GUMBATALIYEV R.Z.

ON THE EXISTENCE OF A GENERALIZED SOLUTION OF A BOUNDARY VALUE PROBLEM OF ONE CLASS OPERATOR-DIFFERENTIAL EQUATIONS

Abstract

In the paper the sufficient conditions ensuring the existence and uniqueness of generalized solutions for operator-differential equations, whose main parts have multiple characteristic are obtained. Simultaneously the exact values of the norms of intermediate derivatives of operators in some spaces are obtained.

Let H be a separable Hilbert space, A be a positive definite self-adjoint operator in H with the domain of definition D(A). Denote by H_{γ} a scale of Hilbert spaces generated by the operator A, i.e. $H_{\gamma} = D(A^{\gamma})$ $(\gamma \ge 0)$, $(x,y)_{\gamma} = (A^{\gamma}x,A^{\gamma}y)$, $x,y \in D(A^{\gamma})$. Denote by $L_2(a,b:H)$ $(-\infty \le a < b \le \infty)$ a Hilbert space of vector-functions determined in (a,b) almost everywhere with values in H which have the norm

$$||f||_{L_2(a,b;H)} = \left(\int_a^b ||f(t)||_H^2 dt\right)^{1/2}$$

and assume $L_2(R:H) = L_2(-\infty,\infty:H)$, $L_2(R_+:H) = L_2(0,\infty:H)$.

Further we determine the Hilbert space

$$W_2^m(a,b:H) = \{ u | u^{(m)} \in L_2(a,b:H), u \in L_2(a,b:H_m) \}$$

with the norm

$$\|u\|_{W_2^m(a,b;H)} = \left(\|u^{(m)}\|_{L_2(a,b;H)}^2 + \|u\|_{L_2(a,b;H_m)}^2\right)^{1/2}.$$

Here and later on the derivatives $u^{(j)}(t) = \frac{d^j u}{dt^j} \left(j = \overline{1,m} \right)$ are understood in the sense of the distribution theory. Here we assume $W_2^m(R:H) = W_2^m(-\infty,\infty:H)$, $W_2^m(R_+:H) = W_2^m(0,\infty:H)$. Further we determine the space

$$W_2^m(R_+:H;\{k\}_{k=0}^{m-1}) = \{ \psi : \psi \in W_2^m(R_+:H), \ u^{(k)}(0) = 0, \ k = \overline{0,m-1} \}.$$

It is obvious that in the theorem on traces [1] the space $W_2^m(R_+:H;\{k\}_{k=0}^{m-1})$ is a closed subspace of the Hilbert spaces $W_2^m(R_+:H)$.

Let's determine the space $D(a,b:H_{\gamma})$ a set of infinity-differentiable functions with values in H_{γ} having a compact support in [a,b]. As it is known the linear set $D(a,b:H_m)$ is everywhere dense in the space $W_2^m(a,b:H)$ [1]. From the theorem of traces it follows that the space

$$D(R_{+}:H_{2m};\{k\}_{k=0}^{m-1}) = \{u \mid u \in D(R_{+}:H_{2m}), \ u^{(k)}(0) = 0, \ k = 0, m-1\}$$

is also everywhere dense in the space $W_2^m(R_+:H;\{k\}_{k=0}^{m-1})$.

Consider the following boundary value problem in the space H

[On the existence of generalized solution]

$$P\left(\frac{d}{dt}\right)u(t) = \left(-\frac{d^2}{dt^2} + A^2\right)^m u(t) + \sum_{j=0}^n A_j u^{(n-j)}(t) = 0, t \in R_+,$$
 (1)

$$u^{(k)}(0) = \varphi_k, \quad k = \overline{0, m-1},$$
 (2)

where A is a positive-definite self-adjoint operator, $A_0, A_1, A_2, ..., A_n$ are linear operators in H, φ_k $\left(k = \overline{0, m-1}\right)$ are some vectors from H.

We'll investigate the existence of generalized solutions of the problem (1)-(2). Note that the generalized solutions of the problem for operator-differentiable equations are investigated by many authors. For example, in S.S.Mirzoyev's [2] and M.B.Obrazov's [3] paper the analogous problem is investigated, when the main part of the equation(1)

has the form $(-1)^m \frac{d^{2m}}{dt^{2m}} + A^{2m}$. For m = 2 the condition of the existence of a generalized solution is investigated in paper [4].

Later on we need the following.

