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SULEYMANOY S.E., MAMEDOVA Sh.D.

LIMITING ABSORPTION PRINCIPLE FOR THE
HELMHOLTZ EQUATION IN A MANY-DIMENSIONAL LAYER
WITH A GENERAL BOUNDARY CONDITION

Abstract

In the paper the Green function of the boundary value problem is constructed and
for this problem the limiting absorption principle is proved.

Introduction. Wave propagation in a homogeneous layer bounded from two
sides by plane-parallel boundaries leads to different boundary value problems in a layer
for the Helmholtz equation. The limiting absorption principle for the Helmholtz equation
in 2 two-dimensional layer with the Dirichlet or Neumann boundary conditions is
considered in L.M. Brekhovskikh's book [1], in a three-dimensional layer the limiting
amplitude and partial conditions of radiation for this problem are considered in
A.G.Sveshnikov's article [2]. In this paper A.G. Sveshnikov introduced also new
conditions which ensure the uniqueness of solutions of a boundary value problem for the
Helmholtz equation in a three-dimensional layer. Now these conditions are called A.G.
Sveshnikov's partial conditions. The radiation principle in a many dimensional layer for
the Helmholtz equation with Dirichlet and Neumann boundary conditions were studied in
[3]. The radiation principles in a three-dimensional cylindrical domain are studied in [4],
and in a many-dimensional cylindrical domain - in [5,6]. The radiation principles for the
higher order elliptic equations with constant coefficients in a many-dimensional cylinder
are studied in [7,8}). In [3,5-8] for the first time the resonance phenomenon was studied
and the rate of increase of solutions of non-stationary problem is mentioned when 1 — 0.
In [9] the radiation principles for the Holmholtz equation are studied in a many-
dimensional layer with impedance boundary conditions.

In the present paper the Green function for the Helmholtz equation is constructed
in a many-dimensional layer with a general boundary condition and the limiting
absorption principle is studied. The results by limiting amplitude principle for this
problem will be published later,

§ 1. Construction of the Green function.
Let

II= {x : (xrvxn+1)9 x; - (xl,XZ,...,Xn),— 0 < xj < +CD,j = 192’---”1;"_ h < Xr+l < +h}

be a layer in the n+1 dimensional Euclidean space R,,,. Consider the following
boundary value problem in 7

(A+k2Ju(k,x)=f(x), (1.1
8
[GxHH * p(k)}u(k’ xjxrm:ih =0, (1.2)

where A is a Laplacian operator, f (x) is a finite infinitely differentiable function with

supportin 7, k is a complex parameter with Imk >0, plk)=ak + b, a and b are real
numbers.

Definition 1. Under the solution of the problem (1.1)-(1.2) we'll understand the
decreasing on infinity function u(fc, x) satisfving the equation (1.1) and the boundary
conditions (1.2} in sense of generalized functions ([10], p.40-187).
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Along with the problem (1.1)-(1.2) we can consider also the problem
(A+kZ)G(k,x,y)=5(x'~y’,xnﬂ,ym)s (1.3)

[a o . p(k))G(k,x, y)‘,fw1 cen =0, (1.4)
Xp+1

where §(x)} is a Dirac function.

Definition 2. Zer Imk® >0. The decreasing in infinity solution of the problem
(1.3)-(1.4) we'll call a Green function of the problem (1.3)-(1.4).

Now we pass to the construction of the Green function of the problem (1.1)-(1.2).
The following theorem is correct.

Theorem 1. When plk)= :1:."-71;1i (v =1,2,3,...) the Green function of the problem
(1.1)-(1.2} in the many-dimensional band I is an analytical function of k excluding
denumerable number of the points k=:1:1'p(k), k=i—z—;(v =1,2,3,...} being branching

points and for it the following representation holds.

