ALIEV A.B., AHMEDOVA Zh.B.

GLOBAL SOLUTIONS OF NON-LINEAR FOURTH ORDER HYPERBOLIC INEQUALITIES

Abstract

In this paper considered variation inequality for the fourth order non-linear hyperbolic operators and proved one-valued solvability of this problem.

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with the smooth boundary Γ . Let's consider the fourth order non-linear hyperbolic operator in the cylinder $Q = (0,T) \times \Omega$

$$L(u) = u'' + \Delta (a(t, x, u)\Delta u), \tag{1}$$

with the boundary conditions of Dirichlet

$$u\big|_{\Gamma} = 0, \quad \frac{\partial u}{\partial v}\big|_{\Gamma} = 0 \tag{2}$$

and with the initial conditions

$$u(0,x) = u_0(x), \quad u'(0,x) = u_1(x),$$
 (3)

where $\frac{\partial}{\partial v}$ is the derivative in the direction of external normal $v, u' = u_t, u'' = u_{tt}$.

$$a(\cdot) \in C^2[0,T] \times \overline{\Omega} \times R, \quad a(t,x,u) \ge a_0 > 0.$$
 (4)

Let

$$\mathring{W}_{2}^{2k} = \left\{ u : u \in W_{2}^{2k}(\Omega); \frac{\partial^{i} u}{\partial v^{i}} \right|_{\Gamma} = 0, i = 0, 1, ..., k - 1 \right\},\,$$

where $W_2^{2k}(\Omega)$ - is a Sobolev space.

Let's determine the space

$$H_{T}(2k,2m) \equiv H_{T}\left(\mathring{W}_{2}^{2k},\mathring{W}_{2}^{2m},L_{2}(\Omega)\right) = \left\{u: u \in L_{\infty}\left(0,T;\mathring{W}_{2}^{2k}\right), u' \in L_{\infty}\left(0,T;L_{2}(\Omega)\right)\right\}.$$

Let us denote by K_0 and K_{λ} the corresponding convex closed sets in the spaces \mathring{W}_{2}^{2} and \mathring{W}_{2}^{4} :

$$K_0 = \left\{ u : u \in \mathring{W}_{2}^{2}, \left| \Delta u(x) \right| \le 1, \text{ almost everywhere on } \Omega \right\},$$

$$K_{\lambda} = \left\{ u : u \in \mathring{W}_{2}^{4}, \left| \Delta u(x) \right| \le 1, \left| \Delta^{2} u(x) \right| \le \frac{1}{\lambda} \text{ almost everywhere on } \Omega \right\}.$$

Let's determine the set

$$H_T(2m, 2k, K_{\lambda}) = H_T(\mathring{W}_{2}^{2m}, \mathring{W}_{2}^{2k}, K_{\lambda}) = \left\{ u : u \in H_T(\mathring{W}_{2}^{2m}, \mathring{W}_{2}^{2k}, L_2(\Omega)) \right\},$$

$$u'(t, \cdot) \in K_{\lambda} \text{ almost everywhereon } (0, T).$$

Let's introduce notations:

[Global solutions of non-linear hyperbolic inequalities]

$$\langle u, v \rangle (t) = \int_{\Omega} u(t, x)v(t, x)dx$$
.

The next result is true.

The main theorem: Let the condition (4) is satisfied. Then for any $f \in W_2^1[0,T;L_2(\Omega)]$

$$u_0 \in W_2^4 \cap C^4(\overline{\Omega}), \ u_i \in K_0 \tag{5}$$

exists the unique function $u(\cdot) \in H_T(2,2,K_0)$, which satisfies the conditions (2), (3) and the inequality.

$$\langle u'', v - u' \rangle (t) + \langle a(t, x, u) \Delta u, \Delta v - \Delta u' \rangle (t) \ge \langle f, v - u' \rangle (t),$$
 (6)
almost everywhere on $(0, T)$,

where $v \in K_0$.