Lemma 1 [2]. Let A be a positive-definite self-adjoint operator, the operators $B_j = A_j A^{-j}$, $(j = \overline{0,m})$ and $D_j = A^{-m} A_j A^{m-j}$, $(j = \overline{m+1,2m})$ are bounded in H. Then the bilinear functional

$$P_1(u:\psi) = (P_1(d/dt)u,\psi)_{L_2(R_c;H)},$$

defined for all vector-functions $u \in D(R_+:H)$ and $\psi \in D(R_+:H;\{k\}_{k=0}^{m-1})$ is continued on the space $W_2^m(R_+:H) \oplus W_2^m(R_+:H;\{k\}_{k=0}^{m-1})$ to the bilinear functional $\mathcal{P}_1(u:\psi)$ operating by the following form

$$\mathcal{P}_{1}(u:\psi) = \sum_{j=0}^{m} (-1)^{m} \left(A_{j} u^{(m-j)}, \psi^{(m)} \right)_{L_{2}(R_{n}:H)} + \sum_{j=m+1}^{2m} (-1)^{m} \left(A_{j} u^{(2m-j)}, \psi \right)_{L_{2}(R_{n}:H)}.$$

Definition. The vector-function $u(t) \in W_2^m(R_+:H)$ is called a generalized solution of the problem (1)-(2), if

$$\lim_{t\to 0} \left\| u^{(k)}(t) \right\|_{H_{m-k-1/2}} = 0, \quad k = \overline{0, m-1}$$

and for any $\psi(t) \in W_2^m(R_+: H; \{k\}_{k=0}^{m-1})$ the following identity is satisfied

$$(u,\psi)_{W_2^m} + \sum_{p=1}^{m-1} {m \choose p} (A^p u^{(m-p)}, A^p \psi^{(m-p)})_{L_2(R_n:H)} + \mathcal{P}_1(u:\psi) = 0,$$

$$(m-p+1) \quad (m-p+1).$$

here
$$\binom{m}{p} = C_m^p = \frac{m(m-1)...(m-p+1)}{p!}$$
.

At first consider the problem

$$P_0\left(\frac{d}{dt}\right)u(t) = \left(-\frac{d^2}{dt^2} + A^2\right)^m u(t) = 0, t \in R_+,$$
 (3)

$$u^{(k)}(0) = \varphi_k, \ k = \overline{0, m-1}.$$
 (4)

It holds

Theorem 1. For any set $\varphi_k \in H_{m-k-1/2}$ $(k = \overline{0, m-1})$ the problem (3)-(4) has a unique generalized solution.

[Gumbataliyev R.Z.]

Proof. Let the vectors $c_0, c_1, \dots c_{m-1} \in H_{m-1/2}, e^{-At}$ be a holomorphic semi-group of bounded operators generalized by the operator (-A). Then the vector function

$$u_0(t) = e^{-tA} \left(c_0 + \frac{t}{1!} A c_1 + \dots + \frac{t^{m-1}}{(m-1)!} A^{m-1} c_{m-1} \right)$$

belongs to the space $W_2^m(R_+:H)$, since every term $\frac{t^{m-k}}{(m-k)!}A^{m-\nu}e^{-tA}c_k \in W_2^m(R_+:H)$ for

 $c_k \in H_{m-1/2}$, $(k = \overline{0, m-1})$. On the other hand $u_0(t)$ is a general solution of the equation (3), therefore from the condition (4) we have to determine the vectors c_k , $(k = \overline{0, m-1})$. It is easy to see that for determination of the vectors c_k , $(k = \overline{0, m-1})$ the following system of the equations is obtained

$$\begin{bmatrix} E & 0 & 0 & \dots & 0 \\ -E & E & 0 & \dots & 0 \\ E & -E & E & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ (-1)^{m-1}E & {\binom{m-1}{1}}(-1)^{m-2}E & {\binom{m-2}{2}}(-1)^{m-3}E & \dots & E \end{bmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_{m-1} \end{pmatrix} = \begin{pmatrix} \phi_0 \\ A^{-1}\phi_1 \\ A^{-2}\phi_2 \\ \vdots \\ A^{-(m-1)}\phi_m \end{pmatrix},$$
 (5)

where E is a unit operator in H. Since the base operator determinant is reversible, then we can identically determine c_k , $\left(k=\overline{0,m-1}\right)$. It is obvious that $c_k\in H_{m-1/2}$. Really for any k, $\left(k=\overline{0,m-1}\right)$, $A^{-(m-k)}\phi_k\in H_{m-1/2}$ since $\phi_k\in H_{m-k-1/2}$.

