SALIMOV A.A., MAĞDEN A.

HORIZONTAL LIFTS OF TENSOR FIELDS OF TYPE (1,1)

Abstract

The purpose of this paper is to study the behaviour along cross-sections of horizontal lifts of tensor fields of type (1,1) from manifold to its tensor bundle.

1. Introduction.

Let M_n be a differentiable manifold of class C^{∞} and finite dimension n, and let $T_q^p(M_n)$, p+q>0 be the bundle over M_n of tensor of type (p,q): $T_q^p(M_n)=\bigcup_{P\in M_n}T_q^p(P)$, where $T_q^p(P)$ denotes the vector (tensor) spaces of tensor of type (p,q) at $P\in M_n$. The purpose of this paper is to study the behaviour along cross-sections of the horizontal lifts of tensor fields of type (1,1) from a manifold M_n to its tensor bundle $T_q^p(M_n)$.

We list below notations used in this paper.

- 1. $\pi: T_a^p(M_n) \mapsto M_n$ is the projection $T_a^p(M_n)$ onto M_n .
- 2. The indices i, j, k,... run from 1 to n, the indices $\bar{i}, \bar{j}, \bar{k},...$ from n+1 to $n+n^{p+q}$ and the indices $I=(i,\bar{i}),\ J=(j,\bar{j}),\ K=(k,\bar{k}),...$ from 1 to $n+n^{p+q}$.
- 3. $\mathcal{F}(M)$ is the ring of real-valued C^{∞} functions on M_n . $\mathcal{T}_q^p(M_n)$ is the vector (tensor) space of C^{∞} tensor field of type (p,q) over the real number R (of infinite dimensions). We may also regard $\mathcal{T}_q^p(M_n)$ as a module over $\mathcal{F}(M)$.
- 4. Vector fields in M_n are denoted by V, W, \dots Tensor field of type (1,1) is denoted by φ .

2. Horizontal lifts of vector fields on a cross-section.

Denoting by x^j the local coordinates of $P = \pi(\widetilde{P})(\widetilde{P} \in T_q^p(M_n))$ in a neighborhood $U \subset M_n$ and if we make $(x^j, t_{j_1 \dots j_q}^{i_1 \dots i_p}) = (x^j, x^{\overline{j}})$ correspond to the point $\widetilde{P} \in \pi^{-1}(U)$, we can introduce a system of local coordinates $(x^j, x^{\overline{j}})$ in a neighborhood $\pi^{-1}(U) \subset T_q^p(M_n)$, where $t_{j_1 \dots j_q}^{i_1 \dots i_p} \stackrel{def}{=} x^{\overline{j}}$ are components of $t \in T_q^p(P)$ with respect to the natural frame ∂_i .

If $\alpha \in \mathcal{T}_p^q(M_n)$, it is regarded, in a natural way (by contraction), as a function in $T_q^p(M_n)$, which we denote by $i\alpha$. If α has the local expression $\alpha = \alpha_{i_1...i_p}^{j_1...j_q} \partial_{j_1} \otimes ... \otimes \partial_{j_q} \otimes dx^{j_1} \otimes ... \otimes dx^{i_p}$ in a coordinate neighborhood $U(x^i) \subset M_n$, then $i\alpha$ has the local expression

$$i\alpha = \alpha(t) = \alpha_{i_1...i_p}^{j_1...j_q} t_{j_1...j_q}^{i_1...i_p}$$

with respect to the coordinates $(x^i, x^{\bar{i}})$ in $\pi^{-1}(U)$.

Suppose that $A \in \mathcal{T}_q^p(M_n)$. We define the vertical lift $A \in \mathcal{T}_0^1(T_q^p(M_n))$ of A to $T_n^q(M_n)$ (see [1]) by

$${}^{V}A(i\alpha) = \alpha(A) \circ \pi = {}^{V}(\alpha(A)), \tag{2.1}$$

where $^{\nu}(\alpha(A))$ is the vertical lift of the function $\alpha(A) \in \mathcal{I}(M_n)$. We note that, the vertical lift $^{\nu}(\alpha(A))$ of the arbitrary function $f \in \mathcal{I}(M_n)$ is constant along any fibre $\pi^{-1}(P)$.