We denote that the analogous problem for the operator (1) with the Rike's boundary conditions.

$$u\big|_{\Gamma}=0, \quad \Delta u\big|_{\Gamma}=0 \tag{7}$$

was investigated in paper [1]. The method of receiving some a priori estimates, which used in [1] are not applied. The reason of this is that the resolvent of Laplacian operator with the Dirichlet boundary condition doesn't transfer the set K_{λ} into itself. It is impossible to pas to the limit in standard scheme without these a priori estimates. In this paper we use some different methods.

For simplicity we will use a(u) = a(t,x,u) for proff.

At first we consider the variation inequality as in [1].

$$\langle L(u_{\lambda}) - f, v - u_{\lambda} \rangle (t) \ge 0, \ v \in K_{\lambda} \text{ almost everywhere on } (0, T),$$
 (8)

$$u_{\lambda}(0,\lambda) = u_0(x), \quad u'_{\lambda}(0,\lambda) = u_{1\lambda}(x), \quad x \in \Omega,$$
 (9)

where

$$u_{1\lambda} \in K_{\lambda} \quad \text{and} \quad u_{1\lambda} \to u_1 \quad \text{in} \quad \mathring{W}_{2}^{2}.$$
 (10)

Using the proof method of the corresponding theorem (with the boundary conditions Rike (7) given in [1]) it is proved that at any $\lambda > 0$ the problem (8)-(9) has a unique solution

$$u_{\lambda} \in H_{T}(4,4,K_{\lambda}). \tag{11}$$

In view of (11) we have

$$|\Delta u_{\lambda}'(t,x)| \le 1$$
 almost everywhere on Q. (12)

Hence using (5) we get the next a priori estimation

$$|\Delta u_{\lambda}(t,x)| \le C$$
, almost everywhere on Q, (13)

where $C_1 > 0$ doesn't depend on λ . Using the shift method in future we will get the priori estimation

$$\int_{\Omega} |u_{\lambda}''(t,x)|^2 dx \le C_2 , \qquad (14)$$

where $C_2 > 0$ doesn't depend on $\lambda > 0$.

By virtue of (12)-(14) we can choose such sub-sequence denoted by $\{u_{\lambda_n}\}$, that

$$u_{\lambda_n} \to u \quad *- \text{ weakly in } L_{\infty} \left(0, T; \overset{\circ}{W}_{2}^{2}\right),$$
 (15)

[Aliev A.B., Ahmedova Zh.B.]

$$u'_{\lambda_n} \to u' \quad *-\text{weakly in } L_{\infty} \left(0, T; \overset{\circ}{W}_{2}^{2}\right),$$
 (16)

$$\Delta u_{\lambda_n} \to \Delta u \quad *- \text{ weakly in } L_{\infty}(Q),$$
 (17)

$$\Delta u'_{\lambda} \to \Delta u' *- \text{weakly in } L_{\infty}(Q),$$
 (18)

$$u_{\lambda_{-}}^{"} \rightarrow u^{"} \quad *-\text{weakly in } L_{\infty}(o, T; L_{2}(\Omega)),$$
 (19)

$$a(u_{\lambda_{\infty}})\Delta u_{\lambda_{\infty}} \cdot \Delta u'_{\lambda_{\infty}} \to A(t,x) *- \text{weakly in } L_{\infty}(Q),$$
 (20)

where $\lambda_n \to 0$ when $n \to \infty$.

From (15), (16) and (19) follows that

$$u_{\lambda} \to u \text{ in } C([0,T]L_2(\Omega)),$$
 (21)

$$u'_{\lambda_n} \to u' \text{ in } C([0,T], L_2(\Omega)).$$
 (22)

From (4), (13) and (21) follows that

$$a(u_1) \rightarrow a(u) \text{ in } C([0,T], L_2(\Omega)).$$
 (23)

Statement: The sequence $\{u_{\lambda_n}\}$ is fundamental in $C\left[0,T]; \mathring{W}_2^2(\Omega)\right]$.