Since the vector in the right hand side of the equation (5) belongs to the space $\underbrace{H_{m-1/2} \oplus H_{m-1/2} \oplus \ldots \oplus H_{m-1/2}}_{m \ ilmes} = (H_{m-1/2})^m$, then taking into account that the base

operator matrix as a product reversible by a scalar matrix \widetilde{E} , where \widetilde{E} is a unit matrix in $(H_{m-1/2})^m$, is reversible. Since any vector is a linear combination of the elements $A^{-(m-k)}\phi_k \in H_{m-1/2}$, then $c_k \in H_{m+1/2}$, $\left(k = \overline{0, m-1}\right)$. Further, it is easily verified that $u_0(t)$ is a generalized solution of the equation (3), i.e.

$$(u_0, \psi)_{W_2^m} + \sum_{p=1}^{m-1} {m \choose p} (A^{m-p} u_0^{(p)}, A^{m-p} \psi^{(p)}) = 0$$

for any $\psi \in W_2^m(R_+: H; \{k\}_{k=0}^{m-1})$. The theorem is proved.

In the space $W_2^m(R_*:H;\{k\}_{k=0}^{m+1})$ we'll determine the new norm

$$\|u\|_{W_2^{m}(R_*;H)} = \left(\|u\|_{W_2^{m}(R,H)} + \sum_{p=1}^{m-1} {m \choose p} \|A^{m-p}u^{(p)}\|_{L_2(R_*;H)}^2\right)^{1/2}.$$

By the intermediate derivatives theorem [1, p.29] the norms $\|u\|_{W_2^m}$ and $\|u\|_{W_2^m}$ are equivalent in the space $W_2^m(R_+:H;\{k\}_{k=0}^{m-1})$. Therefore the numbers

$$N_{j}\left(R_{+}:\left\{k\right\}_{k=0}^{m-1}\right) = \sup_{0 \neq u \in W_{s}^{m}\left(R_{+}:H;\left\{k\right\}_{k=0}^{m-1}\right)} \left\|A^{m-j}u^{(j)}\right\|_{L_{2}\left(R;H\right)} \left\|u\right\|_{W_{2}^{m}\left(R_{-}:H\right)}^{-1}, \ j = \overline{0,m}$$

are finite.

Using the methods of work [2] we find exact values of these numbers.

[On the existence of generalized solution]

Lemma 2. The number $N_j(R_+:\{k\}_{k=0}^{m-1})$ is determined by the following form $N_j(R_+:\{k\}_{k=0}^{m-1})=d_{m,j}^{m/2}$

where

$$d_{m,j} = \begin{cases} \left(\frac{j}{m}\right)^{j/m} \left(\frac{m-j}{m}\right)^{\frac{m-j}{m}}, & \text{if } j = \overline{1, m-1}, \\ 1, & \text{if } j = \overline{0, m}. \end{cases}$$
Proof. Since $u \in W_2^m \left(R_+ : H; \{k\}_{k=0}^{m-1}\right)$, then we can continue it to negative semi-axis

Proof. Since $u \in W_2^m(R_+: H; \{k\}_{k=0}^{m-1}\}$, then we can continue it to negative semi-axis as a zero vector function from the class $W_2^m(R_+: H)$. At first we prove the correctness of the exact inequality

$$\left\|A^{m-j}u^{(j)}\right\|_{L_{2}(R:H)}^{2} \leq d_{m,j}^{m}\left\|u\right\|_{W_{2}^{m}(R:H)}^{2} \tag{6}$$

for the vector-functions $u \in W_2^m(R:H)$. To this end we assume that $u \in D(R:H_{2m})$. Then for $\beta \in (0, d_{m,t}^{-m})$ and $u \in D(R:H_{2m})$ by the Plansherel theorem it holds the equality

