26 Azaorbaycan MEA-nin xabarleri

ALIGULIYEV RM.

A PHRAGMEN-LINDELOF TYPE THEOREM FOR A NON-DIVERGENT
STRUCTURE LINEAR ELLIPTIC EQUATION OF THE SECOND ORDER

Abstract
At the paper we consider a non-uniformly degenerating at infinity, non-divergent
structure elliptic equation of the second order, containing small members. The condition
providing the truth of Phragmen-Lindelof type theorem for its solutions are found for
minor coefficients of the equation.

Let E, be an n-dimensional Euclidean space, n22, D be an infinite domain

o N2
with the boundary 8D, situated in the cone K={x:(2xf) <kx,,0.< x, <o},
=]

O<k<l/16.
Let's consider in D the following problem:
2 Blu(x) & Ou(x)
du= A ———=+ D b (x)—=+ (X u(x) =0, 1
= 2y (gt BT = elu() (1)
uléD =0, (2)

where ]]ar,J (x)“—is a real symmetric matrix.
Let's suppose that for alt xe Dand& < E, the condition is fulfilled
pYA (08 < Ya, (068, ' 2 A (3)
i=1 i=}

1 g=l

262+a;)

where p € (0,1]-is a constant, A,(x)= (i + ]xL )} =le, = i|x; yo, > -2,i=1,..n,
=1

We'll suppose also that
-y Se(x) <0, (4
¢, - is a positive constant.

The aim of the present paper is the obtaining of condition on the minor
coefficients b,(x),(i =1,...,n) and c(x} at whose fulfillment Phragmen-Lindelsf theorem
is valid for solutions of the probiem (1)~(2).

Note that for non-divergent second order uniformly elliptic equations not
containing minor coefficients analogous results were obtained in papers [1-4]. As for
uniformly elliptic equations of divergent structure, then we show in this connection in [5-
6]. And we note papers [7-10], in which theorems of Phragmen-Lindelsf type for quasi-
linear elliptic and parabolic equations were obtained. In papers [11-12] analogous
theorems were proved for degenerating on infinity elliptic equations without minor
coefficients. In case when minor coefficients are present in uniform elliptic equation and
principal part of the operator .4 has divergent form theorem of Phragmen-Lindeldf type
was established in [13] provided divB(x)<0, (B(x),x)<0 for all xeD, where
B(x) = (by ()b, (1)) .

If in the presence of the minor coefficients the principal part of the operator £ is
written in non-divergent form then the analogous results valid under the condition
(B(x),x—xo <0 for all xeD,x" el, where I is some ray, coming from origin and

=G ) ) ) . - .
{¢» ) ’

]
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situated outside of the cone K (see [14]). In the present paper the result of paper [15] is
generalized in which the case ¢, € (-2,0], i =1,...,n was considered.

For R>0, p>0,x° cE, denoteby EX (p) an ellipsoid

{ Zi———);(pR) }

i=1

Further we'll suppose that R>1.
Let's consider parallel with the operator £ the "contracted" operator

L=L-c(x).
Lemma 1, Let zedEs(SNK, 0, =a” -mm{ 3 X0 (2) e BEL(DNBES(S),

moreover x° >0, x° >0, x° =0 =2,.,n~1). Then x* ¢ K .
I " / j

Let's denote Ep(1;9) = Eg(N\ES(1), Dy = DN ER(9), A = Ux’(2), D=
e DNPER(5)

= DN EL(4).