If
$${}^{V}A = {}^{V}A^{k}\partial_{k} + {}^{V}A^{\vec{k}}\partial_{\vec{k}}$$
, $x^{\vec{k}} = t^{l_{1}...l_{p}}_{k_{1}...k_{q}}$, then we have from (2.1)
 ${}^{V}A^{k}t^{i_{1}...i_{p}}_{j_{1}...j_{q}}\partial_{k}\alpha^{j_{1}...j_{q}}_{l_{1}...l_{p}} + {}^{V}A^{\vec{k}}\alpha^{k_{1}...k_{q}}_{l_{1}...l_{p}} = \alpha^{k_{1}...k_{q}}_{l_{1}...l_{p}}A^{l_{1}...l_{p}}_{k_{1}...k_{q}}$.

But $\alpha_{l_1...l_p}^{k_1...k_q}$ and $\partial_k \alpha_{i_1...i_p}^{j_1...j_q}$ can take any preassigned values as each point. Thus, we have from the equation above

$$^{V}A^{k}t_{j_{1}...j_{q}}^{i_{1}...j_{p}}=0, \quad ^{V}A^{\vec{k}}=A_{k_{1}...k_{q}}^{l_{1}...l_{p}}.$$

Hence

$$VA^k=0$$

at all points of $T_q^p(M_n)$ except possibly those at all the components $x^{\bar{j}} = t_{j_1 \dots j_q}^{i_1 \dots i_p}$ are zero: that is, at points of the base space. Thus we see that the components ${}^{V}A^k$ are zero a point such that $x^{\bar{j}} \neq 0$, that is, in $T_q^p(M_n) - M_n$. However, $T_q^p(M_n) - M_n$ is dense in $T_q^p(M_n)$ and the components of ${}^{V}A$ are continuous at every point of $T_q^p(M_n)$. Hence, we have ${}^{V}A^k = 0$ at all points of $T_q^p(M_n)$. Thus, the vertical lift ${}^{V}A$ of A to $T_q^p(M_n)$ has components

$${}^{\nu}A = \begin{pmatrix} {}^{\nu}A^{j} \\ {}^{\nu}A^{\bar{j}} \end{pmatrix} = \begin{pmatrix} 0 \\ A^{i_{1}\dots i_{p}}_{j_{1}\dots j_{q}} \end{pmatrix}$$
 (2.2)

with respect to the coordinates $(x^j, x^{\bar{j}})$ in $T_a^p(M_n)$.

Suppose that ∇ is an affine connection (with zero torsion) on M_n . Let ∇_V be the covariant differntiation with respect to $V \in \mathcal{T}_0^1(M_n)$. We define the horizontal lift ${}^HV = \overline{\nabla}_X$ of V to $T_a^p(M_n)$ [1] by

$${}^{H}V(i\alpha) = i(\nabla_{V}\alpha), \ \alpha \in \mathbf{7}_{n}^{q}(M_{n}). \tag{2.3}$$

If ${}^HV = {}^HV\partial_k + {}^HV^{\overline{k}}\partial_{\overline{k}}$, then we have from (2.3):

