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BUCKLING AROUND THE TWO COLLINEAR MACRO-CRACKS IN THE
CLAMPED COMPOSITE PLATE-STRIP

Abstract

Buckling (delamination) around the two collinear cracks in the composite plate-
strip is investigated. For this purpose the approach based on the exact geometrically non-
linear eguations for anisiotropic body is used. It is assumed that the edges of the cracks
have an initial insignificant imperfection and by employing boundary-form perturbation
method the solution of the considered non-linear problem is reduced to the solution of the
series linearized problems. Numerical results are obtained by employing FEM
According to these results, it is established that as a result of the interaction between the
cracks the critical values of compressive force change insignificantly, but these values
increase monotonically with decreasing a distance between the cracks.

1. Introduction. One of the major mechanisms of failure of unidirectional
composites in compression along cracks is a stability loss of an equilibrium form around
the cracks [5,6]. In the related investigations, which have been carried out in the
framework of the Three-Dimensional Linearized Theory of Stability (TDLTS) of
deformable solid body mechanics it has been assumed that a considered material
occupies the infinite or semi-infinite region. The review of these investigations is given in
[6, 7} and others. it follows from [6, 7] that up to now corresponding‘investigations, ie.
investigations carried out in the framework of TDLTS, for elements of constructions
containing cracks are almost absent. It should be noted that in this field there are
investigations [3, 8] in which the stability loss of the strip containing a macrocrack is
studied. In [3] the stability loss of the simply supported strip containing a crack is
investigated and it is assumed that this strip is fabricated from the isotropic, homogeneous
linear elastic material. Moreover in [3] it is assumed that the crack is on the middie plane
of the strip and corresponding eigen-value problem is studied by employing the finite-
difference method. In this case the singularity order of the stresses and strains does not
taken into account. However in [8] the stability loss of a clamped strip fabricated from the
composite material and containing a macro-crack in a plane, which is paralle! to the
middle plane of the strip, is studied. In this study for solution of the corresponding
mathematical problems the FEM is employed and by use of a special technique the order
of the singularity the stresses and strains in the vicinity of the crack tips is taken into
account,

In the present paper the investigations carried out in [8] is developed and the
buckling around the two coliinear macro-cracks in the clamped composite plate-strip is
studied. The boundary- form perturbation technique and FEM are employed.

2. Formulation of the problem and the method of solution. Consider the strip
fabricated from the composite material that is modelled as orthotropic material with
normalized mechanical properties and contain two collinear cracks as shown in Fig.1a.
Assume that the crack edges have initial insignificant imperfection in the form shown
also in Fig.1a. We associate Lagrangian coordinate system Ox,x,x,;and suppose that the

principal elastic symmetry axes of the strip material are the Ox,,Ox, and Ox, axes
(Fig.1). Note that Ox; axis is perpendicular to the plane Ox;x, and has not been shown
in Fig.1. It is assumed that the plate-strip occupies the region — o < x3 < +o0.
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In the considered system of coordinates the equations of the crack edges S and
S; can be selected as follows.

For S} (Fig.1a)

x§=£-huiLsin2 =l +4)) , eyl +1,). ()
2 A
For S (Figla)
x5 ’“‘%"’“ + Lsinz[n(x‘ “(12; i H”))J, nell,+h+inhL +h+2). ()
0

In (1) and (2) L is a maximum lifting of the crack edges from the plane x, =h/2-h,
and assume that L <</;. According to this assumption, we introduce dimensionless small
parameter £ = L/l, and rewrite these equations as follows.

For S;:
x5 =§-hu tel, sinz[w], x, =0+ 1). (3)
]
For S5 :
X5 =%-hﬂ :tsiosin{ﬁ(x' ‘(12!”1 ”0))], xoelly + L+ 1,0+ +20). (4
i}

In the geometrical non-linear statement for the region occupied by the plate-strip we write
the following formula equilibrium equation, mechanical and geometrical relations

ou .
_ % [au, ou ou, _iai‘n_], L jn=12. )

zéj Ef &x; ox,
In (5) the conventional notation is used.
For the problem consideresd we have the following boundary conditions.

[[6:! + auj ]d_;}}j' nf = 09 (6)
o, s,
H Y ]%} ~0. )
ox,,
Xp=th(2

In (6) n; the ort-normal components of the surfaces S, .