Proof: Let's consider the expression

$$R_{t}(u,v) = \int_{0}^{t} \int_{\Omega} (a(u)\Delta u - a(v)\Delta v) (\Delta u' - \Delta v') dxds$$

and let's prove that

$$\overline{\lim_{n\to\infty}} \overline{\lim_{m\to\infty}} R_i\left(u_{\lambda_m}, u_{\lambda_m}\right) = \overline{\lim_{m\to\infty}} \overline{\lim_{n\to\infty}} 2\int_0^t < L\left(u_{\lambda_m}\right), \ u'_{\lambda_m} - u'_{\lambda_m} > ds.$$
 (24)

Indeed we have the next equality using (15)-(20).

$$\frac{\overline{\lim}_{m\to\infty}R_{t}(u_{\lambda_{n}},u_{\lambda_{m}}) = \int_{0}^{t} \int_{\Omega} a(u_{\lambda_{n}})\Delta u_{\lambda_{n}}\Delta u'_{\lambda_{n}}dxds - \int_{0}^{t} \int_{\Omega} a(u_{\lambda_{n}})\Delta u_{\lambda_{n}}\Delta u'dxds - \int_{0}^{t} \int_{\Omega} a(u)\Delta u\Delta u'_{\lambda_{n}}dxds + \int_{0}^{t} \int_{\Omega} A(s,x)dxds.$$

Then passing to the limit at $\lambda_n \to 0$ and taking into account (15)-(20) we have

$$\overline{\lim_{n\to\infty}} \overline{\lim_{m\to\infty}} R_i \Big(u_{\lambda_m}, u_{\lambda_m} \Big) = 2 \int_0^t \int_R A(s, x) - 2 \int_0^t \int_\Omega a(u) \Delta u \Delta u' dx ds.$$
 (25)

On the other hand

$$\overline{\lim_{m\to\infty}} \overline{\lim_{n\to\infty}} 2 \int_{0}^{t} \int_{\Omega} \langle L(u_{\lambda_{m}}), u'_{\lambda_{m}} - u'_{\lambda_{m}} \rangle dxds = \overline{\lim_{m\to\infty}} \overline{\lim_{n\to\infty}} 2 \int_{0}^{t} \int_{\Omega} \langle u'_{\lambda_{n}}, u'_{\lambda_{n}} - u'_{\lambda_{m}} \rangle dxds - \overline{\lim_{m\to\infty}} \overline{\lim_{n\to\infty}} 2 \int_{0}^{t} \int_{\Omega} \Delta (a(u_{\lambda_{m}}) \Delta u_{\lambda_{n}}) (u'_{\lambda_{n}} - u'_{\lambda_{m}}) dxds. \tag{26}$$

From (16),(19) it follows that the first sum is equal to zero and from (16),(20) it follows that the second sum is equal to

$$2\int_{0}^{t} \int_{\Omega} A(s,x) dx ds - 2\int_{0}^{t} \int_{\Omega} a(u) \Delta u \Delta u' dx ds.$$
 (27)

The equality (24) is the corollary of (25)-(27).

We consider the inequality

[Global solutions of non-linear hyperbolic inequalities]

$$< L(u_{\lambda_n}), v - u'_{\lambda_n} > (t) \ge 0, \ v \in K_n \quad \text{almost everywhere on } (0, T).$$
 (28)

Since $K_{\lambda_m} \subset K_{\lambda_n}$ when n < m than $u'_{\lambda_m}(t,\cdot) \in K_{\lambda_m}$ almost everywhere on (0,T).