$$\left\| u \right\|_{W_{2}^{m}(R,H)}^{2} - \beta \left\| A^{m-j} u^{(j)} \right\|_{L_{2}(R,H)}^{2} = \int_{-\infty}^{+\infty} [(-i\xi)^{m} \hat{u}(\xi), (-i\xi)^{m} \hat{u}(\xi) + (A^{m} u(\xi), A^{m} u(\xi)) + \sum_{p=1}^{m} {m \choose p} ((-i\xi)^{p} A^{m-p} \hat{u}(\xi), (-i\xi)^{p} A^{m-p} \hat{u}(\xi))_{H} - \beta ((-i\xi)^{j} A^{m-j} \hat{u}(\xi), (-i\xi)^{j} A^{m-j} \hat{u}(\xi)) d\xi = \int_{-\infty}^{+\infty} (P_{j}(\xi; \beta; A) \hat{u}(\xi), u(\xi)) d\xi ,$$

$$(7)$$

where $\hat{u}(\xi)$ is a Fourier representation of the vector-function u(t),

$$P_{j}(\xi; \beta; A) = (\xi^{2}E + A^{2})^{m} - \beta \xi^{2/j} A^{2m-2j},$$
Since for $\sigma \in \sigma(A)$ $(\sigma \ge \mu_{0} > 0)$ and $\beta \in (0, d_{m,j}^{m})$

$$P_{j}(\xi;\beta;\sigma) = (\xi^{2} + \sigma^{2})^{m} - \beta \xi^{2j} \sigma^{2m-2j} = (\xi^{2} + \sigma^{2})^{m} \left[1 - \beta \frac{\xi^{2j} \sigma^{2m-2j}}{(\sigma^{2} + \xi^{2})^{m}} \right] \ge$$

$$\ge (\xi^{2} + \sigma^{2})^{m} \left[1 - \beta \sup_{\substack{\xi \in R \\ \sigma \ge \mu_{0}}} \frac{\xi^{2j} \sigma^{2m-2j}}{(\sigma^{2} + \xi^{2})^{m}} \right] = (\xi^{2} + \sigma^{2})^{m} (1 - \beta d_{m,j}^{-m}) > 0,$$

then from spherical expansion of the operator A it follows that the operator bundle $P_j(\xi;\beta;A)$ for $\beta \in (0,d_{m,j}^{-m})$ satisfies the inequality

$$P_{i}(\xi;\beta;A) > (1-\beta d_{m,i}^{-n})(\xi^{2}E+A^{2})^{m} > 0.$$

Thus from the equality (7) it follows that for all $\beta \in (0, d_{m,\ell}^{-m})$ and $u \in W_2^m(R:H)$ the inequality

$$\|u\|_{W_{2}^{m}(R;H)}^{2} - \beta \|A^{m+j}u^{(j)}\|_{L_{2}(R;H)}^{2} > 0$$

is valid.

Passing to the limit $\beta \to d_{m,j}^{-m}$ we obtain the correctness of the inequality (6).

[Gumbataliyev R.Z.]

Now we'll prove that this inequality is exact. Let's fix $\varepsilon > 0$ and show that there exists the vector function $\vartheta_{\varepsilon}(t) = g_{\varepsilon}(t)\varphi_{\varepsilon}$, where $g_{\varepsilon}(t)$ is a scalar function from the space $W_2^m(R:C)$, $\varphi_{\varepsilon} \in H_{2m}$, $\|\varphi_{\varepsilon}\| = 1$, for which

$$\mathcal{E}(\theta_{\varepsilon}) \| u \|_{W^{m}(R;H)}^{2} - \left(d_{m,j}^{m} + \varepsilon \right) \left\| A^{m-j} u^{(j)} \right\|_{L_{2}(R;H)}^{2} < \varepsilon \tag{9}$$

or in the equivalent form

$$\mathcal{E}(\theta_{\varepsilon}) = \int_{-\infty}^{+\infty} (P_{j}(\xi; d_{m,j}^{-m} + \varepsilon; A) \varphi_{\varepsilon}, \varphi_{\varepsilon}) \hat{g}_{\varepsilon}(t)|^{2} d\xi < 0, \qquad (10)$$

where $P_j\left(\xi;d_{m,j}^{+m}+\varepsilon;A\right)$ is an operator polynomial from the equality (8) for $\beta=d_{m,j}^{-m}+\varepsilon$. If the operator A has if only one eigenvalue $\mu>\mu_0$, then for φ_ε we choose the corresponding eigenvector φ , i.e., $A\varphi_\varepsilon=\mu\varphi_\varepsilon\left(\|\varphi_\varepsilon\|=1\right)$. Then it is easy to see that