Lemma 2. Let x° Ay . Then for any x e Dy, there exists a positive constant f3,
depending only on k , such that

Let's introduce the notations

b b
bR(x)=[ j?(jf’ ;gfjf))
and

—5f2

" 0

X, - X,
G.E“’(x){z _ J :

je=] R i

where x& Dy, x° € 4 5>0.
Let's suppose that
(bp(x), = x°)<0. )
Lemma 3. Let there conditions (3) and (5) be fulfilled Then for amy fixed
x" & A, there exists such s = s(u,ot,n) that for any xe Dy

LGP (x)20.

i !x,- - x? )
0 R% ‘

Proof. Let's denote p =

We have

£GP (x)= Sp—ts«»z){ﬂf_*z_z) iaﬂ_ (x)(x,- X Xx; - x.}') 3 "Z a;(x) Zb (x)g___}]

O+

pY i R i1 R% =1

p JlRa R' :—IR

pm,{(s F D A) (o -xf e (x)}
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We can analogously to prove in [16] that there exists a positive constant C,{a,n} and
C,{at,n), such that C\R™ <A, (x)<C,R™,i=1..,n.
Consequently
LGP (x)zsp™*D [(s +2)uC, — ,u"nCZ].

nC - . .
Let's denote s, = max{ , 3(?' } it is sufficient to suppose s=us;, -2 and the lemma is
1

proved.

Corollary. Let z€ DOES(S), x° =x"(z), xe DN EL(4), g¥(x)=

=BRGP (x). Then g (x)<t.

Lemma 4. Let ze DNBEY(5), x° =x"(2) and in H =D\ Ej(4)the positive
solution u(x) of the equation (1) continuous in H and vanishing in that part T of the
boundary domain H, which lies strictly inside E;(4) be determined. Then if the
conditions (3)-(3) are fulfilled, then there exists a constant 11 = n{p,a,n) >0 such that

supu 2(l+n)ysupu .
HeE (LY

Proof. First of all let's show that if .Zu(x) =0 then £u°(x)=0. Really

2
£17(x)=2u(x) Y a0, (1) “‘;‘) 23 a,(x )a“(x’ 5“;") 203 b, (1 242 a"(")
ig=1 7 i f=1 ¥ =] X,
H 2
22u(x)l;§]ag(x) gx:‘;x) ;b( )%f)} 2ul(x) c(x)20.

Let sup u” = M . Let's introduce the auxiiary function
H

U(x)= M{l—g‘”(m sup gi“’(x)].

xeFTNIEL(4)
It is easy to see that f(U(x) -—uz(x))s() inH, (U(x) - u2(x))lr 2

(U(Jc)-—ut?'(x))lamr 20. Then by the maximum principle U(x)2u?(x) in H and in
particular

HOEHH

supu’ < M{l - [infgsm (x)- sup g(R)(x)J:! .

HNOEFO) Hnetica)

Let xe HNOEL(4). Then Z(Jf*‘ ;

i=l

Therefore sup g (x)<37 98",

xeHNAEL ()
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If xe HNEX(l),  then 3 X%

i=1

1/ < 2R, therefore inf g™ (x)=2"%8% and we get
= R ez 88 ) p g

sup u’ sM[l - ﬁS(Z"S - 3"5)].
HOEL()
Let's suppose that n, = ﬁS(Z'S -3 ), nn=4/1+1n —1. Then the statement of
lemma follows from the last inequality.
Lemma 5, Let in H, = DN E}1;9) the positive solution u(x) of the equation
(1), continuous in H, and vanishing in that part T of the boundary domain H, which

lies strictly inside E5(1,9) be determined. Then if the condition (3)-(5) are fulfilled then
supuz(l+n)- sup u.
H, HNAER(S)
Proof. Let z that point H, (18En(5) in which 1(z)= sup u.Bylemma4
HOBER(5)
sup u=(l+n)- sup u.
HOERA) HOBER()
On the other hand  sup u>u(z) and E;(4) < E5(1;9).
HINER)
Hence the statement of the lemma follows.
Corollary. Let in H,=DNE 3 (9) the positive solution u(x) of the equation (1)
continuous in H, and vanishing at that part T of the boundary domain H, which lies

strictly inside E g (9) be determined. Then if the conditions (3)-(3) are fulfilled then
supu=(l+m) sup u.
Hy HyMBER(3)
Theorem. Let in domain D coefficients of the operator £ satisfying the
conditions (3)-(5) be determined and u(x) be the solution of the problem (1)-(2). Then

either u(xy=0 in D, or ﬁmM(r) >0, where M{r)= sup ,u(x)’ and o > 0depends

S BaEl (1

onlyon k,a, i and n.