$$\begin{split} & {}^{H}V^{k}t_{j_{1}\dots j_{q}}^{i_{1}\dots i_{p}}\partial_{k}\alpha_{i_{1}\dots i_{p}}^{j_{1}\dots j_{q}} + {}^{H}V^{\bar{k}}\alpha_{i_{1}\dots i_{p}}^{k_{1}\dots k_{q}} = t_{j_{1}\dots j_{q}}^{i_{1}\dots i_{p}}\Bigg(V^{k}\partial_{k}\alpha_{i_{1}\dots i_{q}}^{j_{1}\dots j_{q}} + \\ & + \sum_{\mu=1}^{q}V^{m}\Gamma_{ms}^{j_{\mu}}\alpha_{i_{1}\dots i_{p}}^{j_{1}\dots s\dots j_{q}} - \sum_{\lambda=1}^{p}V^{m}\Gamma_{mi_{\lambda}}^{s}\alpha_{i_{1}\dots s\dots i_{p}}^{j_{1}\dots j_{q}}\Bigg) = V^{k}t_{j_{1}\dots j_{q}}^{i_{1}\dots j_{p}}\partial_{k}\alpha_{i_{1}\dots i_{p}}^{j_{1}\dots j_{q}} + \end{split}$$

$$+V^{m}\left(\sum_{\mu=1}^{q}\Gamma_{mk_{\mu}}^{s}t_{k_{1}...s...k_{q}}^{l_{1}...l_{p}}-\sum_{\lambda=1}^{p}\Gamma_{ms}^{l_{\lambda}}t_{k_{1}...k_{q}}^{l_{1}...s..l_{p}}\right)\alpha_{l_{1}...l_{p}}^{k_{1}...k_{q}},$$
(2.4)

where Γ_{ij}^{k} are components of ∇ with respect to the local coordinates in $U \subset M_n$.

Thus, discussing in the same way as in the case of the vertical lift, from (2.4) we see that, ^{H}V has components

$${}^{H}V^{k} = V^{k}, \quad {}^{H}V^{k} = V^{m} \left(\sum_{\mu=1}^{q} \Gamma^{s}_{mk_{\mu}} t^{l_{1} \dots l_{p}}_{k_{1} \dots s \dots k_{q}} - \sum_{\lambda=1}^{p} \Gamma^{l_{\lambda}}_{ms} t^{l_{1} \dots s \dots l_{p}}_{k_{1} \dots k_{q}} \right)$$
(2.5)

with respect to the coordinates $(x^k, x^{\overline{k}})$ in $T_q^p(M_n)$.

If we put p=1, q=0 (p=0, q=1), then ${}^HV^K$ are the components of the horizontal lift of V from a manifold M_n to its tangent (cotangent) bundle [2], [4, p.87] ([3], [4, p.276]).

Suppose that there is given a tensor field $\xi \in \mathcal{T}_q^p(M_n)$. Then the correspondence $X \mapsto \xi_X$, ξ_X being the value of ξ at $X \in M_n$, determines a mapping $\sigma_{\xi}: M_n \mapsto T_q^p(M_n)$, such that $\pi \circ \sigma_{\xi} = id_{M_n}$, and the n dimensional submanifold $\sigma_{\xi}(M_n)$ of $T_q^p(M_n)$ is called the cross-section determined by ξ . If the tensor field ξ has the local components $\xi_{k_1...k_n}^{l_1...l_p}(x^k)$, the cross-section $\sigma_{\xi}(M_n)$ is locally expressed by

$$\begin{cases} x^k = x^k \\ x^{\overline{k}} = \xi_{k_1 \dots k_q}^{l_1 \dots l_p} \left(x^k \right) \end{cases}$$
 (2.6)

with respect to the coordinates $(x^k, x^{\overline{k}})$ in $T_q^p(M_n)$. Differentiating (2.6) by x^j , we see that the *n* tangent vector fields B_j to $\sigma_{\xi}(M_n)$ have components

$$(B_j^K) = \left(\frac{\partial x^K}{\partial x^j}\right) = \begin{pmatrix} \delta_j^k \\ \partial_j \xi_{k_1 \dots k_q}^{l_1 \dots l_p} \end{pmatrix},$$
 (2.7)

with respect to the natural frame $\{\partial_k, \partial_{\bar{k}}\}$ in $T_q^p(M_n)$.

