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REDUCTEON OF ONE HYDROELASTICITY PROBLEM TQ THE SOLUTION
OF STURM-LIOUVILLE BOUNDARY VALUE PROBLEM

Abstract

In frames of hyvdraulic approximation equations the problem of pulsating flow of
viscous non compressible liguid contained in semi-infinite linear-visco-elastic tube with
permeable walls is investigated. In addition the permeability coefficient is a_function of a
longitudinal coordinate. The proposed hydroelastic model is described by integro-
differential equation,

The solution of the given problem is reduced to the solution of Sturm-Liouville
singular boundary value problem which for one’s turn is led to the solution of Wolterra
type integral equations.

Most amount investigations have been devoted to the studying of the wave
motion of liquid in deformable tubes. However permeability influence of the walls of a
tube is sufficiently little studied and is always valid at most or least.

In this connection the represented paper in frames of hydraulic approximation
equations is devoted to the statement and mathematical study of the problem on the
propagation of smail amplitude in viscous non compressible liquid contained in semi-
infinite linear-visco-elastic tube with permeable walls. It is assumed that the tube is
rigidly attached to environment and thus the displacement in axial direction is absent. In
addition it is adopted that the permeability coefficient is a function of a longitudinal
coordinates. The solution of the formulated problem is reduced to the solution of the
Sturm-Liouville singular boundary value problem.

The vital function of any organism is characterized by totality of set of processes,
and mechanical processes are one of them. 1t is known that the ideas and representations
of continuum mechanics are systematically used as a bases for uncovering regularities of
functioning of a system of circulation of blood. By investigating blood’s flow in large
blood-vessel (in artery and vein) the various hydrodynamic problems, whose solution has
both theoretical and practical vatue arise.

Such problems as for example: the pulsating flow of liquid in deformable tubes
{(theory of pulse-waves) subject to the permeability of walls of vessel are concerned here.
The latter in specific sense takes into account 0 branching of vessels and their contraction
that can model unique arterial way from heart to capillary channel [1].

1. Let a straight, thin-shelled and cylindrical tube with the constant radius R be
given. Assume that the material of the wall possesses visco-elastic properties described

by the operator of complete type EY, where following {2] EY = (l - T*). Here £ is a

Young module, T is a relaxation operator
I'g= [rie-7)glr)ar, (1.1)

and F(t - r) is a difference kernel of relaxation. Further, we shall assume that the walls
of the tube are permeable, and the permeability coefficient o s a function of
longitudinal coordinate x . The liquid (bleod) is taken as viscous, homogeneous, and non-
compressible (with the density p and kinematic viscosily coefficient y). In one-
dimensional approximation it is supposed that the hydrodynamic pressure (surplus) is
p=plx,t), and the radial displacement of the walls is w= wix,z). Then the flow of
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liquid may be represented by the longltudmal component u = u(x r) and the equation of
momentum is [3}
LI Sy (1.2)
pdx Ot R
For real wave processes the general 2 is made up of prescribed comstant p; and
hydrodinamic one. According to this statement P(x,r)z p(x,z) + P -
Taking into outflow (filtration) of liquid by wall is realized at the expense of
radical components, we write the equation of conservation of mass in the form of {4]

%%Jrz{a(f)[?’ pJ*r%}:Os (1.3}

where p,<p, is a prescribed constant pressure in environment, Combining the
equations ().2) and (1.3) we can wriie
13'p l6x4 ow| 2 op 23w
Z - ~-—alx)——~-—=—=0. 1.4
ot R alef? - p s o R()of R o (14)

Ignoring the dynamic effects in a domain of cross-section of tubes, we complete the
equation (1.4) by means of the dependence [5]
h -
P-p. =—E"w. (1.5)
P 'Y
By virtue of the obvious equalities
2 2
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and the tormula (1.1), the equation (1.4} is rcduccd to an integro-differential equation
with variable coefficients with respect to the deflection function w

é‘zw ! Fw 16;(,0
Ire- 5-dT -
vl G e

+ l%}%g-a(x) JT -t jwdt —

alxw +

Lo 2o ()

ch“ dt R
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1 &*w
+———a(x J'I 1T wedt = —
C, o
in which C? =Eh/2pR is a velocny of propagation of Kortveg-Rezal’s waves. Now the
considered system is completely determined excluding the boundary conditions which are
necessary for the solution of concrete problems.