$$(P_{j}(\xi; d_{m,j}^{-m} + \varepsilon; A)\varphi_{\varepsilon}, \varphi_{\varepsilon}) = P_{j}(\xi; d_{m,j}^{-m} + \varepsilon; \mu) = (\xi^{2} + \mu^{2})^{m} - \xi^{2} \int (d_{m,j}^{-m} + \varepsilon)\mu^{2m-2j} = \mu^{2m} (\xi^{2} / \mu^{2} + 1)^{m} \left[1 - (d_{m,j}^{-m} + \varepsilon) \frac{(\xi^{2} / \mu^{2})^{2j}}{(\xi^{2} / \mu^{2} + 1)^{m}} \right].$$

$$(11)$$

For $j = \overline{0, m-1}$ we find the point $\tau_0 = \xi_0 / \mu$ such that

$$d_{m,j}^{-m} = \sup_{\tau \in \mathbb{R}} \left| \tau^{2j} \left(\tau^2 + 1 \right)^{-m} \right| = \left| \tau_0^{2j} \left(\tau_0^2 + 1 \right)^{-m} \right|.$$

Then at the point $\xi = \xi_0 = \tau_0 / \mu$ from (11) it follows that

$$P_{j}(\xi; d_{m,j}^{-m} + \varepsilon; \mu) = \mu^{2m} \left(\tau_{0}^{2} + 1\right) \left(1 - \left(d_{m,j}^{-m} + \varepsilon\right) d_{m,j}^{-m}\right) > 0.$$
 (12)

If the operator A has no eigenvalue, then for $\mu \in \sigma(A)$ and for the sufficiently small $\delta > 0$ we can to construct the vector $\phi_{\delta} \in H_{2m}$ $(\|\phi_{\delta}\| = 1)$, such that

$$A^{l} \varphi_{\delta} = \mu^{l} \varphi_{\delta} + o(1, \delta), \text{ for } \delta \rightarrow 0, l = 1, 2, \dots$$

In this case the inequality

$$\left(P_{j}\left(\xi;d_{m,j}^{-m}+\varepsilon;A\right)\varphi_{\mathcal{S}},\varphi_{\mathcal{S}}\right)=P_{j}\left(\xi;d_{m,j}^{-m}+\varepsilon;\mu\right)+O(1,\mathcal{S})<0$$

for $\xi = \tau_0/\mu$ is valid too. For j=m it is also easy to prove that at some point the inequality (12) is valid. Thus for any $\xi = \tau_0/\mu$ we can construct the vector $\varphi_\varepsilon \in H_{2m}$ such that

$$\left(P_{j}\left(\xi;d_{m,j}^{-m}+\varepsilon;A\right)\varphi_{\varepsilon},\varphi_{\varepsilon}\right)<0\qquad\left(j=\overline{0,m}\right)$$
(13)

at the some point $\xi = \tau_0 / \mu$. Since the function $\left(P_i(\xi; d_{m,j}^{-m} + \epsilon; A) \varphi_{\epsilon}, \varphi_{\epsilon}\right)$ is a continuous function of the argument ξ , then the inequality is valid and for some interval (η_0, η_1) . Now we can construct $g_{\epsilon}(t)$.

Let $\hat{g}(\xi)$ be an infinitely-differentiable finite function with a support in the interval (η_0, η_1) . Denote its inverse Fourier transformation by $g_s(t)$, i.e.

$$g_{\nu}(t) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\eta_0} \hat{g}(\xi) e^{i\xi t} d\xi$$
.

It's obvious that $g_{\varepsilon}(t) \in W_2^m(R;C)$ and $\theta_{\varepsilon}(t) = g_{\varepsilon}(t)\varphi_{\varepsilon}$ from inequality (10) the next inequality follows

[On the existence of generalized solution]

$$\mathcal{E}(\theta_{\varepsilon}) = \mathcal{E}(g_{\varepsilon}(t)\varphi_{\varepsilon}) = \int_{\eta_{0}}^{\eta_{0}} (P_{j}(\xi; d_{m,j}^{m} + \varepsilon; A)\varphi_{\varepsilon}, \varphi_{\varepsilon}) \hat{g}_{\varepsilon}(t)|^{2} d\xi < 0.$$

Thus we showed that the inequality is precise for the vector-function u(t) from the class $W_2^m(R:H)$. We prove that it is exact and for the vector-functions u(t) from the class $W_2^m(R_*:H;\{k\}_{k=0}^{m-1})$.