Therefore we can take $v = u_{\lambda_{-}}(t, \cdot)$ in (28). Then we will get the next inequality

$$< L(u_{\lambda_n}), u'_{\lambda_n} - u'_{\lambda_n} > (t) \ge 0.$$
 (29)

From (24) and (29) it follows that

$$\lim_{n \to \infty} \frac{\lim_{n \to \infty} R_i(u_{\lambda_n}, u_{\lambda_m}) \le 0.$$
(30)

We consider the expression

$$E(u,v) = \int_{\Omega} (a(u)\Delta u - a(v)\Delta v)(\Delta u - \Delta v)dx.$$
 (31)

Using the priori estimations (12)-(14) and also applying the Lagrangian formula and the Hölder inequality we will get that

$$E(u_{\lambda_{n}}, u_{\lambda_{m}}) \ge c_{3} \|u_{\lambda_{n}} - u_{\lambda_{m}}\|_{\dot{W}^{\frac{2}{2}}}^{2} - c_{4} \|u_{\lambda_{n}} - u_{\lambda_{m}}\|_{L_{2}(\Omega)}^{2}, \tag{32}$$

where $c_3 > 0$, $c_4 > 0$ doesn't depend on n and m.

On the other hand

$$E(u(t,\cdot),v(t,\cdot)) = E(u(0,\cdot),v(0,\cdot)) + \int_0^t \frac{d}{ds} E(u(s,\cdot),v(s,\cdot))ds = E(u(0,\cdot),v(0,\cdot)) +$$

$$+ \int_0^t \int_\Omega (a(u),\Delta u - a(v)\Delta v)(\Delta u' - \Delta v')dxds + \int_0^t \int_\Omega (a(u),\Delta u' - a(v)\Delta v')(\Delta u - \Delta v)dxds +$$

$$+ \int_0^t \int_\Omega (a'(u),u'\Delta u - a'(v)v'\Delta v)(\Delta u - \Delta v)dxds = I_0 + I_1 + I_2 + I_3,$$

where

$$I_{0} = E(u(0,\cdot),v(0,\cdot)),$$

$$I_{1} = R_{t}(u,v),$$

$$I_{2} = R_{t}(u,v) + I'_{2} = \int_{0}^{t} \int_{\Omega} (\Delta u' \Delta v + \Delta u \Delta v') (a(u) - a(v)) dx ds$$

$$I_{3} = \int_{0}^{t} \int_{\Omega} \int_{0}^{t} a''(v + \tau(u - v)) d\tau u' \Delta u (u - v) (\Delta u - \Delta v) dx ds + \int_{0}^{t} \int_{\Omega} a'(v) \Delta u (u' - v') (\Delta u - \Delta v) dx ds + \int_{0}^{t} \int_{\Omega} a'(v) \Delta u (u' - v') (\Delta u - \Delta v) dx ds + \int_{0}^{t} \int_{\Omega} a'(v) v' (\Delta u - \Delta v)^{2} dx ds.$$

Thus

$$E(u,v) = E(u_0, v_0) + 2R_t(u,v) + G(u,v),$$
(33)

where

$$G(u,v) = I_2' + I_3.$$

Taking into account the priori estimations (12)-(13) and using the inequality we'll get the following estimation:

$$\left|G(u_{\lambda_{n}}, u_{\lambda_{m}})\right| \leq c_{5} \int_{0}^{t} \left\|u_{\lambda_{n}} - u_{\lambda_{m}}\right\|_{L_{2}(\Omega)} + \left\|u_{\lambda_{n}} - u_{\lambda_{m}}\right\|_{\dot{W}_{2}^{2}}^{2} + \left\|u'_{\lambda_{n}} - u'_{\lambda_{m}}\right\|_{L_{2}(\Omega)}^{2}\right] ds. \tag{34}$$

From (33) and (34) we'll get that

[Aliev A.B., Ahmedova Zh.B.]

$$\begin{split} \overline{\lim}_{n\to\infty} \overline{\lim}_{m\to\infty} E\left(u_{\lambda_n}, u_{\lambda_m}\right) &\leq 2 \overline{\lim}_{n\to\infty} \overline{\lim}_{m\to\infty} R_i\left(u_{\lambda_n}, u_{\lambda_m}\right) + c_5 \overline{\lim}_{n\to\infty} \overline{\lim}_{m\to\infty} \int_0^t \left\|u_{\lambda_n} - u_{\lambda_m}\right\|_{L_2(\Omega)} + \\ &+ \left\|u_{\lambda_n} - u_{\lambda_m}\right\|_{\dot{W}_{\frac{1}{2}}^2}^2 + \left\|u'_{\lambda_n} - u'_{\lambda_m}\right\|_{L_2(\Omega)}^2 \right] ds \; . \end{split}$$

