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KAZIMOVA R.A.

TORSION OF VISCO-ELASTIC PRISMATIC PIVOTS IN GEOMETRIC
AND PHYSICAL NON-LINEAR STATEMENT

Abstract

Geometrical non-linear torsion of physically non-linear visco-elastic prismatic
pivot is stated in a general form. As a special case, the problem on the torsion of circular
cross section of a solved is solved By successive approximations method.

Consider the torsion of a visco-elastic prismatic pivot by action of torque. We'll
accept the coordinates of iitial state. We choose origin of coordinates from one of the
end-walls of pivot. We direct the axis Ox; along the axis of pivot. We introduce the

following designations: R is length of pivot ( L is assumed as sufficiently large), S isa
lateral surface, S; is area of torsion.

Since we consider the problem in geometric and physical non-linear statement,
then we calculate the components of the deformation tensor e;; by the components of the

displacement vector u; by Green's formula
Ze, ; =u, , tu;, tuu. (1)

We accept the physical relations between the components of stress tensor and
deformation tensor in the form of [2): '

o, o) - -l ok, @

T
<=0 (3)

Here S, =0, ”0'5:3 is a deviator of the stress tensor o, 3, =¢, -ed, isa

deviator of the deformation tensor €,

6 =0y /3 is mean stress, G- is instantly-elastic shear modulus; K 1s modulus of
deformation tensor. The kernel R(r - r) characterizes rheological properties of material;

0 = ¢, =3¢ is relative variation of volume;

) 12
&, :[53,} . 3,.}.] is deformation intensity.

When m(au) =0 the equations (2) describe physical linear visco-elasticity
characteristics.
We write an equilibrium differentiai eq)uation and the boundary conditions [3]
l"y‘(‘sh Uy L- =F,

[o*,}- (5,“. +u, )]t'j =R,.

We solve the problem in displacements. To this end we put the components of the
stress (2) in equilibrium equations and boundary conditions and subject to relation
between the components of deformation and displacements (1).

As a result we obtain

Li{w)=Fy + Fi + Fyp, (4)
My(u}=Ry + Ry + Ry - (5)

Here the following designations are introduced.
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L, w)=G,V?u, + A+, (GGVZuk + @A, )+ Go(us‘k_,. U+
+U Uy Uy (“r,; tuy, ))+ a, (ua.‘suk,_u. + U, H, g ).,
Mk (u): GO (uk‘i- + HJ.J )}} + asu_‘.‘sij +

2
+Gy (“s,k My Uy, (“:‘,; T ))1;' +a (”r.s + ”m“f,f)!r ’

i t
F =2G, _[R(t - r)o,q-”, {tHr + 2Gou IR(I - 1)3,,}._}. (z Mz +
¢ o
]
+2Gyu, J'R(t - r):akj-_.j (t)dz,
0

F,, =-2G, ]R(t - rxm(eu )3,9. ),Jd'r +2G, (ﬂ}(gu )3;;}- ) o 26, (w(gu )ka ) Mg T
0

. , (6)
+2G,0le, )akj-uk, i~ 2Go¥, 4 j'R(l G )%dr —-2Gou, ; f Rz - r)(a,g-w(f:u )); dr
0 0
t !
Ry =2Gy IR(I - T)Sg)d'l' -1+ 20puy ; IR(I - r)skj{r)dr 1,
0 0
Ry = 2Gﬂm(£u )3”{,. +2G,le, }u,”-:ag,.{r - 2G, _[R(t - 'r)m(_su )uy (z)dr - I -
0
f .
=2Gu, IR(! - r)w(su )ay- (r)dr . J:‘Jr ,
a
Vi, = Uty A=y +vy,;, a=K +%Gos
4 , 2
a, zK+-3~GO, a, =K *EGO.
We associate to them two integral conditions on end-walls of pivot
[o33dxde, =0, (7N
St
f(xlf’w = X903 Mxydxy = M . (8)

5
The obtained equilibrium equation (4), the boundary conditions (5) and the
integral conditions (7),(8) completely describe a torsion problem of prismatic visco-
elastic pivot of arbitrary section in geometrical and physical non-linear statement and are
_essential non-linear relative to the unknown displacements #;. They differ from
corresponding equations of geometrical and physical non-linear torsion problem of elastic
pivot by that in them the fictitious forces F,R,; are added to the given external forces

FﬁzaFva;fks Ryop, -
If we follow the Sent-Venant's semi-inverse method, we represent the
displacement components analogously to {4] in the form of
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u,(x],xz,x3)=-a(t)x2x3 +a2(t{“%x1x3 + V;(xnx;,l‘):i,

U, (xl,xz,x3)=a(t).x]x3 - az(t{“ é‘xzx; +V, (xl ) J)] >

u3 (31, %2,%3)= ol xg )+ @ (1 Jele)rs %
where aft) is a torsion angle, @(x;,x0), Vi{x1,%0,} Va(xp,x0.)clt)are desired
functions.

