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MAMEDOVF.1

POINCARE TYPE WEIGHT INEQUALITIES IN DOMAINS WITH AN
ISOPERIMETRIC TYPE CONDITION

Abstract

For the some bounded domains Q in R", n22with isoperimetrical type
conditions I,, in partial for the domains Qz{x=(x’,xﬂ):|x'{cxf O<x, <a},
a>0, 821 was proved the sufficient conditions on the weights, under which the
Poincare s type two weighted inequality holds,

The paper is devoted to investigation the inequality

1 1
[_ﬂu—ﬁ‘qux]q S;C[J]Du]paxix)ﬁ, I<psg<owo (1)
o a

of the differentiable functions u(x) for some classes of the bounded domains (0 and the
weights v, . The sufficient conditions of type 4, are established for pair (v.w) and

isoperimetrical type inequalities between the Lebesque measure of any subsets of domain
and (7 —1)-dimensional of Housdorf measure of the part of boundary for the domains

which provide the truthness of the inequality (1). _

Here v,0"" are assumed locally integrable functions, with almost everywhere
finite positive values at 1< p<w,0” € L** when p=1. Q-is an open bounded
domain in R”,n22, 9Q-is its boundary, d(Q)-is a diameter of Q, meisZ(n—l) -is
dimensional Housdorf measure of the set z and IZ | is its Lebesque measure .

C'(Q) -are continuously differentiable in  functions. By Q denote arbitrary bolls in

R", Q§={})ER”:{y~x[£R}- p’=*—p—1when l<p<ewc, p'=co-when p=1.
P

V(Q) Q i=1
It is known that the inequality

I

2
u= ! Ivudx, W)= Ivafx, ’DuF:Z[—g‘-J )
0

1
_ﬂ —7 5. |7 1 :
u—uldx| <C, | [iDuldx |, ueC'(Q), 03
Q [#3
which is got from (1) in the unweighted case when p=1,1<¢g< " and the connected
n—p
domain €, is equivalent to the isoperimetrical condition I, on
mes ogNQ =6 min{]g\, 10\ g\}l 3)

when 2 =—1~, where 0<8 <o, g < Q, see the lemma 3.2.4 from [1].
q

Unlike the regular domains the inequality of type (1) in domains 7, have been
respectively little studied (see {2] for the regular domains).
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From (2) when Q) =(,, where (, is a boll we get the inequality.
-]

( fe- a“|;'-‘:dx] "< c,,( _ﬂDu|de,
Q !
which is equivalent to the inequality

[quﬁg.@dxfgc Jol{ o]

forall pk:l<p<ni<ks

. The last inequality when & =1 turns to the Poincare
n—-p
inequality

[ﬂu ul” dx )l <C, 10} [_{[Du.p ]]_ ﬁ={£udx.

First let's denote the results for the regular domains which are interesting for us in
connection with the conditions on weights.

The sufficient conditions on v, for the inequality (1) in the case 2 =(), where
0, -is some boll, have been studied in [3-5]. From the results of papers [3,6,7] it follows
that the inequality (1) is true when g > p in the sphere O, if

g b
sup | jvdx —dx | <o
QCsQo[é[ ) sé[o ‘Qol% +lx _xQ‘(n—l}P

and it is true when ¢ = p if

U [0 [| al ]'[! ‘ J“’U f’”de’% <o

at some r>1, moreover if ve RD (It means that it will be found &,8 (0,1) such that
woQ) <ev(()) for any boll 0e8(,) and g>p or if g=p and the both functions

v,6"7 belong to the class 4? ( f € A? means that such C,8 >0 will be found that for
any boll O < 80, and its compact subset £

JCE) “E”B-Q 5
f (Q) iQﬁ_

where “E" 50" inf {Z

conditions we can substitute by the condition 4, i.e

sup |Qy [ ( Ivdx]] [ jo deT <o

B _
|7t EcUQ CQH at some B>n-1 then above integral

08y,
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For the weighted results on Poincare inequality in the nonregular domains let's
denote [5,8,9].
In the work [10] was proved the imbeding W; cL,lspsg<wx,