The proposed here hydroelastic model may be reduced in some particular cases to
the known in references one-dimensional models. For the case of ideal liquid and elastic
tube we obtain the result of work [4]. If we rcject the terms considering the permeability,
then we arrive at the formulation of a problem on determination of pulse-waves in a
visco-elastic tube. Disregarding further the viscosity of liquid and material of a wall we
obtain a model for which the velocity of propagation of waves is determined by Kortveg-
Rezal classical formula.

2. To describe the complicated impulses that are characteristic for a system of
circulation of blood, the harmonic analysis is used, i.e. the impulses of a complicated
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form are distributed to the sinusoidal components generating a Fourier series. By virtue of
linearity and homogeneity of defining equations, the advancing of every harmonics with
the frequency nw is traced, where # is a natural number, and to determine the form of
impulse at any point of a system, the components are summed according to the given
point. From the noted we can conclude the following: the principal value has a
consideration of purely sinusoidal oscillation with one given frequency @ . In this case
using the method of separation of variables, we represent the sofution of the equation

(1.6} in the following form
wix,t) = y{x)expliwr) (i = \/—_IJ (2.1}

Here y(x) is a desired function of a coordinate. As a result of substitution (2.1) in (1.6)
and introducing the following designation

R (t)= IF(J e dr

we obtain

e ROy {2 4 Rxpa(x)re 0)-

87{ T o 2)0 oR’ (t) w
iwe” — **-I(UCC x + y=0.
SR R (e b5 ot ((,

The prime means a differentiation with respect to the coordinate x. Further wsing the

(2.2)

replacement ¢ -t = 0 . it is easy o show that R*(¢) is determined by the formula

Rc({):é—emx’ (23)
in which
¢ = T[r(e)e‘"”"da . (2.4)
q

From the expression (2.4) it follows that it is valid for any known kinds of difference
reelection kernels [2]. Taking into account now the equality (2.3) in the equation (2.2) for
the function y(x) we can write

¥ +olx)y =0. (2.5)
It addition the function ¢{x) has the form

olx) = ) iy {x),

where

o 1610 o)

C{]2 R
??0 (x) - l _ g
- 8—2"'7 + P o (x) COC o (x)
™ (x) =

It is easy to conclude that the velocity of wave propagation ' =w/8, and the damping

8, for
m+ nt—
8y = ’ T?n } 7?0 \/Th) 1, J

depend on the coordinate x and are local wave charactenshc:,.
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For the consequent reasoning we’ll accept that on infinity the permeability
coefficient is constant. This statement allows the existence of the next limit
lima{x)=a,.

Eos Ll

Without loss of generality for the simplicity of the notation later on we’ll assume a, = 0.
Then

i

. - . 8y 2
limplx)=— R e =A".
e G -
Benoting
olx
gle)-1- 2

we reduce the equation (2.5) to the form
V2 y=Ag(x)y .
Later on we assume that JmA <0, and the potential 4{x) satisfies the condition

j]q(x)gx < H00 | (2.6)
4]

Thus the hydroelasticity problem is reduced to the solution of the Sturm-Liouville
singular boundary value problem

v+ Ay =qlx)y, (2.7)
H0)=y, (2.8)
fim y(x)=0. (2.9)