Oy =245, &,

Furthermore, we assume that the plate-strip is compressed by the clamp along the
Ox, axis with the normal forces by intensity p . In this case it is supposed that

u,(O,x2)= ~i,(1,x,)=U, u,(0,x,)= uz(l,x2)=0. (8)
Thus, in the framework of the foregoing we consider the plane strain state in the
strip and investigate the development of the insignificant initial imperfection shown in
Fig.1a. Not also we will investigate the delamination form of the stability 1oss shown in
Fig.1b. For this purpose we use the criterion

+

5]

+

. =u,
Sy m=ly+ly /2

— +o0 and
83 =y 430,124

U;

—» —0 for p - Doy - %)

|S,‘ 5y=dy 2 2 83 ixsh+3y /244




Transactions of NAS Azerbaijan 175
[Buckling around the two collinear macro-cracks]

Now we consider the solution procedure of the above formulated boundary-value
problem. For this purpose we use the approach proposed in [1], according to which, the
values characterizing the stress-strain state in the strip we represent in the series form in
the parameter ¢:

yaby ¥ } ZS ffq}’ £y U 1()} (10)

Substituting the equation (10) 1nto (5) and comparing equal powers of £ to
describe each approximation, we obtain the corresponding closed system of equations.
Owing to the linearity of the constitutive relation they will be satisfied separately for each
approximation in the equation (10). The remaining relation obtained from equation (5) for
every ¢ -th approximation contains the values of all previous approximations. Moreover,

doing some operations described in [1], for the zeroth approximation we obtain the
following equations.

60';(;0} (o] {0) (@ (0} _ () ©)
o =0, 05 = 48l + dpEyy, O = Ayl + Ay,
j
0
o 24 50 0 _1fou® o
12 612 » €j 2| 2, o |
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. =0. ' 11
on | ze{gz fz+zogf(;1+fl+zu dp+h+2h) (h
For the values of the first approximation we derive the following equations.
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According to [1], the values of the second and subsequent approximations don’t change
the values of p,, , therefore p,, , can be determined from (11) and (12) in the framework

of the zeroth and first approximations only. Note that in this case the values of p are
+hi2
determined by the expression hp = _[ ol(?]l dez . Taking this situation into account
X =
-hi2
the values of the zeroth and first approximation are determined by the use of FEM. The
version of the FEM from which is used in the present investigation, is described in [1].
Moreover, in the present investigation for keeping the order of the singularities of the
stresses and strains at the crack tips the spatial type finite element [1] are used.
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3. Numerical results. We assume that the fabricated from a composite material
consisting of the alternating layers of two isotropic homogeneous materials. The
reinforcing layers will be assumed to be located in planes which are parallel to the plane
Ox,x, (Fig.1). Young module and Poisson coefficients of these materials we denote
through E®) gnd v {k =1,2) respectively. It is known that in the continuum approach
the above layered composite material is taken as transversally isotropic material with
normalized mechanical properties whose isotropy axis lies on the Ox, axis. Morcover, it

is known that these normalized mechanical properties are determined through the
following expressions described, for example, in [1] and elsewhere

A, = (0 5 20RO 1 GO 4 2,0
(A0 a2} UM

(2) -
T 2 0 L (5 2y e = Lo

A0 L2, [0 2,0
A = AR 4 0 2) _ 0 (0 5() H
12 n o ( A0 2, 00 538 2, 0),0

Ay :(;’(l) +2y(l)}'(l)+(1(3) +2#(2)},(3) _
_n('lnfﬂ A0 +2‘u(‘} _ 2.{2)+2p(2]
AV 240 W L (22 4 2,2 1)
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() ) U w0} (1
Assume that h/1=0.15,vV =y =03, n® =05, where 7}{2) is a filter
concentration and 7' =1-n®. Introduce the dimensionless parameters E®/EW
h.tly, L/l, L,/1 and assume that [,//=0.25. Analyze the influence of these

()

-1

3

(k)

parameters to the values of p,, /E®. First we consider the case where E/E0 =1
{(isotropic plate). In this case the values of p,, / EY are given in Table 1. The values of
p., 1EY for E¥/EY >1 (anisotropic plate) are given in Table 2.