Since $D(R:H_m)$ is dense in $W_2^m(R:H)$ and the functional $\mathcal{E}(\cdot)$ is continuous in the space $W_2^m(R:H)$, then we can find the vector-function $\omega_{\varepsilon}(t) \in D(R:H_m)$ for which the inequality (9) is satisfied. Then there exists the interval $(-N;N) \subset R$ outside of which $\omega_{\varepsilon}(t) = 0$. Assuming $\omega_{\varepsilon}(t) = \omega_{\varepsilon}(t-2N)$, we obtain that $u_{\varepsilon}(t) \in W_2^m(R_+:H;\{k\}_{k=0}^{m-1})$ and $\mathcal{E}(u_{\varepsilon}(t)) < 0$. Consequently, $N_f(R_+:\{k\}_{k=0}^{m-1}) = d_{m,j}^{m/2}$. The lemma is proved.

Now we prove a theorem on the solvability of the problem (1)-(2).

Theorem 2. Let A be a positive-definite self-adjoint operator, the operators $B_j = A_j A^{-j} \left(j = \overline{0,m} \right)$ and $D_j = A^{-m} A_j A^{m-j} \left(j = \overline{m+1,2m} \right)$ be bounded in H and the inequality

$$L = \sum_{j=0}^{k-1} d_{m,m-j}^{m/2} \left\| B_j \right\| + \frac{1}{2} \left\| B_k \right\| + \sum_{j=m+1}^{2m} d_{m,2m-j}^{m/2} \left\| D_j \right\| < 1.$$

holds.

Then the problem (1)-(2) has unique generalized solution for any set $\varphi_k \in H_{m-k-1/2}\left(k=\overline{0,m-1}\right)$, where the inequality

$$\|u\|_{W_1^m(R_i:H)} \le const \sum_{k=0}^{m=1} \|\varphi\|_{m-k-1/2}$$

is valid.

Proof. Let's show that for L < 1 for all the vector-functions $\psi \in W_2^m(R_+:H;\{k\}_{k=0}^{m-1})$ the inequality

$$\left| \left(\mathcal{P}(d/dt) \psi, \psi \right) \right| = \left\| \psi \right\|_{\mathcal{W}_{s}^{m}(R_{s};H)} + \mathcal{P}_{t}(\psi, \psi) \ge const \left\| \psi \right\|_{\mathcal{W}_{s}^{m}(R_{s};H)}^{2} \tag{14}$$

holds.

It's obvious that

$$|(\mathcal{P}(d/dt)\psi,\psi)| \ge ||\psi||_{W_s^m(R_s:H)}^2 - \mathcal{P}(\psi,\psi). \tag{15}$$

On the other hand

$$|\mathcal{P}(\psi,\psi)| \leq \sum_{j=0}^{k-1} \left| \left(A_j \psi^{(m-j)}, \psi^{(m)} \right)_{L_2} \right| + \left| A_m \psi, \psi^{(m)} \right|_{L_2} + \sum_{j=m+1}^{2m} \left| \left(A_j \psi^{(2m-j)}, \psi \right)_{L_2} \right| . \tag{16}$$

Since for j = m the next inequality is valid

$$\begin{aligned} & \left\| \left(A_{m} \psi, \psi^{(m)} \right)_{l_{2}} \right\| = \left(A_{m} A^{-m} \psi, \psi^{(m)} \right)_{L_{2}} = \left(B_{m} A^{m} \psi, \psi^{(m)} \right)_{L_{2}} \leq \\ & \leq \left\| B_{m} \right\| \left\| A^{m} \psi \right\|_{L_{2}} \left\| \psi^{(m)} \right\|_{L_{2}} \leq \frac{1}{2} \left\| B_{m} \right\| \left(\left\| A^{m} \psi \right\|_{L_{2}}^{2} \left\| \psi^{(m)} \right\|_{L_{2}}^{2} \right) \leq \frac{1}{2} \left\| B_{m} \right\| \left\| \psi \right\|_{\mathcal{V}_{2}^{m}}^{2}. \end{aligned}$$

$$(17)$$

For $j = \overline{0, m-1}$ by lemma 2 we find

$$|A_{j}\psi^{(m-j)},\psi^{(m)}|_{L_{2}} \leq |B_{j}| |A^{j}\psi^{(m-j)}|_{L_{2}} |\psi^{(m)}|_{L_{2}} \leq d_{m,2m-j}^{m/2} |B_{j}| ||\psi||_{W_{2}^{m}}^{2}$$
(18)

[Gumbataliyev R.Z.]