If we substitute (9) in (4), (5}, (7), (8) we are convinced that the problem fall into
two problems. One of them is a classical torsion problem of elastic prismatic bodies
which is described by the following system of equations

Ap =0,

[(“ X3+, y1 + (xl +@, )]‘ =0. (10)

The second problem corresponds to secondary effect by torsion of visco-elastic
pivot arising due to geometrical and physical non-linearity and consists of the followings:
The equilibrium equations are

GV, +aA, = F + E +F

wl ?

(11}
GV, +ah,,=F, + F,+ F,,
and the boundary conditions on lateral surface are
I.(anl,l + ﬂsVz,z)' J “”Go(V],z + Vz.z)' !2]5 =
:[(Rn+R;1+Rvm1)11+(sz+R:2+Rvm)(zL’ (12)

[(azvz.z +'93V|,1)'12 "“Go(Vl,z + Vz,l)'ll]g =
:[(Rvs + R, +Rwu3)lz +(Rv4 +R, “‘Rvm)Ii]s ’

where Fi,F, . Ry, R,y are determined from (6) allowing for the permutation (9).
The obtained system (7), (8), (10), (11), (12) is a general statement of the torsion

problem of visco-¢lastic pivot of arbitrary cross-section subject to geometrical physical
non-linearity from which we can obtain a statement for the following cases:

1. Rlt-)=0, wlg, }=0 is geometrical non-linear torsion of elastic pivot.
2. R(t-1)=0, ofg, )=0 is geometrical and physical non-linear torsion of elastic pivot.
3. R(t-~7)=0, wle,)=0is geometrical non-linear torsion of physical linear visco-
elastic pivot.
4. R(- t)=0, co(s“);e 0 is geometrical non-linear torsion of physical non-linear
visco-glastic pivot. %
As a partial case we consider the torsion of visco-elastic pivot
with circular cross-section of the radius R . The classical solution of
this problem is given by the first sum of (9), in addition
qo(xl,xg) = (. Consider the case when R{t—t)#0, wle,)#0. In
addition the formulas (11), (12), (7), (8) relatively get the form.
The equilibrium equation is

GOVZVI +ad, = F) o+ Fy+ Py, a3)

GoVFy +ah,, = Fy + Fy + Fopy
the boundary on lateral surface are

Xz

Fig. 1.
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l(anu + asyz,z)' X+ Go(VLz t V2,1)' le; =
= [(val + Ry + Rvmil)xl + (Rvn + Ry + Rmzz)xz]ss

14
[(anz‘z + ﬂaVu)' Xt Go(Vl,z + Vz,l)' le = (1)
= [(RvSS + R+ Rw.u33)x2 + (szz + R+ Ryn )xxls
and the integral conditions on end-walls are

(e + aslry + a0 Mudey =1y + 2 + Ly, (15)

5 _
o) [flle? + 2, +a® (WL, + L) + L, )= M, (16)

5

where by F; and R,; the known forces F;,R, are denoted for simplicity and
Fi Foiis Ryis Ry i are calculated from (6), and L;,L;,L,,; from integral conditions for
qo(xl,x2)= 0. We solve the problem by the successive approximations method. For zero
approximation we take R(o)(t ~7)=0, o(® (g, =0) and we have geometrical non-linear

torsion of elastic pivot with circular cross-section. This problem is solved by the author
[5] and it has the form

V1(0)(x1 %)= bl(O)szl + 3b§°]x, x; + ba(a]xls »
VO, x, )= BOR %, + 3600, x2 + Bx3
where 5) are determined by the modulus K, G and the radius R [S]
b = 5O(k,Gy. R).
From the integral conditions the constant C is determined [5]:
c®=cl. 6,R).
From the second integral conditions the connection between the torque M and
the angle of torsion oc(o) [5]

M= -;-ﬂ: GRYa [1 +{R)y (0)]
is found, where y ©) - ¥y (0) (bi-(o) ,C ) )
Substituting P}(O) in (9) for zero approximation we determine ul(o). For the
problem of the first approximation we accept R(G)(t ~1)#0, o (e,)}=0. By the found

u,@) we calculate P}}(O), R,(,g),LSO),L,‘-(O) which enter the relations (13)-(16). Substituting

them in the equilibrium equation (13), the boundary conditions (14) and the integral
condition {15), (16) we have a geometrical non-linear problem, but in the existence of the

fictitious forces F,.'i(o), (2.), L;(O) the obtained problem is solved analogously to zero
approximation. If we determine Viﬁ)(t), C(l)(t) we find ut(l)(xl,xz,x3,t).

