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MUTALLIMOY Sh.M.
ON NORMAL IMPACT ON FLEXIBLE ELASTIC FILAMENT
Abstract

In the paper the construc.ion of solving of the problem on normal impact with
constant velocity by obtuse rigid wedge on elastic filament is given. It is assumed that the
velacity of the breakpoint is less than the velocity of elastic wave in filament.

In works [1-4] the behaviour of flexible filament at transverse impact by rigid
wedge 1s investigated when the flexure part of filament covers to check of wedge. In the
present paper the solution of the problem on normal impact by rigid symmetric wedge
having plane fore-part on flexible elastic filament is investigated. It’s accepted that
domain beyond breakpoints 4 and 4; covers the surface of bombarding body, and
velocity of the breakpoint 4 (and 4; ) is less that velocity of elastic wave in the filament
b=Vctgy <aq.

§1. Let the normal impact by symmetric wedge with plane fore-part with the
constant velocity ¥ be performed by infinite long flexible linear-elastic, rectilinear non-
strained filament. After impact in filament four elastic waves whose fronts are
N,,C,,C,N and two waves of strong break (break point) 4 and 4, arise (pic.1). Denote
the width BB, by 2L. The bechaviour of the filament in the domains NABCCO and
N4 BC1O are the same. The velocity of particles of filament in these domains are

directed along the filament respectively. In the domains OC and OC; the filament is at

. L L . . . . .
rest to the zero time 1=-— [OSIS——] relative to “wedge”. Since the impact is
a0 %o

performed with constant velocity, then in originating domains the filaments determining
the parameters are constant. [t’s assumed that the friction is absent in covering domain
between the filament and bombarding tody.

In fig.1 B, and B are stationary break points and the motion of filaments relative
to these points are taken as motion via fixed block {5]. The following designations are
accepted: ¢ is deformation, o is stress, & is velocity of particles of filament,
ag = Ep~) s velocity of elastic wave; E is Young's modulus, p is density, ¥ is an
angle between the initial position of filament and the check of wedge B4 (and By4;)
(pic.1), r is time, x is Lagrangian coordinate.
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The wave picture of motion of elastic filament after impact to the plane x,¢ is
shown in fig.2. We’Hl supply the unknown parameters of motion of the filament ¢;6;8
originating in domains 1,2,3,4,5,11,21,31,51.... (fig.1, fig.2) with corresponding indices.
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Note that the behaviour the filament in the domains OBAN and OB, 4 N, (fig.})
are same, i.e. the behaviour of the statement relative to the point O is symmetric and
we’ll consider the problem in right-hand side of the filament (OBAN).

The material of filament is assumed to be elastic

a=Ec¢. (1.1)
We write the condition at the breakpoint 4 in the following form [2]
b—8 bsecy*-8,

= z, 1.2

1+g l+g, (12
2(92—910051/—Vsiny)zcricos;/~crz~F; (1.3)
z{Ycosy —V, siny)=o,siny + Q. (1.4)

Here b=V ctgy; z is velocity of waves of strong break. All designations of [2] are also
kept here in the plane V,y (fig.3) the equation V' = agigy cormesponds to the line OO G
and upper of this line (V 2 aptg y) corresponds to supersonic regime, and lower of this
linear {V <ayigy) - to subsonic. In domain (fig.3) of left hand-side of the line CO0,
and upper of the linear CO, (y <2n Ha= tgy,,.) the next inequality {2] is valid

F <0, {1.5)
and right hand side of the line CO;0, and upper of the line O5C; condition [2] is valid.
F=m0; (7 >2p4) (1.6)

Here pu ts a coefficient of coulomb friction at breakpoint; F,Q are tangent and normal
to check of wedge component of the point force at the point 4 (fig.1). The lines 00,C,

correspond to the solution of the problem at impact on filament for which F =0 =0 and
to deformation continuous at the break point [1,2]
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§2. Let the inequality (1.5) be valid on wave of strong break (at the point 4) - in
the domain OO,0,0 (pic.3). The condition {1.5) implies the condition [2,3,4]
8; =0 2.0
at the breakpoint 4. .
At the point B (pic.1)} we have the kinematics condition in the form of .
83 =9, cosy . 2.2)

