since the mapping Ds f (a1, a2) is continuous at the point (aj,az), then by defi-
nition 3 there exists d3 > 0 such that

€
|Daf (a1 + h1,a2) — Daof (al,ag)]V2 < 3 as soon as ||hi|| < ds.

Therefore, since Daf (a1 + hi,a2) — Daf (a1,a2) € Ly, (E2, F), then for
|h1]| < 03 and hg € E5 we have

|Daf (a1 + hi,a2) (h2) — Daf (a1,a2) (ha)| <

[Daf (a1 + h1,a2) — Daf (a1, az2)ly, V2 (|h2]) < %V (I(h1, h2)l) - (16)

Let’s denote 6 = min (41, 02, d3). By virtue of relations (13)-(16) we have
|f (a1 + h1, a2 + ho) — f(a1,a2) — D1 f (a1, a2) (h1) — Daf (a1, az) (h2)| =

= |(f (a1 + h1,a2 + ha) — f (a1 + h1,a2) — Daf (a1 + h1,a2) (he)) +
+(D2f (a1 + h1,a2) (he) — Daf (a1,a2) (h2)) +
+(f (a1 + h1,a2) = f (a1, a2) — D1f (a1, a2) (h1))] < eV (|(ha, ko)),

as soon as ||(hy, ho)| < 6.
By the hypothesis of the theorem linear mappings D1 f (a1, a2) and Daf (a1, az)
are Vi and Va-bounded respectively, so that

|D1f (a1, a2) (h1)| < [D1f (a1,a2)ly, V (|(h1, h2)])  Vh1 € En,

|Da2f (a1, a2) (h2)| < |Da2f (a1,a2)ly, V (|(h1,h2)])  Vh2 € Ea,

Hence,
|D1f (a1,a2) (h1) + Daf (a1, az2) (h2)| <

< (ID1f (a1, a2)ly, + ID2f (a1, a2)ly,) V (|(h1, ha)]) -
for any (hl, hg) € k1 x Es.
Thus, Ve > 0 3 § > 0 such that
[(h1, ho)|| < 6 =

= |f (a1 + h1,az + ha) — f (a1,a2) — f' (a1, a2) (b1, ha)| < eV (|(h1, h2)]),

where f, (al, (12) (hl, hg) = Dif (al, CLQ) (hl) + Dof (al,ag) (hg) —is the linear V-
bounded mapping of E; x Ey into F, i.e. the mapping f is V-differentiable at
the point (a1, a2).

The theorem is proved.
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