Using (21), (22), (30), (32) and (34) we have the next estimation from the last inequality

$$\overline{\lim_{n\to\infty}} \overline{\lim_{m\to\infty}} \left\| u_{\lambda_m} - u_{\lambda_m} \right\|_{\dot{W}_{\frac{1}{2}}}^2 \leq \overline{\lim_{n\to\infty}} \overline{\lim_{m\to\infty}} \int_0^t \left\| u_{\lambda_m} - u_{\lambda_m} \right\|_{\dot{W}_{\frac{1}{2}}}^2 ds.$$

From here we have

$$\overline{\lim_{n\to\infty}} \, \overline{\lim_{m\to\infty}} \left\| u_{\lambda_n} - u_{\lambda_m} \right\|_{W_2}^2 = 0 \,.$$

Hence it follows that

$$\lim_{\substack{n \to \infty \\ n \to \infty}} \left\| u_{\lambda_n} - u_{\lambda_m} \right\|_{\dot{W}^{\frac{2}{2}}} = 0, \tag{35}$$

i.e. at any $t \in [0,T]$ the sequence $\{u_{\lambda_{1}}(t,\cdot)\}$ is fundamental in \widetilde{W}_{2}^{2} .

Now let us prove that the sequence $\{u_{\lambda_n}\}$ is fundamental in $C[0,T], \mathring{W}_{2}^{2}$.

We estimate the $R_i(u_{\lambda_n}, u_{\lambda_m})$ from above using (12)-(13). Taking into account the given estimation in (33) we will get that

$$E(u_{\lambda_{n}}, u_{\lambda_{m}}) \leq c_{7} \int_{0}^{t} \|u_{\lambda_{n}} - u_{\lambda_{m}}\|_{\dot{W}^{\frac{2}{2}}} ds + \psi(u_{\lambda_{n}}, u_{\lambda_{m}})(t), \qquad (36)$$

where

$$\psi(u_{\lambda_n}, u_{\lambda_m})(t) = c_8 \int_0^t \left(\left\| u_{\lambda_n} - u_{\lambda_m} \right\|_{L_2(\Omega)} + \left\| u'_{\lambda_n} - u'_{\lambda_m} \right\|_{L_2(\Omega)}^2 = \left\| u_{\lambda_n} - u_{\lambda_m} \right\|_{L_2(\Omega)}^2 \right) ds.$$

From (21) and (22) follows that

$$\psi(u_{\lambda_{-}}, u_{\lambda_{-}})(t) \to 0 \text{ in } C[0, T] \text{ when } n, m \to \infty.$$
 (37)

In view of (13) and (35) by the Lebesque theorem on limit passage under the integral we will get:

$$\int_{0}^{T} \left\| u_{\lambda_{n}} - u_{\lambda_{m}} \right\|_{\dot{W}^{\frac{2}{2}}} dt \to 0 \text{ when } n, m \to \infty.$$
 (38)

Taking into account the (37) and (38) in (36) we have
$$E(u_{\lambda_m}, u_{\lambda_m}) \to 0$$
 in $C[0, T]$ when $n, m \to \infty$.

Then allowing for this in (32) we will get that

$$\left\| u_{\lambda_n} - u_{\lambda_m} \right\|_{C\left([0,T], \dot{W}_2^2\right)} \to 0 \text{ when } n, m \to \infty,$$
(39)

i.e.
$$\{u_{\lambda_n}\}$$
 is fundamental in $C([0,T]; \mathring{W}_{2}^{2})$.

Now passing to the limit in the inequality (8)-(9) we will get the statement of basic theorem on the existence of the solution.