On the front C (pic.1) or on the front BK (pic.2) we have
83 — 94 =—agley - £3) (2.3)
since
8,=0; g4=0, (2.4)
then from (2.1)-(2.4) it follows that
£3=0;9;=0; {9, =0). (2.5)
On front of the elastic wave N{BKg) (pic.1, pic.2) we have
8 ~ 80y = apleor ~ 1) (2.6)

Here &p1,9; are deformation and velocity of particles in front of the elastic wave N (or
BKy). At gy =0; 9y =0 from (2.6) we obtain the relation
G =—apey - (2.7)
Allowing for the condition (1.7) form (1.2), (2.1), (2.7) we determine g},£5,2 in the form
of [2]
£, =&, =ba;' (secy —1); 8, = 0,8, = —ay, #0; 2.8)
z = ayVetgy|Vergy (1 - cosy )+ a, cosy | ; '
0'1 =0’2 = paésl .
Thus from the solutions (2.4)-(2.8) it follows that at the condition (1.5) after impact

[0$t<—£} the flexure part of the filament ABBy4 (pic.l) adheres to the surface of
aﬂ

bombarding wedge. In the domain BB (fig.1) the filament is in non-stress state (and in

rest ) and in domains 1 and 2 the paramet ' : 11133
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bombarding wedge. In the domain 8B, (fig.1) the filament is in non-stress state (and in
rest ) and in domains 1 and 2 the parameters are determined by the formulas (2.8).

Note that the conditions (2.1), (1.5) in the domain OG,O (pic.3) will be
observed only for some set of values of parameters of problem, the whose boundary is
determined by the condition (1.6). At the right hand of the line O,0; in the domain
E‘;OlOzCz the condition (1.6) is taken as ¢losing condition, in addition 9, #0. Now let
on wave of strong break (at the point A ) the condition (1.6) be satisfied, it is required to
determine the parameters of problems for the domains 1,2,3,4 for period 0<¢ < L In

4p
this case the creeping of the particles of filament happens beyond the breakpoint 4 by

the cheek of wedge. At the point B the continuing condition of deformation is taken, i.e.
the condition

El1=E3. (29)
Thus the unknown parameters of problem in domains 1,2,3,4 are determined from the
system (1.1)-(1.4), (1.6), (2.2)-(2.4), (2.7), (2.9) and have the form

g = Z bl[ﬁz(] —cosy)+£-ﬁ3sin}'cosy}‘91 =—dayE) ; (2.10)
dg—Z ag
£1=£2 =-5—‘35’5?’——b{ﬁ1(1 ~cosy )~ — B siny} 2.11)
Z + ag siny ag
3y =ageqsecy ; 93 ==apes; (2.12)
b=z ﬁ”ﬁ‘“’s“’z ] (2.13)
Picosy + By secy + — Bysiny
4
b=Vcrigy . (2.14)
here
a, + zsec
By =1+gy tgy.; By =02
Z+agsecy
-1
B, =tgy.—1gy;b =| B, + B, cos’y + iﬁ3 sinycosy | . (2.15)
a

o
From the formula (2.13) z is determined for given » =Vcigy , but here it’s convenient to

solve this equation relative to b for given z. The solution (2.10)-(2.15) is correct for

period OSI{L.
ap

. L . .
§3. At the time 1 =-— after impact the elastic waves C and C; met at the point
ap
0 (fig.1), then two reflections of the elastic waves KK,, KK, (pic.2) arise. It’s known

that two identical waves moving to meet each other in place of meeting their velocities
vanich. This cross-section of filament (the point 0) remains stationary with respect to

wedge and we consider it as closzd end of filament. In this place for L <t {;’ng the
qg a0
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stress (deformation) is doubled. Thus in domain 5 (pic.2) the parameters of the problem
have the form

85=0;05=20'3:Zpa333, 3.1)
where the deformation g3 is determined by the formula (2.11) (or by the formula {2.5)

depending onr regime of motion at the breakpoint A4). At the time z‘:g‘?— the reflected
a0
elastic waves KK, and XK, interact with stationary breaks B and B, . For tzzfi at
. ag
the left from the point B the reflected elastic wave is propagated with the front X»K5,
and from the right from the point B by BA the elastic wave is propagated with the front
K»K, (fig.2). In the domain OBAN (pic.]) in filament five domains (domains
5,31,21,2,1) (pic.2) arise. The solutions of the problem in domains 1,2,5 are known
from (2.10)(2.13), (3.1). The parameters of the problem in domains 31,21 are
determined from the relations on the fronts K> X3, K, K]
831 - 95 =—agles - £31); (3.2)
95192 = aples - &1 );
and from the conditions at the points B
\931 :‘—\\921005‘}’ 3 (33)
&3] =&7). ' (3.4).
If at the breakpoint the condition (1.5) holds then from (3.2), (3.3), (3.4) subject to (2.1),
(2.5), (3.1) the parameters 3,y,£,(,931,€3; are determined in the form of
ag cosy
Gqq = 9 91 =
= 1+ cosy 2> = 1+ cosy 2
931 =921 €08y ; £27 = €3
where ¢, is expressed by the formula (2.8).
If at the breakpoint the condition (1.6) is correct then from (3.2), (3.3), (3.4)