; " n : 2
G(k: X, y): _é(zﬂ)vilx’ - y,'l 2 {go (ks Xpi )gﬂ(k> Yan )K{]2 H—g—]l (kor) +
2

o) 2-1
PYACENRUSN ng](rk‘,)},

v=| 3

22
ko =y pt(K)+ k2, k,,=i\/k2—”4; :

= p(k) 12 - (x)xm-l
gO(kaan)""imjl e ?

where

E‘:—COS(}! ~Xpi )% + p(k)Slﬂ(h ~ X )EY

gv(k?xni—l): 2 1 2 3 1/2 2h ’ V=1,2,3,.... (1'5)
15 2y, 2V
Zh(p ( )+ an’ ]

For r >0,p(k)¢izv—h Jor any n and k ;t% Jor n=12, the series in (1.5) uniformly

convergence to k in every compact.
Proof. Assuming Glk,x, y) as a generalized function we accomplish in (1.1)-
{1.2) the Fourier transformation by x'. Then we obtain

d* A o
{ T+ k2 = P 60k, . %1, i) = 80 Y€ (16)

n+l1
with the boundary condition

d "
{ i+ D)6l o3t Pt =2 =0 (1.7
n+l
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where &' =(£,&5,...&,) is a dual to x' variable relative to Fourier transformation,

/2 -
p= [5[2 (’élz +§% ++ 5,3)] R G(k,p,x,,ﬂ,ynH) is a Fourier transformation of
Gl(k,x,y) by x'— 3’ . The decreasing when p — ® solution of the equation (1.6) will be

exty ~onst = sneilp? £ 416y
2yp? - k2 |

We'll search the solution of the problem (1.6)-(1.7) in the form of

G(ks psxn+l:.Vn+l)=E(ks p’xn+1syn+l)+ V(ks p’xn+layn+l)’
where V(k, 9, %41, Vn+1) is a solution of the problem

E(ka Prxns1:Y n+l):

dz
[dxz +k2—pz}V(k,p,xn+l,yn+l)=0 (1.8)

e+l
with the boundary condition

d
[dxn+| +p(k)JV(k9pixn.—]?yn+]x -

Fptl=th

(1.9)
2
Solving the problem (1.8)-(1.9) that is adjoint by complicated calculations we obtain

e:‘(é',y' {&2(k)+ p2 - kz):h(xn+1 + yn+1}\/;2—__k_2 _

Glk, 9, X1 Y1) =
( PsXnil yn+l) 2\/,02 _kz 1 sz(k)_pz +k2)9h2h\[p2 _kz

’ 2 2
2p(k)vp2 _kzsh(xnﬂ + Yo+l 92 - k2 3 Ch(Zh—’an ﬂy”"'ll pT -k ]
(p2(6) p? + 2 2] p? — &2 sh2hy p? ~ k2

Thus we obtain that the function é(k_, PsXpils y,H_]) is an even analytical function by p
with simple poles at the points

2.2
prz=tk, p3s=+ypHk)+k? and 95=ti1/”4:2 kY v=123,... (11D

Now we calculate the inverse Fourier fransformation of the function G(k, PrXnil>Ynsl)

by p . Then for the Green function G{k,x,) of the problem (1.1)-(1.2) we obtain
i i) o

Gk x, )= (Gl ot et Y e (1.12)

(@2r)" g,

Since the integrand in (1.12) is spherically symmetric, i.c. depends only on p, then

passing to spherical coordinates we obtain

= “l.,[__,&(,‘,kl_ T lJe(—ffiym)\l'pz-kz +{g',y) )

(1.10)

Glk,x,y)=

T % ¢ A -
j Ie :prcosﬂdm G(k’P’an’ynH)Pn ldp,
@) 5,
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where @ is an angle between the directions x'~ vy and &', » =,x' - y'l,cu is a point of
unit sphere, 2, is a sphere of the radius p with center in the origin of coordinate,
Allowing for
e = a5 pr) 5, (o7),
Q P 2
([11}, p.377), where J, (z) is Bessel's function of the order v , we obtain

{3+ % z
Glxy)=m) " - y72 Gl pox yanIp?, (priir. (L13)
o 2

For calculation of the integral in (1.13) we behave in the following way.
"

Let » be an odd number. Then z2./, 1(z) is an even function. The even function

2
by p is also the function é(k,p,an, ¥n+1)- Therefore if we continue the integrand in
{1.13) by p even way for negative p we obtain

IS L N at
G(k’xﬂy)z;;(zn) lx ‘"yl] 2 J-G(ks paxn+l!yn+l)pz'f'n__'(pr}ir‘

2
Expressing the Bessel function by Hankel function ({12], p.175)

7, (z)=—;~(H$‘)(z)+H$2)(z)) | (1.14)

we obtain

Glk.x, y)-—(Zfr) ey 2{ [ Gl p.x, .30 )p 2 H,) (prYip +

: (1.15)

v T6(pornyalo EH“(pryp}
g 2
We denote

1k, %, y)= J6tepxyi o ff‘f)(p r¥p,

12k, x,y)= I Gk, p.x n+l=yn+1)P2H (pr)ﬁ'p

Then '
149, 5)= fim 139k, ).