For j = m + 1, 2m we analogously find

$$\left| \left(A_{j} \psi^{(2m-j)}, \psi \right)_{l_{2}} \right| \leq d_{m,2m-j}^{m/2} \left\| D_{j} \right\| \left\| \psi \right\|_{W_{2}^{m}}^{2}. \tag{19}$$

Taking into account the inequalities (17), (18), and (19) in the inequality (15) we obtain

$$(\mathcal{P}(d/dt)\psi,\psi)_{L_2(R_t;H)} \ge (1-\alpha) \|\psi\|_{L_2(R_t;H)}^2.$$
 (20)

Now we search a generalized solution of the generalized solution of (1)-(2) in the form of $u(t) = \vartheta_0(t) + \vartheta_0(t)$, where $\vartheta_0(t)$ is a generalized solution of the problem (3)-(4), and $\vartheta_0(t) \in W_2^m(R_+: H; \{k\}_{k=0}^{m-1}\}$, for determination of $\vartheta(t)$ we obtain

$$\langle \vartheta, \psi \rangle = \left(\vartheta, \psi\right)_{W_{2}^{m}\left(R_{+}:H\right)} + \sum_{p=1}^{m-1} \binom{p}{m} \left(A^{m-p}\vartheta, A^{m-p}\psi\right) + \mathcal{P}_{1}\left(\vartheta, \psi\right) = -\mathcal{P}_{1}\left(\vartheta_{0}, \psi\right). \tag{21}$$

As the right hand side of the equality (21) is a continuous functional in $W_2^m(R_+:H;\{k\}_{k=0}^{m-1})$ and the left hand side $<\theta,\psi>$ is a bilinear functional in the space $W_2^m(R_+:H;\{k\}_{k=0}^{m-1})\oplus W_2^m(R_+:H;\{k\}_{k=0}^{m-1})$, then it by the inequality (20) satisfies Lax-Milgram theorem. Consequently, there exists a unique vector-function $\theta(t)\in W_2^m(R_+:H;\{k\}_{k=0}^{m-1})$, which satisfies the equality (21) and $u(t)=\theta_0(t)+\theta_0(t)$ is a generalized solution of the problem (1)-(2).

Further, denote by $\Im(R_+:H)$ a set of generalized solutions of the problem (1)-(2) and determine the operator $\Gamma:\Im(R_+:H)\to\widetilde{H}=\bigoplus_{k=0}^{m-1}H_{m-k-1/2}$ operating by the following form $\Gamma u=\left(u^{(k)}(0)\right)_{k=0}^{m-1}$. It's obvious that $\Im(R_+:H)$ is a closed set and by the theorem on traces $\|\Gamma u\|_{\widetilde{H}} \le c\|u\|_{W_1^2(R_+:H)}$. Then by the Banach theorem on an inverse operator the inverse bounded operator $\Gamma^{-1}:\widetilde{H}\to\Im(R_+:H)$ exists, consequently

$$\|u\|_{W_2^2(R_*;H)} \le const \sum_{k=0}^{m-1} \|\varphi\|_{m-k-1/2}$$
.

The theorem is proved.

References

- [3]. Лионс Ж.Л., Мадженес Э. Неоднородные граничные задачи и их приложения. М., Мир, 1971.-371с.
- [2]. Мирзоев С.С. Об обобщенных решениях краевых задач для операторнодифференциальных уравнений. Прикладные вопросы функционального анализа. Баку, АГУ, 1987.-с.71-79.
- [3]. Оразов М.Б. О полноте элементарных решений для некоторых операторнодифференциальных уравнений на полуоси и отрезке. ДАН СССР, т. 245, №4. –с. 788-792.
- [4]. Гумбаталиев Р.З. Об обобщенных решениях одного класса операторнодифференциальных уравнений четвертого порядка. Изв. АН Азерб., 1998, т., №2.-с18-21.
- Барс Л., Джон Ф., Шехтер М. Уравнения с частными производными. М., Мир, 1996. 351с.

Transactions of AS Azerbaijan		75
	On the existence of generalized solution	

Gumbataliyev R.Z.

Institute of Mathematics and Mechanics of AS Azerbaijan. 9, F.Agayev str., 370141, Baku, Azerbaijan. Tel.: 39-47-20.

Received March 27, 2000; Revised October 9, 2000. Translated by Mirzoyeva K.S.