! 1 + L >0 for the nonregular domains with o -condition John (o 2 1).

l+o(r-1} p ¢
For the spaces of high smoothness the imbeding theorems was proved in [9].
Let's denote by V' the system of bolls

{0:0=07, xeQ 0s15d(@)]
for the domain £2. For the investigation (1) at the domain Q in paper introduced the

condition Ii . We'll say that the bounded domain € satisfies the condition

I;(L!*_il <oo], if there is such 0<0 <o that for any boll Q<¥ and any compact
n

subsets 4,8, A[1B= from Q,=Q (1 Q such that

|Al >g and [B| >E
every C*' surface , dividing in ©, A and B, has the following estimation
& 0
mesZZ fe’ .

n-1
Let's note that for the proving of belongness of concrete domains to the type 7,

in many examples in monograph [1] was designed the method of suborel mappings
(theorem 3.3.2); i.e. the mappings at which (» —1)-dimensional measure of boundary of

subsets the domains essentially don’t increase. For example, from these results follows
that domain Q= {x =(x',x,):x e R, 0<x, <a,lx|< xF }, B 21 belongs to the class I,
_Bn-1)
1+ B(n-1)’
belongs to I, , (corollary 3.2.1 /1);the bounded domain satisfying the cone condition

n

when A= the bounded domain which is star with respect to the sphere

belongs to the class 7, , (corollary 3.1.1/3). The same method can be applied to proof

W

that these domains also belong to the corresponding class I, A -
In the theorem 1 we use the A, (£2) class: the function v belongs to the class
A (Q), v e A, (), if there are positive constants M,8 such that

5
wE) [ B
woNQ) lena)
for any measurable subset £ of the set Q, =Q{1Q, QeV;

The main basic results of the paper are the next theorems 1 and 2 (theorem | is a
simple corollary of theorem 2, by appiying lemma 4 given below).

Theorem 1. Let 1< p<q <o, — <A <1, Q belongs 0 I, class, ve A . If
¢}
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1 1
i -1 q oy F-4
B, —sup'QﬂQl jvdx _[ca dx} <
el one one
when 1< p<oo

|
B, ISUPIQHQIJ[ f"dxﬂ sup w"(x)]@ )
Qe ona regNn

when p=1 then for Yu e C'(Q) tae inequality

) 1
1l N 1
[ﬂu ~u qux]q <C, Bgeq [I&J'Dulpdep 5
Q 3

is true, where Cy, =C(n,q,M,8) >0 is some constant.

Theorem 2. Let 1£p$q<w,—l;s}tsl,§2 belongs to I; at some r>1.
n

If

1

i-—r';‘l (r-Ha >
A;}q =sup( _[vdx} { Jv’dxj { _[a)]‘f”cﬁc) <0
eV ona o ong

when l< p<w,
- [ §T
A ¢ ¥ -1
Ay =sup[ J’vdx] ( _[v dx} ( sup © (x)}:co )
e onn onn xe(Q 2

when p=1, then for Yue C'(Q)
1 {
1 P 1
[ flu -5 vafo" <C,, -J’i{ jmlou{”mr ,
0 6 [#1
is true, where C o> 0 is some constant, depends on n,q,r,M,5 .

Compare theorem | when g=p>1, Q=0;-is some boll

(i.e. belongs to the I "_,] with the above given result from paper [3] (theorem 5, the case

g = p) where for the validity (1) required the condition 4,, and v,0"7 € 47 at some
B>n~1. At theorem 1 one of the conditions [3] is absent {this is the conditicn

w'" € A?), the other one stronger than [3]. The result of theorem 1 has the intersection

with the mentioned result from [3], in the meaning that there exists an example of pair
weights (v, @), satisfying the condition of theorem 1, but not satisfying the condition of
[3]- Let's cite this example.

