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GULIYEV LK,

ON FATIGUE WEAR OF ELASTICO-PLASTIC PLATE AT PULSING
TEMPERATURE ACTION

Abstract

The tensors components of stresses and deformations, the remainder stresses and
deformations, the intensivity of remainder deformations are determined in the plate at its
elastico-plastic deformation and the next full elastic unloading at every cycle in the case
of pulsing temperature loading. The analytic formulas for the time and for the
temperature cycle have been got af which in result of thermic fatigue wear from the
surface layers of plate distracting the material of given thickness is determined.

Let’s consider an elastico-plastic with linear hardening plate of thickness 4 in
any form, which in a plane is free of external loadings. Let’s apply the rectangular
cartesion systems of the coordinate (xl,xz,x3). Let’s arrange the axes x5 and x3 in the

middle of the surface. It is clear that in this case the axis x; will be perpendicular to this
surface. On the both boundary surfaces of plate is realized the absorption of the heat ¢(t},
where ¢ is time. Moreover it is considered that the heat stream ¢(r) quite slowly changes
by the time by the force of pulsing cycles. At =0 we suppose ¢(0)=0. We’ll consider

the domains of plate on sufficiently deleting it from its edges. We suppose that all
constants of materials don’t depend on temperature. Subject to above noted distribution of
the temperature T(x,}=T(x;,1) will be symmetric with respect to the middle surface

x1 = 0. From this and according to [1,2] we’ll suppose the temperature field of the plate
in the following form

2
T(x,t)=T(x, ,x)=33@)§L, (1)
xh

where y is a heat condition coefficients.

We’ll denote continuity of every temperature cycle by #, the time before the
destruction of plate by #,{x;}. In addition the number of temperature cycle will be
N.(x)=1,{x;)/t+ an which will happen the destruction of plate will begin from the

h : e .
surface layers x| = iE and will be extended in direction x;. It means that the separation

of materials will begin from the surface layers, i.e. the process of thermal fatigue wear
will begin. However the process of wear won’t get the surface x; = 0 . Because the plastic

. h .
deformation occurs when x; =i-2— and at any cycle the central plastic zone won’t

happen.

Let’s define the elastico-plastic stress-deformated state (also the remainder
stresses and deformation’s) of the plate at any cycle of temperature action for getting the
t.(x1) (or N,(x)). By the conditions of problem every tempcrature cycle consists of
temperature loading during the time ¢ /2 and full temperature unloading during the same
time,

First of all let’s consider the elastico-plastic deformation problem of the
investigated plate from the natural state at temperature loading (1) in interval time

1 w8 (=) wes wrsnar ywr lIIT®
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[0,1* / 2]. The solution of this problem in that or other degree is considered in [1,2,3].

Let’s use some results from these papers. In domain of elastic deformations the following
relations [4] hold:

S!',,' =2Ge,‘j, (2)
8=3aTl. (3)
Here Sy =0y —crég ) € =&y "361}“ are tensors of the deviator of stress o, and

deformation £, O :O“g-SU /3, ¢ =68 /3 are mean stresses and deformations; 65,- are
Kronecker symbols, G is modulus of shift, & =3¢ is relative change of volume, a is
coefficient of linear temperature extension. The plate material is supposed to be

. . 1 . . .
mechanico-incompressible (v = 3 where v is a Poisson coefficient).

In domain of plastic deformations the relations of small-elastico-plastic
deformation theory of A.A Ilyushin with the linear hardening [5] are fulfilied

20,

s =Sey, (4)

y 3£+ ¥
o, = Ao +3G({ - A)e, , (5)
6 =3aT . (6)

3 . . . 2 2. L .
Here o, =£-2—sy-sg]2 — i3 stress intensity, &£, =(—3~e,;,-egj2 is deformation intensity, A

is coefficient of hardening 0<A <1, o, is limit of fluctuation by stresses, which is
connected with the limit of fluctuation on the formations &, by the relations o, =3Ge, .
For our problem we have [1,2,3]:
o1 =013 =013=03=0; 0y =033=09 %0,
£12 =613 =£23 =05 £33 =33 = £9 = 60{) = 01 &) = €91 (x1,1) % 0.
Consequently the problem at the temperature loading (1) is reduced to the
definition o =og(x,7), deformations &g = eq(t), £11 =£1;(x.) and some functions
£,(r) determining the boundary of elastic and plastic domain of plate.
For the quantities oq,£q in [3] using the relations (2)-(6) and conditions on the
absence of resulting intensifications on the edge of a plate

h

2
Jco(xlaf}i‘: =0 M

h

2

the following relations are got:
oo =6G{so ~%Q§2] when &<&; (8)
X
60=GG(1—A{80—22€~(;-1§2]-—1 when &>&,; (9)
1