subject to {2.11), (2.12), (3.1) the parameters 3,y,£71,93,.£3; are determined in the form
of

(3.3)

\921 =E3 secytgz ‘g"; \93] 2\921 cO8Y ,

3 +cosy R

821 :831 = (36)

1+ cosy 2
where g; is expressed by the formula (2.11).

Note that depending on the velocity of impact V', the angle y, on the width
]BBII = 2L the different wave schemes of motion arise. One of them is considered below.
Since subsonic regime of motion (z < ag) is investigated i.e. the case when the velocity
of elastic wave @y more than the velocity of wave of strong break z , is investigated, then
after some time the front of clastic wave K,K| overtakes the front of wave of strong
break BK and at the point X5 interaction of fronts of these waves happens. Interaction
time of the fronts of waves XK and BK is determined from the relations

zt+L=apt-L. (3.7)
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and

(3.8)

And at the time ¢ =1y = 3L the front of elastic wave K, K is reflected from the point 0

ap
in the form of K3K 4 (pic.2). It follows to note that depending on the values 7,7, the

different wave schemes of motion arise in elastic filament at transverse impact on it by
wedge having plane front. In addition the following cases exist. In the first case if 1; <t;

then subject to (3.7), (3.8), the inequality # <t, is satisfied for i«:—%. Consequently
aq

from the inequality #; <5 (i«:%] it follows that only other contact of the fronts of
aq

waves KoKy and BKg at the point K5, the front of the elastic waves X, K3 is reflected
from the point 0 in the form of K3K4 (pic.2). From the left from the point Ky the
elastic wave KsK5 is rejected in covering domain of filament, to the right from the point
K5 by longitudinal part along the front of elastic wave BKj, the front of elastic wave
KsKy is propagated and beginning with the point X5 the wave of strong break by the
front K5Kg, the velocity of which is unknown, is propagated.

In the second case if ¢=1¢, then subject to (3.7), (3.8) the equality 1, =¢» is
satisfied for ai = % . Consequently, for this case the reflection from the point 0 of elastic

0

wave K,Ky and interaction of the waves K,K| and BK happen at the same time.
Further the same wave situation of motion mentioned in the first case happens. Finally,
the case t5 <1y is possible. Subject to (3.7), (3.8) the inequality #5 <7 is satisfied for

1 o . . :
~ <% <1.In addition at first the front of elastic wave K 2K is reflected from the point

ap
0 (pic.1) (from the point X3 (pic.2)) in the form of K3K,, and later the fronts of elastic
waves K, K; and BK interact at the point K.

Note that the solution of the problem for all above mentioned three cases subject
to repeated reflections and integration of waves, is not difficult, but allowing for their
awkwardness they don’t cited here. However in below considered case when t5 <¢; in

addition it’s accepted that the front of elastic wave K,K3 is reflected from the point X3
in the form of K3Kj4, but the reflected wave K;K3 doesn’t reach the point X (pic.2)
(to the point B (fig.1))m and the fronts of waves KK and BK aren’t met at the point
K5 get. Consequently, the problem is investigated for period 0 <# <t«, Here #+ varies in
period 3L <t« <ty . For ¢; <# the wave scheme of motion is mentioned in pic.2. The
ag
solutions of the problem in domains 1,2,21,31 are unknown, and the solution in new
domain 51 is determined from condition on front 51 - 31,
851 - 91y = aplesy —~¢51)- (3.9)
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51 = pages; - (3.10)

Here £54,93; are determined by the formulas (3.5) (for F < u«Q) and (3.6) (for
F = Q). Comparing the formulas for &5, £3],£57 we obtain the inequalities in the
form of

Eg <&y <€5] OF O3 <03]<045}- (311)
Let ux =tgye =0,2679; y» =157 =359, 245! = 0,023, then by formulas (2.10)<(2.15),
(3.1) the parameters €),£5,€3,99,%,b,&5 get the following values

g, =0,00211; &, =£; =0,00206;

a;'8, =0,00251; a;'9, = 0,00206 ;

ay'h =0,02094; £ = 0,00416 .