Example. At this example p=2, g, = Q) the pair of the weights (v.w)e 4,
when ve A, ,0" 7 ¢A? atany B>n-1.
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a
T71*
o

(x=(x"x,):x'eR™,x, eR'). It is easy to see that (5) fulfilled

LetQ=0Q),n23, abe a sufficiently big number =2e",v= MH x In

= IJl:'l"m1 In’ -9;

]
(p =2) for the pair (v,0),ve 4,(Q). Let's show that the condition 6 =™ € 4% can't
be fulfilled atany S >n-1.

Let 0<r<-}{, B>n—-)T, ={stnlx=(X',xn), Jc'ER""’,|Jc’|«:r,0«:xrr <-;~} It
(7)< Cl(:) and [T, . <C,(m)r?. The last estimate follows from the fact that for

N
In—
”

¥y

any 0<r <% the set 7, we can cover by N number of bolls with the radius 27 lying in

QI0 such that ¥ ~ l foe A;f then will be found C,8 >0 such that
r

&
o(T,) <C Iz, nﬂ.Qf’

o) ]Qf%

1. . e
atany O<r< 7 since T, < . Then the previous estimations we'll get

2

- a
rE sy,
¥

where C, >0 doesn't depends on r, which can't hold at sufficiently small » . We come to
the contradiction that o € 42 | ie. o ¢ 42 .
At proving the base results we'll use the following facts.

Lemma 2[11]. Let 4 be a bounded set in R" and let for every x€ A be givena
closed bolls B(x,r(x)) with the center in x and radius r(x).

Then from {B(x,ﬂr*(x))}xE 4 we can choose the sequence of the bolls {B,(}
satisfying the following conditions:
i) this sequence covers the set A, i.e. AcUB,,
k

i) non point from R" is contained more than in u, bolls of the sequence {Bk}, ie.
Jor every point z€ R".
Z Z A, (Z ) = My
k
where u,-is a number depending only on n.
Lemma 3 (f1], theorem 1.2.4/1). Let ¢ be a measurable non-negative function

in R", ueC™(Q), Q be an open subset of R
Then

I¢(x>ivukir=?dr[ J-;b(x)ds(x)J,
n 0 \E
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where S Is (n—1)-dimensional Housdorf measure, E, = {x eQ: |u(r) = t'}

Lemma 4 [12). Let v be a function from the cluss A (). Then there will be
Jound such C >0, r > that for any boll QcV the "inverse Holder inequality”

[L@ﬂﬂl f""""]_s [lgnnrgf"“"‘J
is valid,

Proof of theorem 2. There will be found such a e R' that
’er:u(x)>a|sl|Q’<_:|er:u(x)Za[.
LetQ)' = {xe Q: u(x)>a} Q= {er u(x)ca}0<a <00,Q), {xe Q:u(x) >a+a}.
Then by view of choice a,|Q\ Q]2 ElQ[ :

" ZEIQl.

Let @ >0 be such that €, isn't empty. If such o doesn't exist then we'll
consider the estimation in Q" and we'll suppose 0, = {x e Q:u(x)<a -a}.
For any fixed point x there will be found a boll O

!
[ Ivr dy] =7’[ j.v dy) , (6)
Qa2 O an 62

where D<y <—1]-—it will be chosen later. The existence of such boll follows from the
i
following concepts. Let's consider the auxiliary function