Denote by C},Cy the semicircles cotresponding to upper and lower half-planes with

centers in the origin of coordinates and the radiuses N . We put (1.10) in (1.14) and
calculate the obtained integral by the method of residues

196k, x,y)= Z?ﬂi Res  Glk, p,%ups Vot )P EH(’ (pr)-

y=] P= plpzﬂ 2
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- IG(k p,x mpyml)sz“ (prdp, (1.16)

3

where v(¥N) is a number of the poles G(k,p,x,1,¥ns) being in CLU{- N,N). By
virtue of asymptotics of Hankel's functions for large values of modulus of the argument

HE}’”(z): ;c% exp':i :'(z - 529« - %H[l + 0(%]} (1.17)

([12], p.169) and decrease of the integrand in (1.6) we obtain that the integral by C3,
tends to zero when N — +oo . Then from (1.16) we obtain

Axpp 4 yp JolK) Za
19k, %, y)= 2;::'{— plafe [\! P k) + & )2 x

25h2hp(k)

pz(k)—n—zﬁw
xH(')[r pz(k)+k2]+ 1) ~ €08 (21’1—[}:,,+l ymllff—)+ 45’22 x
: = 2k )+ Y
4%
2plk )
XCOS(XHH +yn+])— “"——"“—'—Sln(xn+l+yn+l) X
2h2
N 3 { N
x| (k=2 HY | k- L (1.18)
an ™ ah

We can show that the expression in big parenthesis in (1.18) which we denote by B, is
representable in the form of

B, =(- 1)“*‘2[2hcos(h s

2 pesinlh- . 2 |

2h

x [% cos(h - X, )% + plk)sin(h — x,,, )%}

By substituting this expression of B, in (1.18) we obtain

: —P(k)(-"ml‘* »+1) fl—---]
I[])(k,x,Jf)=~2?rf{P (E)e ” [\/p‘* (k)+ kzjz x

2sh2hplk)

1| nv v ) v
H(' (n/p (k)+ k2 ) + Z-ﬂ[%cos(h - yn+1)~2—h~ + p(k)sm(h - yml)%j' X

n
3 ve]

] n
2 o) 2+ pRinth 5,22 |

(p (*)+ 4h:)

®
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2,
2.2 42 2.2
x sz—f'f-lz- HO| pfi2 22 AL (1.19)
4h 2 4n

Now consider I'Y)(k,x,y}. As above we obtain that
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v N) - n
1%, y)=~2mi t ResGlk, 0, %15 Yo J0 T HY (pr) -
=i 2

- IG(}C P.X, n+l’yn+l)p2H()(pr)dpa
2

Cx

©(1.20)

where v{N) is a number of the poles é(k, P2 XpelsVney) being in CRU(N,-N). By
virtue of the asymptotics (1.17) of Hankel's functions and decrease of the integrand

G’(k, PrXns1sVnel) in (1.20) when p — +o0 we obtain that the integral by Cy tends to
zero when N — . Therefore from (1.20) we obtain

- S

y Hm(_ Wr] pk)shlx,, + v, )plk)( \/7(7)7,{5]

2 2sh2hplk)

T &7 Y
[pz (k) + _'Ah—z-)("h(xnﬂ + Vin )‘ —2}?_

+
2 .2
41 pr(k)+ =X
h{P()+4hz}

7O )+

2

- k ny
+( 1) ol I 2 P( )S ( L "’Jn*l)’ 2h ( )v+1 h( X, a +yn+ll} }
2 Ah
oM ) FY
[p (k) + x )
2.2 %_1 22
x[ kz_fvaJ Hff)[-r K -LY J : (1.21)
4h 5! 4k
Allowing for
H ff)] (-2)=(-1"H f,'"(z) (1.22)
o n

7
({12], p.218) from (1.15), (1.18), (1.21) and (1.22) for Green's function of the problem
(1.1)«(1.2) for odd n we obtain

f L r__’l k =X 1+ Yot JplE) . L
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<HO PO )+ 5] Z o 3y Yo+ plRJinh - 3,022 |

2]
2

lr«—r.:os(h x,,+1) +P(k)5m(h xm):rv
«| 2h 3 X (1.23)

p (k)+

AR?