For the same data, but for za]' =0,33495 the parameters get the following values
relatively

£, =0,00287; ¢, = ¢, =0,03214;

a;'9, =0,3824; a;'9, =0,03214 ,

a;'b=0,3153; g5 = 0,06428 .
It the impact on elastic filament is performed by acute wedge (L = 0) then domains 3,4,5
{pic.2) disappear and the parameters in domains 1,2 for above mentioned data by solution
[2] get the next values )
g, =0,00416; &, = 0,00531;
9, =0;a;'b=0,01894
for agy'z =0,023;
g, =0,064; g, =0,06568 ;
3, =0; a;'b =0,29239

for aalz =0,33495.

From above mentioned calculations it follows that independent of geometry of
wedge at increase of velocity of impact, the deformation of filament in every domain
increases, but at impact by wedge having a plane front, the filament is deformed smaller
than at impact to it by acute wedge. Consequently for input data at impact by acute wedge
the break of filament may occur at the impact point for ¢t =0 and for those input data at
impact by obtused wedge, the break of filament nay occur after some moment
1=1, (tp > 0) (), is destruction time).
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BUCKLING AROUND THE TWO COLLINEAR MACRO-CRACKS IN THE
CLAMPED COMPOSITE PLATE-STRIP

Abstract

Buckling (delamination) around the two collinear cracks in the composite plate-
strip is investigated. For this purpose the approach based on the exact geometrically non-
linear eguations for anisiotropic body is used. It is assumed that the edges of the cracks
have an initial insignificant imperfection and by employing boundary-form perturbation
method the solution of the considered non-linear problem is reduced to the solution of the
series linearized problems. Numerical results are obtained by employing FEM
According to these results, it is established that as a result of the interaction between the
cracks the critical values of compressive force change insignificantly, but these values
increase monotonically with decreasing a distance between the cracks.

1. Introduction. One of the major mechanisms of failure of unidirectional
composites in compression along cracks is a stability loss of an equilibrium form around
the cracks [5,6]. In the related investigations, which have been carried out in the
framework of the Three-Dimensional Linearized Theory of Stability (TDLTS) of
deformable solid body mechanics it has been assumed that a considered material
occupies the infinite or semi-infinite region. The review of these investigations is given in
[6, 7} and others. it follows from [6, 7] that up to now corresponding‘investigations, ie.
investigations carried out in the framework of TDLTS, for elements of constructions
containing cracks are almost absent. It should be noted that in this field there are
investigations [3, 8] in which the stability loss of the strip containing a macrocrack is
studied. In [3] the stability loss of the simply supported strip containing a crack is
investigated and it is assumed that this strip is fabricated from the isotropic, homogeneous
linear elastic material. Moreover in [3] it is assumed that the crack is on the middie plane
of the strip and corresponding eigen-value problem is studied by employing the finite-
difference method. In this case the singularity order of the stresses and strains does not
taken into account. However in [8] the stability loss of a clamped strip fabricated from the
composite material and containing a macro-crack in a plane, which is paralle! to the
middle plane of the strip, is studied. In this study for solution of the corresponding
mathematical problems the FEM is employed and by use of a special technique the order
of the singularity the stresses and strains in the vicinity of the crack tips is taken into
account,

In the present paper the investigations carried out in [8] is developed and the
buckling around the two coliinear macro-cracks in the clamped composite plate-strip is
studied. The boundary- form perturbation technique and FEM are employed.

2. Formulation of the problem and the method of solution. Consider the strip
fabricated from the composite material that is modelled as orthotropic material with
normalized mechanical properties and contain two collinear cracks as shown in Fig.1a.
Assume that the crack edges have initial insignificant imperfection in the form shown
also in Fig.1a. We associate Lagrangian coordinate system Ox,x,x,;and suppose that the

principal elastic symmetry axes of the strip material are the Ox,,Ox, and Ox, axes
(Fig.1). Note that Ox; axis is perpendicular to the plane Ox;x, and has not been shown
in Fig.1. It is assumed that the plate-strip occupies the region — o < x3 < +o0.