For the second approximation we have R(l}(t —1)=0, com(su):t(] , from the
found u?) we determine Fi}(l),Fagﬂ, (l.t) ,R‘% i L?) ,L;(l),Lgn) and we substitute them in

(13)-(16). And at the second approximation we have a problem analogously to zero
approximation for the known and additional fictitious forces. The problem is solved
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analogously to geometrical non-linear elastic torsion problem. Beginning with the first

approximation the components of the displacement vector are functions of coordinate and
time.

For arbitrary & -th approximation we have the problem:
The equilibrium equation is

GV 1 ap, = F¥U 4 FED 4 Y,

GV + aA,, = FED ¢ ) 4 &)
the boundary conditions are
l(.a2 V](f‘) + a3V2(_k2))- X + G0 V(k) + V2 le; =

[( TR L R&:ﬁll))x ( '+ &{k 4 Ry )"2 19 ,
[(anz'(g} +a3V1[I }) x, +G Vl '+ V2 XIL =

[( e +R:»33 "'Rmals} ( 2;1 "‘szz +Rw22}"1L-
The integral condltlons on end-walls are
k-1 k-1 k-1
i azc( )+a3( ), Vz(f‘z))}dx]dxz :L& ) +L1'( )4 LEOI ),

S

15)5*'(!)_[_[(}:,2 +x2 )cthlabc2 + (c:t“’)(t))3 (Lg'"") + 1L g"‘]]+ g‘;’))=M .
Thus for deteomination of & -th approximation we have a problem on geometricai
non-linear torsion of elastic pivot with additional fictitious forces determined by the
previous (k —1)-th approximation. The problem of every next approximation is solved

analogously to zero approximation, V,(k)(xl,xz,t),C(k)(r),a(k} (t) are found. Then the

displacements ui(k ) with the help of these quantities following [5] are determined in the
form of

u,("}(xl,xz,x3,r)= -a[k)(r)x2x3 + (a(k)(t))! I:—%xlsz + Vlm(xl,xz,t)} s
3 1

“g J(xi,xz,x3, ) ](t)x}x3 ( (H(f));li_‘ixﬁsz +V1(”(x,,x2,t):l,

ug”(x],xz,x3,t)=(a{k)(t))zc(l)x3.

Thus the considered successive approximation method allows to construct the
solution of torsion problem of visco-elastic circular pivot in geometrical and physical
non-linear statement.
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MUTALLIMOY Sh.M.
ON NORMAL IMPACT ON FLEXIBLE ELASTIC FILAMENT
Abstract

In the paper the construc.ion of solving of the problem on normal impact with
constant velocity by obtuse rigid wedge on elastic filament is given. It is assumed that the
velacity of the breakpoint is less than the velocity of elastic wave in filament.

In works [1-4] the behaviour of flexible filament at transverse impact by rigid
wedge 1s investigated when the flexure part of filament covers to check of wedge. In the
present paper the solution of the problem on normal impact by rigid symmetric wedge
having plane fore-part on flexible elastic filament is investigated. It’s accepted that
domain beyond breakpoints 4 and 4; covers the surface of bombarding body, and
velocity of the breakpoint 4 (and 4; ) is less that velocity of elastic wave in the filament
b=Vctgy <aq.

§1. Let the normal impact by symmetric wedge with plane fore-part with the
constant velocity ¥ be performed by infinite long flexible linear-elastic, rectilinear non-
strained filament. After impact in filament four elastic waves whose fronts are
N,,C,,C,N and two waves of strong break (break point) 4 and 4, arise (pic.1). Denote
the width BB, by 2L. The bechaviour of the filament in the domains NABCCO and
N4 BC1O are the same. The velocity of particles of filament in these domains are

directed along the filament respectively. In the domains OC and OC; the filament is at

. L L . . . . .
rest to the zero time 1=-— [OSIS——] relative to “wedge”. Since the impact is
a0 %o

performed with constant velocity, then in originating domains the filaments determining
the parameters are constant. [t’s assumed that the friction is absent in covering domain
between the filament and bombarding tody.

In fig.1 B, and B are stationary break points and the motion of filaments relative
to these points are taken as motion via fixed block {5]. The following designations are
accepted: ¢ is deformation, o is stress, & is velocity of particles of filament,
ag = Ep~) s velocity of elastic wave; E is Young's modulus, p is density, ¥ is an
angle between the initial position of filament and the check of wedge B4 (and By4;)
(pic.1), r is time, x is Lagrangian coordinate.