_ .
x| k2 _iriz_ ’ HOL 5 g2 _Ejﬁ .‘
U 4kt 2 4

Now let »# be an odd number. Using the formula (1.14) from (1.13) we obtain

Gle19)=00) 15 o0 o ) (o

’ (1.24)

1% 3
+ JG kP %y 07 HD (p r)dp} -
]

-
&

In this case the Hankel function Hg’z)(z) at the point z=0 has a branching point.

2 .
Therefore making the cross-cut (— oo,O) and using the formula (1.22) in the form of

) @)= )
2 2
from (1.24) we obtain i i
)Q) i

Glk,x.y — 177 [ Gk o1 Y )P 2 HY (07 )dp .
—an -

2
Thus we obtain the formula of the form of (1.15). Now if we'll have in exactly the same

way as in calculation of the integral 7 ('](k,x, y) we obtain in this case the formula (1.23).
Consequently, for any natural » the expansion of the Green function G(k,x, y) of

the problem (1.1)-(1.2) in the series (1.5) is obtained.
The series in (1.5) uniformly converges to & in every compact. Really, for large v

and |ki < A where A4 is some constant, the following inequality takes place.

0<arg1’1—[2th <X, (1.25)
v 4

For » >0 from (1.25) and from the asymptotic estimation (1.17} it follows that

N
2,2 —rv
Hg’z)[r’ _Z v2 )ﬁCe 2

LY 4
: h

Consequently, for p(k):t i% the series in (1.5) uniformly converges to & . Theorem 1 is

proved.
TR

Il Lindtr
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§ 2. Limiting absorption principle.
Consider the boundary value problem (1.1)-(1.2) with a real parameter & in 7.
In thig case the solution of the problem isn't unique. By limiting absorption principle for
selection unique solution of the problem (1.1)-(1.2) the parameter £ in the problem (1.1)-
(1.2) is replaced by k +ig =k, then select unique bounded solution of the problem (1.1)-

(1.2) we pass the limit when £ — 0. The obtained function is a solution of the problem
{(1.1)-(1.2). The solution of the problem (1.1)-(1.2) with a complex parameter is given by

the formula
ulke,x)= [ [Glex, ) Oy, (2.1)

where the comvolution (2.1) is accomplished on the layer 7 and Glk,,x,y)} is
determined by the formula (1.5) in which we must substitute & by &, . From theorem 1 it
follows that the series in (1.5} with the parameter %, uniformly converges in &.

Therefore we can pass to the limit when ¢ - 0 in (2.1). The obtained limiting function
satisfies the problem (1.1)-(1.2) with the real parameter & . Thus the following theorem
takes place.

Theorem 2. For the solution of the problem (1.1)-(1.2} for n>3 for any real k
andforn=12 k=# % the limiting absorption principle holds.

Author thanks to prof. B.A. Iskenderov for the statement of the problem and
helpful comments.

References

{1]. Brekhovskikh L.M. Waves in laminar mediums. Moscow, "Nauka”, 1973, 341p. (in Russian)

[2). Swveshnikov A.G. Radiation principie. DAN S8SR, 1950, v.73, Ne5, p.917-920. (in Russian)

[3]. Iskenderov B.A., Akimov A.B. Limiting absorption and limiting amplitude principles and
partial conditions of radiation for a bounded value problem in n dimensional layer for
Helmholtz equation. Differential equations, 1977, v.13, Ne8, p.1503-1505. (in Russian)

[4]. Sveshnikov A.G. Limiting absorption principle for wave guide. DAN S8SR, 1951, v.80,
Ne3, p. 345-347. (in Russian)

[5]. Iskenderov B.A., Abbasov Z.G., Eyvazov E.Kh. Radiation principles for the Helmholtz
equation in a cylindrical domain., DAN Azerb. SSR, 1980, v.36, Ned, p.8-11. (in Russian)

[6]. Iskenderov B.A. Principles of radiation for elliptic equation in the cylindrical domain,
Colloquia Math. Soc. Janos Bolyai. Szeged, Hungary, 1988, p.249-261.