&g =%§;—)§3(‘)—E, (A =0); (10)

where
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2
L=t an

In addition in {3} the quantity &, was not determined, only in [3] it the following
equation for its determination is led:
2.0

serl)- 2263(0)- (1 - /1)(1 362())

Here we accept the notation g?’ aq(t)
2xe;

Let’s determine és(t) from the equation (12). The analysis shows that in the

(12)

interval ¢ [0,%} and x E(O, g} or £ €(0,1] at conditions 0<A <1 and 22 3!283 ()

it has a unique real root, which is represented in the following form:

8O- Flne2)-n. (13)

where noted
1-4
n= ThE (14)
1
o 3(2n+1)_n(3n2—1) n(3n2—l) 3(2n+1] 6 ? \
7o 0)- i) 2 Iz s ) T @

The solution (13) subject to (14) and (15) is the exact solution of the equation (12). From
(14) it follows that when A =1 we have n=0. This case corresponds to the real plastic
state of material. In this case from (15) will get

1

f(O, ef (t)): [4sz (I)T :

Subject to this from the solution (13} A =1{n=0). We have

50\ )

This formula directly follows from the equation (12) when A =1.
The state of plasticity of surface layers of plate corresponds to &, =1. The time
15, at which the surface layers pass to the state of plasticity is determined from (12) when

£. =1. As shows the calculations the time ¢, doesn’t depends on A and is determined
from the equation

0 ( )_ aq (‘ p )
g7\t pl= 5

XEs
Thus determining the function £, (t) by the formula (13) vsing (4) and (15} we find the
stress &, by the formula (8), (9) and the elastico-plastic deformation ¢, by the formula
(10). The deformation £y is easily determined from (6):

3
=3 (16)
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g11 = 3aT(x.t) - 2¢¢. (17)
Let’s denote that the formulas (8), (9), (10), (17) subject to (13)~(15) hold in temperature

loading process which happens in interval time {O,I—;-J. In this case the heat stream g{¢)

. . . . te .. .
monotonically increases from zero to its maximal value g, =¢ > then in interval time

£ . . { .
’:—;—,h] monotonically decreases to zero. In addition when ¢ = % the central plastic zone

. . . . ¢ . .
doesn’t arise. Since we suppose that at interval time [%’t*} the full elastic unloading

happens then at f =« we have g =0, 8;9 =(. In this case the remainder deformation 88

and the remainder stress 0'8 are determined in [3]:

0 0 0 Ix
22 = £33 =& 0[2] oy (18)
fx
Gaq[——} 3
f 2 4 12x
6(2)2=0§]3=68(x1)=00[x1,—*}+ 1. (19)
2 x h

Now let’s find the remainder deformation &, since it isn’t determined in [3]. Let’s use
the theory on elastic unloading of A A Ilyushin [5]. Following this theorem

&) =&l - &), (20)
where the quantity &1, is deformation, existing before the beginning of unloading
Sil :3CZT[)C1,%]*2£0['{;-J, (21)

the quantity egFl is deformation which should arise in considered plate at its elastic

deformation from the natural state, by the temperature field T(xl,%}. For its

determining first of ail let’s determine the clastic deformation &g, which arises in the

plate at loading of temperature field T [xl,%J . Let's use the relations (7) in addition (8).

We'll get

In addition with using (21) we have

: 1 !
&), =3al (xl ,~—2' ] 73
X

From (20) subject to (21) and (22) we’ll denote the remainder deformation 6']0]

(22)
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e
£ = 31 —280[;) . (23)

t

Let’s denote that here Eg{':—z-) is determined by the formulas (10) at using (13)-

(15), when z:%‘.

Now let’s determine the remainder intensity of the déformations 22 which is
expressed by the formula in our case

&, :322[(5]0] “332)2 + (5202 *533)2 +(3.33 ‘5101)2]E . (24)

Allowing for (18) and (23) in (24) we’ll get
—_— | —_—= (25)

Consequently at the first cycle of temperature of pulsing loading of plate at its elastico-
plastic deformation and next full elastic unloading components of tensors stresses and
deformations the remainder stresses and deformations, and the remdinder intensity of
deformation are also determined. Since the loading of plate is pulsing then every cycle of
the heat stream ¢{f) doesn’t differ from one another and at this it has the same maximum

Im =q[%). Following from this and following [4], w can conclude that in the cycles

next after the first, the remainder stresses and deformations will not change and will be
expressed by the corresponding formulas (18), (19), (23). the remainder intensity of
deformations by the formula (25).