1
I -
a"[ IV’dyJ —y[ fvdy}
e oo

continuous on [0,0), F{t)<0 at sufficient small 7, >0. At 1=d(2) by view of the

Qp(raJ

F(oy=107

Holder inequality, subject to the value » and ]Q \ Q" P ;—1.0) we’ll get

1 i
[EPRA T BN L
F(d(Q))= (-{Q(J [ v dy] - y[ jvdyJ 20.
2 Q Q
Then by the Cauchy theorem we conclude that there will be found ¢ =1,, £, <¢, <d(Q))
for which F(t,)=0, i.e. it holds (6) when p(x,a)=¢,.
The system of the bolls {Q;{m) X € Qza} makes the covering for the set 2, . By means

of lemma 2 we can choose the subset {Qj { (1=1,2,3,...), of finite multiplicity. By view of
the choice of bolls, for the every boll 0 holds

i
} r
[ Iv’dy] =y{ jvdy], 7
2'na e'na

Two variants are possible for every boll
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i 1
1 r _ L ¥
{ o] of o) oiownof] o= o)
ona onn onn o'ne

a) |Q2a ﬂ Qr
At the first case subject to a), by means of the Holder inequality we have
v, N 0')< o' N Q), ®)
on the other hand
o' nal=vig nave, )+ na,). 9)
by means of the Holder inequality and subject to (7) in the first additive in (9) we have
v(Q" n Q)S yv(Q" N Q)+ v(Qj naQ, ), '
ie.
. 1 .
V(Ql ﬂQ)S I V(QI I’}Qa),
therefore from (8) we find
1 .
W0, No' )< T o, ng')

At the second case by the construction and subject to b) we have

}2 y vig ﬂQ!

)

min ﬂnh Ne'lle'ne e,

Then by the condition })_ on Q and lemma ] atevery ¢, o <t <2a we’ll have
r rA

mis{erﬂQj:u(x)=t+a}29 }'m ,
)
L \¢gna ]

ﬂD“|dy=2Td3 fgS{IEQﬂQ’ cu(x)=1+ a2 ab yﬂQ_in_Q)

.
onaL ey, & QI" dy
ne

and then on the basis of lemma 3

Hence by means of the Holder inequality
i _ _ )‘rl
1

L] :
R e —F)Q‘m. = X
= (‘ 7] ¥V ! ﬂﬂ [Qr_ﬂn‘!\&;h dy)
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¥

x{ _[w]Duipdy]; ,

Qingn I\nia

then

. {(r-1)a .
v(QM ﬂQ‘)g Gyl"'* ( _fv’dy] v(Q‘ N Q)ATH1 x

lode'e’

x[ Im""!dy]; aL“'[ J'a) ‘Du{pdy];.

gna MK,y

Further from the condition on pair of weights (v,»)

4
A v
"'(QZa ﬂQ‘)ﬁb,ﬁi] -&%{ Jw'Dulpdy] .

N0\,
Then in both cases a) and b) we have

PR %
o nes e, ng*){; ”"a] {meIDldy] -

Summing the previous inequality by 7, subject to the finite multiplicity {Q‘} and
gz p we'll get

HaY 4, Y z
v, )< SO Y+ e, —”‘L} oDy’ dy| .
X 1_}’ eyf}.al Qﬂ\i}n‘ '
Integrating the last inequality we’ll have

e ) Al qmd %
Ofv(ﬂza)w“'ifj—i Ofv(ﬁa)da“un{ yz ] f[ J'ﬂ’lD“V’dy} :

El
oy’ 0 0,8,

hence, by means of the Minkovsky inequality

3

1 . A* ¥ 2y
—qﬂu—arvdys%”yﬂu—armjz—gn —-‘”—‘»LI—}J—- (j‘mlDu[pdpr.
2 oy 1 }’ (¢4 9]’ oy

Let’s choose now 0<y < —17— such that
2¥
29 d-y
Then
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A

Lﬂuﬂarva{v]ﬁ gcq”i;_[i‘”w“ﬁbf];,

o 1+-l- --]— .
where C,, =%[—;;T_f_nt) T C,rs2 "} (2“‘+1 M, T+ l)NL if we choose y from the
Y -y
LT A
1— y 2q+1