{71. Iskenderov B.A., Eyvazov E.Kh., Efendiyeva AN. Radiation principle for the higher order
elliptic equations in a cylindrical domain. Differential equations., 1987, v.23, Nel0, p.1804-
1807. (in Russian)

[8]. Iskenderov B.A.. Radiation principles for the higher order elliptic equations in a cylindrical
domain. Journal of computational mathematics and mathematical physics, 1996,v.36, Nel, p.
73-91. (in Russian)

[9]. Iskenderov B.A., Mekhtiveva A.l. Radiation principle for the Helmholiz equation in a many-
dimensional layer with impedance boundary conditions. Differential equations, 1993, v.29,
Neg, p.1462-1404. (in Russian}

[10]. Gelphand L.M., Shilov G.E. Generalized functions. Issue 3, Some questions of the theory of
differential equations, Moscow, Fizmatgiz., 1958, 274p. (in Russian)

[11}. Shilov G.E. Mathematical analysis. (Special course), Moscow, Fizmatgiz., 1965, 327p. (in
Russian)

[12]. Nikiforov AF., Uvarov V.B. Basis of theory of special functions. Moscow., Fizmatgiz.,
1974, 303p. (in Russian)




Transactions of NAS Azerbaijan 137
[Limiting absorption principle]

Seymur E. Suleymanov

Institute of Mathematics & Mechanics of NAS Azerbaijan.
9, F.Agayev str., 370141, Baku, Azerbaijan.

Tel.: 39-47-20.

Shahrizad D. Mamedova
Azerbaijan State Oil Academy.
20, Azadlyg av., 370601, Baku, Azerbsijan.

Received January 5, 2001; Revised June 29, 2001.
Translated by Mitzoyeva K.S.




138 Azorbaycan MEA-nin xabatlor

VAHABOV N.G.

LOCALIZATION OF SPECTRUM AND ITS APPLICATIONS, 111
NUMERICAL RANGE AND SPECTRUM OF OPERATOR-FUNCTIONS

Abstract

In the paper the classes of operator-functions are selected in a Banach space for
which the analogs of theorems on behavior of numerical ranges different geometrical
operations are proved. These geometrical properties of numerical ranges of operator-
Junctions are applied to obtain the localization relations for spectrum of operator-
Sunctions by its numerical ranges.

Introduction. One of the problems of spectral theory is obtaining for operator
functions analogies of classical theorems on localization of spectrum of operator by its
numerical ranges. As was noted by Hadeler K. [4] it is impossible for arbitrary operator
functions and he proved the analogy of Wintner-Stone’s theorem on localization of
spectrum of linear multiparametric operator in a real Hilbert space. The sufficient
condition of localizability of spectrum of o.f. given by Hadeler suggests the selection of
one-(multi) parameter operators in Banach space on which a series of facts of the
classical theory of numerical ranges can be carried over. On the other hand technique of
work A.Brown’s and R.Duglas’ [5] allows to adapt and use the scheme of Hadeler's
proof for holomorphic ¢.f. in a complex Banach space.

The basic aim of the present paper is to obtain for o.f. analogies of the theorems
on behavior of numerical ranges at different geometric operators and apply them to the
guestions on localization of spectrum of operator functions. The notice of these results is
given in [14b].

Attraction of geometric properties of numerical ranges of o.f. and Banach spaces
brings to light the main role of Teoplitz’s theorem on localization of point spectrum and
Wintner-Lumer’s theorem on localization of approximative poimts spectrum in the
questions on localizability of spectrum (and its parts) by numerical ranges. 1t turmed out
that all the localization theorems can be derived from these two theorems and if we use
the adaptation of Berberian’s construction for the spaces with semiinner product-just from
Teoplitz's theorem.

We’ll describe contents of the paper which is a continuation of the first two parts
[14c]. In §5 the three types of domains of regularity of o.f. in Banach space are
introduced and influence of geometric properties of the space and numerical ranges on its
hierarchy is considered. The three natural classes of holomorphic o.f. in Banach space for
which the analogs of geometric and spectral properties of numerical ranges of operators
are selected.

In §6 the one-parameter analogs of geomeiric properties of numerical ranges of
operators: G. Lumer’s (K.Mc. Gregor) theorem on closed convex hull of Lumerian
{Bauerian) numerical range; B. Bollobas’s theorem on behavior of Bauerian numerical
range relative to conjugation and S.Berberian’s and G.Orland’s theorem on extension (by
Berberian) of Hausdorff numerical range are proved. Then using these geometric
properties of numerical congruences and also the localization correlation for the
compression spectrum [l4c, §1, proposition 1} the one-parameter analog of theorems:
Winter-Lumer’s theorem on localization of approximative point spectrum by Lumerian
numerical range; Lumer’s theorem on localization of spectrum by algebraic numerical
range; William’s theorem on localization of spectrum by Bauerian numerical range and