Fig. 1.
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Table 1 and 2 show that for each selected 4, /I, and E®)/E" by decreasing the
distance, i.e. by decreasing /,/! or by increasing /,/{, the values of p, /E® change
insignificantly and are very near to the corresponding ones obtained for a single crack in
the considered plate-strip. Nevertheless, for £, /{2 0.2 the values of p,, / EY increase
monotonically with [ //. This situation agrees with the well-known mechanical

consideration. Consequently, we can conclude that the values of p_ /E W increase
monotonically by approaching of the collinear cracks to each other. However, this
increasing is very insignificant and in the many cases under determination of p_, /E )
the interaction of the collinear cracks can be neglected with the very high accuracy.

Table 1
_hl I /1

Ly 0.3 0.25 0.2 0.15 0.1 0.05
0.30 0.1105 0.1103 0.1102 0.1103 0.1118 0.1181
(.24 (.0901 0.0500 0.0900 0.0899 0.0901 0.0911
0.20 0.0725 0.0724 0.0724 0.0724 0.0728 0.0744
0.16 0.0546 0.545 0.0545 0.0546 0.0550 0.0560

Table 2

£ g0 T Bl 11 T
0.3 0.15 0.1 0.05

0.30 0.3458 0.3482 0.3547 0.3679

10 0,24 0.3013 0.3023 0.3053 03114
0.20 0.2581 0.2388 0.2617 0.2686

0.16 0.2071 0.2077 0.2100 0.2156

0.30 0.4460 0.4488 0.4549 0.4657

20 0.24 0.4013 0.4030 0.4068 0.4137
0.20 0.3567 0.3582 0.3622 0.3704

0.16 (0.2980 0.2993 0.3029 0.3108

0.30 0.5628 0.5645 0.5679 0.5739

50 0.24 0.5255 0.5270 0.5299 0.5350

0.20 0.4901 0.4919 04936 0.5025

0.16 0.4329 0.4350 ¢.4395 0.4481
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ON THE EQUATION OF FATIGUE WEAR AT EXTERNAL FRICTION
TAKING INTO ACCOUNT THE INFLUENCE OF LOADING HISTORY

Abstract

The amalytical equation accessible to engineering account fatigue wear of
surface layers is received at contact interaction of bodies in case of external friction
which takes into account the influence of history of non-stationary cyclic loading and
temperature. It defines the time and number of cycles before the destruction of surface
layer at fatigue wear.

As known the wear is a process of body’s gradual changing as a result of friction
which is developed in separation from the surface of material friction and its residual
deformation [1]. There are some kind of classifications of wear. The fatigue wear takes
especial place among them. It is modified with multi-repeated deformations of surface-
layers in case of contact interaction of solids at external friction and it reduces to
formation of damage and at the end party to the disturbance of surface layers strength
continuity {2]. Therefore the investigation of the fatigue wear process of surface layers
interacting at external body loading from the theory of damage accumulation [3-7] has a
real meaning. It should be noted that in numerous investigations [8-11] the experimental
proof of fatigue nature of wear have been got. In this direction good effort has been done
at paper [12], where on the base of Kachanov-Rabotnov’s damage concept some
generality of analytical dependence is verified which describes the material distribution at
usual fatigue and at friction. At paper [12] the equation of fatigue wear at external friction
is got which corresponds to the principle of linear summation of damage. Denoted
equation doesn’t consider important physical influence of deformation history to the
increment of damage at given moment and also such a real fact as a temperature field of
surface layer. The given paper is realized with the aim to fill up this gap. The account of
the influence of deformation history at determination of fatigune wear is especially
important for contacting bodies which at interaction show the hereditary properties. As is
known for example: polymers, metals has these properties at high temperatures.

Following [5-7], let’s introduce some scalar 0<IT<1. The value IT describes
the damage of the surface layer of material, it increases with increasing of continuous
parameter of loading, for which may be accepted the time ¢ or a number of cycle loading

of surface layer. If the beginning of & -th cycle w’ll denote by ¢, (t, =0), then extent of
k -th cycle will be ¢, ~¢,_,, there k:m. Here N, is a critical number of cycle of
loading corresponding to the destruction of surface layer. At that the value N, is
connected with the critical time ¢, before the destruction of surface layer with relation

f ""i(‘k —!k---l} (‘0 ‘"‘0)- {1)

k=]
Let’s take that at initial real state IT=0 at moment of fatigue destruction of
surface layer at external loading ¢, 11 has the value I3{s,}=1.

The kinetic equation for H(I) we’ll write as in [6]

S -om.aw). @