The uniqueness of the solution is proved by a standard scheme (s.[2]).

[Global solutions of non-linear hyperbolic inequalities]

References

[1]. Aliev A.B., Ahmedova J.B. Variational inequalities for fourth order quasilinear hyperbolic operator. Proceedings of IMM Azerbaijan AS, vol.XII(XX), 2000, 10-17.

[2]. Lions J.L. Some methods of solution of non-linear boundary problems. M., Mir, 1972.

Akbar B. Aliev, Zhala B. Ahmedova

Azerbaijan Technical University. 25, H.Javid av., 370073, Baku, Azerbaijan.

Received December 18, 2000; Revised May 14, 2001. Translated Mamedova V.I.

ALIGULIYEV R.M.

A PHRAGMEN-LINDELÖF TYPE THEOREM FOR A NON-DIVERGENT STRUCTURE LINEAR ELLIPTIC EQUATION OF THE SECOND ORDER

Abstract

At the paper we consider a non-uniformly degenerating at infinity, non-divergent structure elliptic equation of the second order, containing small members. The condition providing the truth of Phragmen-Lindelöf type theorem for its solutions are found for minor coefficients of the equation.

Let \mathbf{E}_n be an n-dimensional Euclidean space, $n \ge 2$, D be an infinite domain

with the boundary ∂D , situated in the cone $K = \{x : \left(\sum_{i=1}^{n-1} x_i^2\right)^{1/2} \le kx_n, 0 < x_n < \infty\}$, 0 < k < 1/16.

Let's consider in D the following problem:

$$\mathcal{L}u = \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i}(x) \frac{\partial u(x)}{\partial x_{i}} + c(x)u(x) = 0,$$
 (1)

$$u\big|_{\partial D} = 0, \tag{2}$$

where $||a_y(x)||$ -is a real symmetric matrix.

Let's suppose that for all $x \in D$ and $\xi \in \mathbf{E}_n$ the condition is fulfilled

$$\mu \sum_{i=1}^{n} \lambda_{i}(x) \xi_{i}^{2} \leq \sum_{i,j=1}^{n} a_{ij}(x) \xi_{i} \xi_{j} \leq \mu^{-1} \sum_{i=1}^{n} \lambda_{i}(x) \xi_{i}^{2},$$
 (3)

where $\mu \in (0,1]$ -is a constant, $\lambda_i(x) = (1 + |x|_{\alpha})^{\alpha_i}, |x|_{\alpha} = \sum_{i=1}^n |x_i|^{2/(2+\alpha_i)}, \alpha_i > -2, i = 1,...,n$,

We'll suppose also that

$$-c_0 \le c(x) \le 0, \tag{4}$$

 c_0 - is a positive constant.

The aim of the present paper is the obtaining of condition on the minor coefficients $b_i(x), (i=1,...,n)$ and c(x) at whose fulfillment Phragmen-Lindelöf theorem is valid for solutions of the problem (1)-(2).

Note that for non-divergent second order uniformly elliptic equations not containing minor coefficients analogous results were obtained in papers [1-4]. As for uniformly elliptic equations of divergent structure, then we show in this connection in [5-6]. And we note papers [7-10], in which theorems of Phragmen-Lindelöf type for quasilinear elliptic and parabolic equations were obtained. In papers [11-12] analogous theorems were proved for degenerating on infinity elliptic equations without minor coefficients. In case when minor coefficients are present in uniform elliptic equation and principal part of the operator \mathcal{L} has divergent form theorem of Phragmen-Lindelöf type was established in [13] provided $divB(x) \le 0$, $(B(x), x) \le 0$ for all $x \in D$, where $B(x) = (b_1(x), ..., b_n(x))$.

If in the presence of the minor coefficients the principal part of the operator \mathcal{L} is written in non-divergent form then the analogous results valid under the condition $(B(x), x - x^0) \le 0$ for all $x \in D$, $x^0 \in \overline{I}$, where \overline{I} is some ray, coming from origin and $(-\infty)$