Proof, Let there exist a point a € D in which u(a)=5=0. We can suppose
without losing generality that 5 > 0 (otherwise it was sufficient to mulitiply the solution
by minus unit). Let D* ={x: xe D, u(x)>0} and D' be connected component DV
containing a point a. From the maximum principle it follows that this component is a

2i2+e7)
bounded domain on the boundary of which u(x) turns to zero. Let y = (—9-) . Then

for any R>0 Eﬂe(l)cEg(—;—]. Thus for any R=1 the corollary to lemma 5 can be

formulated as follows:

sup #2{l-+n)- sup u.
DNES() PNEL M)
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Let m, be the smaliest natural number for which ae E;?—m,, MND . Let later
r > 1 - be arbitrary, moreover m > m, is a natural number for which

-m-1

y U Lr<y ,

mlnlslnr <(m+1)1n-1—,

ie.
m> lnr -1.

1

In—
14

. Inr Inr .
We'll suppose » such big that -1z . Let N(r)= sup u. Applying
In 1 21n 1 TE; (1)
Y ¥

successively the corollary to lemma 5 we'll get:

Ny Q)™ - Ny ™2 Qen)™™ b=+ )" -b—b—,,,ﬁ(lm)’" B2

+7)

1
2h (1 +n)lwm" = b =h -exp(lnnlzr")= . -exp(lnr")z bre,
yamt
where n, =(1+1) 7, o=ln,.
Thus for sufficient big »
N(r)

rcr

Applying the maximum principle we get the statement of the theorem.
Author expresses gratitude to his supervisor, corresponding member of NASA,
prof. L.T. Mamedov for his statement of the problem and his attention to the work.
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THE GENERALIZED SOLVABILITY OF THE DIRICHLET PROBLEM FOR
NON-UNIFORMLY DEGENERATING ELLIPTIC EQUATIONS OF THE
SECOND ORDER

Abstract

The Dirichlet problem is considered for non-uniformly degenerating elliptic
equations of the second order of divergent structure. The inequalities of Friedrichs type is
proved and the conditions are found at which this problem is uniquely generalized
solvable in anisotropic Sobolev space.

Introduction. Let £, be an » dimensional Euclidean space of the points
x=(x},.00%, ), #23,D be a bounded domain situated in E,, 3D be a boundary of the
domain D. Let’s consider in D the first boundary value problem

8
= § 2o,@2 |- £ g
£, f=1 X i=1

Wop =0, (2)
where “a,j (xj' is a real symmetric matrix with measurable in £ elements, moreover for

all xe D, { € E, itis fulfilled the condition

rzf’z(x);2 <Yals, sy lzx(x): 3)

i j=1

Here y €(0,1] is a constant, and the functions )L;-(x)zzl,...,n almost everywhere in D
are finite and positive. The aim of the given paper is to find the conditions on functions
20 (k) Fi(x) and o(x)(i=1,....n), at which the problem (1), (2) is uniformly
generalized solvable in corresponding anisotropic Sobolev weight space. Let’s denote that
in the case of uniformly elliptic equations we can find the proof of analogous fact in [1-
3]. Concerning the equations with uniform degeneration then let’s note in this case papers
[4-5]. For elliptic equations with weak (logarithmic) non-uniform degeneration the
generalized solvability of Dirichlet problem is established in [6]. Let’s note also paper [7-
8], where the first boundary value problem is investigated for one class of elliptic
equations with non-uniform power degeneration at a point.

1°. The inequality of Friedrichs type. Let’s agree in some notations and

determinations. Let Wzl, l(D) be a Banach space of the function u(x), given on D with

finite norm
. . 1/2
LR :[ I[uz(x)+ pAS ]dx] :
’ D i=1

where A =(Ay,..., Ay ), 4; = Bu/ x;, (t=1,..,n). On the functions A;(x) (i=1,..n) we put
the next conditions

Alx)e Ly(D), A7 (x)e Loja(D)i=1,.m. C))