EREE

The question of physical interpretation of the quantity v, will discussed below.
3. It is appropriate to reduce the solution of the differential equation (2.7} 1o the
solution of an integral equation. The homogeneous equation (2.7)
¥+ Ay =0. (3.1)

has a fundamental system of solutions

—Ax ;
n=e ",y =

Considering (3.1) as a non-homogeneous equation with the known right hand part
ifg(x)y and applying the method of variation of arbitrary constants, the solution of the
problem (2.7)-(2.8)} is reduced to the solution of the equivalent integral equation

Ma-Ay=Ce™ + 4 [sin (A - x)g(A)p(A,-A)dA . (3.2)
Here the constant  is defined as
- Yo f(xa_l)
C= and = g T
j(O, /1.) an _V .]’U f(O,—/.L) E

where the function ,f'(x,—/l) is found from the solution of the following integral equation
flr—a)=e"™ + 4 fsinA(A - x)g(A) F(A~A)dA, (3.3)

which is a Volterra type equation and so it may be solved by the successive
approximations method

F )= 327, (1) (3.4)
k=1




Transactions of AS Azerbaijan 191
[Reduction of one hydroelasticity problem]

in addition
folr2)=e™ £ (x-A)= [smA(a - x)g{A)/i  (A-A)A.

By virtue of the accepted inequality JmA <0, we write
|/ (x,~ 2 ) = exp(Jmax)<1.
By the induction method we prove the estimation

I,fn(x’_z’)_ .fn—i ()C,“*A.) g_‘E%E:'tl » (3.5)
where
B, (x)=[| fle(A)aA .
Note that

B,(x)= ‘l| _ﬂq(A]dA < |A| _ﬂq(A]dA = B,(0) <+
x 0
and consequently

|ﬂ4(x’_)‘)_fn |( X,~A <_{;&_(_Ql_

”l
Far =1, we have

|/ (x,=4) = folx,-2) = Zuj'sin (A - x)g(A)e ™ dAl <

< [Ale™> _ﬂq(A]dA < B {x).
Let the estimation (3.5) be valid for #n =1 . Let’s prove its correctness for n=m +1

Funlsm2)= LB | i A A () s A ”}"’“

f/'1‘,| ﬂsm AA - x}

£u(A=2) = 1,4 (A A Yg(A) <

slm_f 57 (Aa(AJoA = %;%}

From the inequality (3.5) it follows that the series (3.4) is majored in the interval [0,+0c)
convergent by the positive numerical series

2 B;(0)
and therefore by Weierstrass test it converges uniformly by xe[0,+o0) and its sum is a
unique solution of the equation {3.3). By immediate testing it is easy to establish that this
solution is a solution of the input equation (2.7) too.

Fulfilling the corresponding calculations and taking into account the equality
(3.2) we can write

fx,

f(O ;L)exp(twf) (3.6)

W=¥,
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_{?E f(x’_;“) 1= explio
R? Yo f(O,—il,)(l ;)e p(ﬂt)- (3.7)

From the structure of the series (3.4) it follows that the series obtained by the term-by-
term differentiation with respect to x, also uniformly converges. Consequently in
particular the following equality is true

Flema)= 2 filx2),
k=0

P-p =

where

Fle—2)=—ire™™ .., filx,~A)= —‘/Ioj'cos A(A—x)g(AYf (A, ~A)dA .

Now using the equation (1.2) we can get the expression for deformation of the function

u(x,f)
ihE f'(x-A) .
- — 1-¢ Jexpliot ). (3.8)
PR’ Yo f(O,—).)( C) p( )
Note that the real parts of the constructed solution (3.6)-(3.8) represent physical quantity.
By the same taken we complete the considerable part of analysis. The further part is
connected with a concrete task of the function a(x) and use of IBM.

u(x,a‘)z

In conclusion we determine the quantity y,. We can take different boundary
conditions for x=0. The typical case is a situation for which in initial section the
pressure, is changed by the low p” exp(imr) where p¥ is a quantity determined by
experiment. Then {rom the equation (3.7) we have
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