The analogous inequality

{ _ﬂu - a|q v dy]z <C,, i‘}”f"—{ JmlDulp aﬁv];
o o |J

holds in Q" too. Then last inequalities give

1
! ; 1
( fu—df vanyq <C,, %’F—[ jm}Dur’dpr . (10)
2 Q
Let’s show now that
27 fu-al'vayz flu-il'vay . an
Q Q

By means of the Minkovsky inequality

Lﬂ““ﬂquy]é su]u*al“‘vayf+Lj}]a_g|‘fv@f_l a2

Subject 10 the estimation
1
j(u - a)vdy < ( _ﬂu - alq vdy}q
Q

[ fo- ﬁ’quyf <o) <o)

on the second sum (12) we’ll get (11). Allowing for (11) in {10) we’ll get the estimation
of theorem 2.

The theorem is proved.
Proof of theorem 1. Let ve 4, () and (4) be fulfilled. On the base of lemma 4
it will be found C >0, » > 1 such that

i - 1
—_— " < v—o—oror dl
(lQﬂﬂ!gﬁ[ﬁ "”] ) (IQﬂQIQnQJ "’]

for the any boll Q¥ . Let’s note that here C,», depends on M ,§, from the condition
ve 4,(€2) . Subject to this inequality we’ll get that the condition (5) of theorem 2 is

fulfilled. Therefore the statement of theorem 1 follows from the statement of theorem 2.
The theorem is proved.

Remark. Let S21, the boll O.=pQ. It the surface £ in the definition

1;1 dividing the sets 4,8 there in Q,, divides them in QN Q. also, then the new

condition can to change I , at the theorems 1,2 if v is dubling: v(QQNQ.)<C Bv(Q No)
with some Cy >, VQeV .
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MAMEDOY LT., SALMANOVA Sh.Yu.

THE A.D. ALEKSANDROV TYPE INEQUALITY FOR A CLASS OF SECOND
ORDER EQUATIONS WITH NON-NEGATIVE CHARACTERISTIC FORM

Abstract

The analogue of the classical A.D. Aleksandrov inequality is proved for a class
degenerating on boundary of domain of second order elliptic-parabolic equations of non-
divergent structure with generally speaking discontinuous coefficients.

Let R,, be an (n+1) dimensional Euclidean space of the points
{(x,8)=(x; s x,,1), Or =Qx(0,T) be a cylindrical domain in R,,,, where Q is a
bounded »-dimensional domain with the boundary 9Q, and T E(O,oo). Let further
0, ={(x,1):xeQ,r=0}, and 1(Q,)=0, U{@Qx[0,T]) be a parabolic boundary of Q.
Consider the following second order degenerate elliptic-parabolic operator in O

L= Zﬂy(x t)—— Z (. r) +c(x,t)+ w(x,t).gt_z___@_

= Ox ; ot
in assumption that ||a,;,. x,tm is a real symmetric matrix where for all (x,r)e Q; and any

n-dimensional vector &

1 iay (&, < Y"I‘ﬂz, 7 €{0,1]= const. (1)
1=

We determine the function wix,f) by the equality w(x,r)=r,u1 (p);/z(r)rp(T —t), where
p = dist(x,8Q), y,.w, and @ are continuous, non-negative and non-decreasing functions

of themselves arguments, where
(Eo)e
J'['“_‘z""] dv<aw, (2)
0 v

Besides we'll assume that all coefficients of the operator L are measurable in @,
functions.

Denote by W, >*(Q;) a Banach space of the functions u(x,7) given on (, with

the finite norm
2l Ou
ox;

by =W,y + 2 *
= Lyalgr}
gl e e
Lj= Bx,-axj L0 o Lou(0r) ar* L (0r)

and let W2*(Q, ) be a subspace of W>?((;), dense set in which is a set of all functions
from C™(Q; } vanishing on I'(Q;).

The aim of the present note is determination of conditions on the coefficients
b (x,t),...,bn (x,t) and c(x,t), for fulfillment of which for arbitrary functions

ue W H{Q;) the estimation
et =al,, 0 ®

1 rat