Now let’s determine the thermal fatigue wear of plate at obtained data. Let’s use
the criterion represented in [6].

f](si’ Of [zg-))sdf =efu. (26)

g

Here . =1t,(x,2} is the time before the destruction, 82 is remainder intensity of
deformations, #» is the time of duration of every cycle, T, and g, - are experimentally
determined critical temperature a deformations at monotonically loading during the time
t«, B and & - are experimentally determined constants of material.

Let the heat stream q(t) be represented in the following form

7()= 4, sinzn}L. @7
. *

Let’s denote that in this case the time of appearance of plastic deformations in the first
cycle on the surface layers of plate following to (16) is determined by the following
formula:
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ty =tiarcsin | 3xEs .
)
2
The temperature field of plate according to the formula (1) will be
2
T(x.0)= E%qm sin 7. (28)
xh ts

Allowing for (25) and (28) in (26) we’ll determine the time ¢,

B 2 8 1
:Cz(g_;] (Zh Tc] DO +1) o3, (29)
£+

2xq, 1"{5 + ,I_J
2

Here T'{§) is a gamma function. The quantity 32 is represented by the formula (25) at

using the (10), (13)-(15). The number of the temperature cycles before the destruction
N, is determined from (29):

B 2 8 1
ch[&] [xh Tc] {5 +1) = 30

32 2-"12’9':» r[ﬁ + ,1_]
2

As we see quantities £, and N, depend on x;. When x =ig from the formulas (29)

and (30) we find the time #,, and the number of cycles Ny, at which begins the
destruction of surface layers:

B 8 1
t1c=[8—8] (szcJ I“(5+}) 2t (31)

4 m

8 5 1
Nlcz{e_g} (2;;?'0} (5 +1) ey (32)

£y Im 1"(6 + %J

The process of thermal fatigune wear begins at the time #, or the number of cycles N,

determined by the formula (31) and (32) from the surface layers of plate and flow past to
decp in the direction of the axis x;. In theory of wear gives the limit of wear, at

increasing of which the construction becomes unfit for the used aim [7]. Let —}321~ be the

admissible thickness separated in finally destruction of materials of every surface of plate.

Ay

At this supposing x; = i%?a— , from the formulas (29) and (30) we get the final time

t3. and the cycle number N,, of wear

e g 2T, "I +1) ) o3
ole) W -2hn + 1 g, I~[5+1] N
2
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B 2 é 1
NN 22T, M@+ 3
NZC _{SEJ ((hz “Zh;ﬁ + hIth} 1_,[5 +—1_Jﬂ: . (34)
2

Thus at the time ¢, and the number of cycles ¥, determined by the analytic formulas
(33) and (34) in addition (25), (10), (13)-(15), in case of acting of heat stream (27), from
|

the surface layers of plate distracting separates the material every thickness — and the

plate becomes unfit for the used aim.
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KURBANOV LA, MEKHTIYEVA G.Yu.

ON TWO APPROXIMATED METHODS FOR SOLUTION OF
ONE BOUNDARY VALUE PROBLEM FOR A DIFFERENTIAL
EQUATION OF THE FOURTH ORDER

Abstract

A boundary value problem is considered for the fourth order differential
equation. This equation is reduced to the equivalent Voiterra-Fredholm integral
equation. The equation is solved by two iteration methods.

The boundary value problem for a differential equation of the fourth order is
considered. It is substituted by the integral equation of Volter-Fredholm and the last is
solved by two iteration methods.

Let’s consider the following boundary value problem for a differential equation
of the fourth order

%J;(_‘)+a(r)x(:): 70 ©si<i), 1
x{0)= xq, x'(0)=%{0), x"(0) =, }

x(l)zax(c)+ ﬁ,ac3 #I, (04(.‘( 1)

Such problem is met, for example in the sections of construction mechanics — in
the problem on equilibrium of beam on elastic base [1-4], in some problems of the theory
of cylindrical shells [4].

For approximated solution of the problem (1), (2) the methods given at papers
[5], [6] are applied.

Let’s suppose that a(r), f (t), (0 << 1) are continuous. It is easily proved that we
can substitute the probiem (1)-(2) by the equivalent integral equation

x(r) ¥ (t)+ ITG——)a(s)x(sks—

@

(3)

—-am fle =Y el - Uj(‘ ‘65) AWAYS

, o = o A0- L2 All-ac?
fl () o ,B+x[ ?ﬁl]+x0[f“—l£:—g;—)J+xo[7_ 21&&03 ]_

m (s)ds = _f(c ~ 5P fls)ds + = _[(r ~s) flsks, 4

or

()= 71 () + ol)Fx+ vx, 5)

where