On the other hand, the fibre is locally expressed by

$$\begin{cases} x^k = const, \\ t_{k_1...k_n}^{l_1...l_p} = t_{k_1...k_n}^{l_1...l_p}, \end{cases}$$

 $t_{k_1...k_q}^{l_1...l_p}$ being consider as parameters. Thus, on differentiating with respect to $x^{\bar{j}} = t_{j_1...j_q}^{l_1...l_p}$, we see that the n^{p+q} tangent vector fields $C_{\bar{j}}$ to the fibre have components

$$\left(C_{j}^{K}\right) = \left(\frac{\partial x^{K}}{\partial x^{j}}\right) = \begin{pmatrix} 0 \\ \delta_{i_{1}}^{I_{1}} ... \delta_{i_{p}}^{I_{p}} \delta_{k_{1}}^{J_{1}} ... \delta_{k_{q}}^{J_{q}} \end{pmatrix}$$
(2.8)

with respect to the natural frame $\{\partial_k, \partial_{\bar{k}}\}$ in $T_a^p(M_n)$.

We consider in $\pi^{-1}(U) \subset T_q^p(M_n)$, $n + n^{p+q}$ local vector fields B_j and C_j along $\sigma_{\xi}(M_n)$. They form a local family of frames $\{B_j, C_j\}$ along $\sigma_{\xi}(M_n)$, which is called the

adapted (B,C)-frame of $\sigma_{\xi}(M_n)$ in $\pi^{-1}(U)$. From ${}^HV={}^HV^k\partial_k+{}^HV^{\overline{k}}\partial_{\overline{k}}$ and ${}^HV={}^H\widetilde{V}^jB_j+{}^H\widetilde{V}^{\overline{j}}C_{\overline{j}}$, we easily obtain ${}^HV^k={}^H\widetilde{V}^jB_j^k+{}^H\widetilde{V}^{\overline{j}}C_{\overline{j}}^k$, and also (2.7) and (2.8), we have ${}^H\widetilde{V}^j={}^HV^j=V^j$, ${}^H\widetilde{V}^{\overline{j}}=-\nabla_V\xi_{j_1\dots j_p}^{j_1\dots j_p}$.

Thus, HV has along $\sigma_{\xi}ig(M_nig)$ components of the form

$${}^{H}V = \begin{pmatrix} {}^{H}\widetilde{V}^{j} \\ {}^{H}\widetilde{V}^{j} \end{pmatrix} \tag{2.9}$$

with respect tot he adapted (B,C)-frame.

3. Horizontal lifts of affinor fields on a pure cross-section.

Let $\varphi \in \mathcal{T}_1^1(M_n)$. We define a tensor field ${}^H \varphi \in \mathcal{T}_1^1(T_q^{\rho}(M_n))$ along the cross-section $\sigma_{\varepsilon}(M_n)$ by

$$\begin{cases}
{}^{H} \varphi(H V) = {}^{H} (\varphi(V)), \forall V \in \mathbf{7}_{0}^{1}(M_{n}), \\
{}^{H} \varphi(V A) = {}^{V} (\varphi(A)), \forall A \in \mathbf{7}_{q}^{p}(M_{n}),
\end{cases} (3.1)$$

where $\varphi(A) = C(\varphi \otimes A) \in \mathcal{T}_q^p(M_n)$ and call $^H \varphi$ the horizontal lift of $\varphi \in \mathcal{T}_1^1(M_n)$ to $\mathcal{T}_q^p(M_n)$ along $\sigma_{\varepsilon}(M_n)$.

From (2.2), (2.7), (2.8) and ${}^{\nu}A = {}^{\nu}\widetilde{A}^{j}B_{j} + {}^{\nu}\widetilde{A}^{j}C_{\overline{j}}$, we easily obtain ${}^{\nu}\widetilde{A}^{j} = 0$, ${}^{\nu}\widetilde{A}^{j} = {}^{\nu}A^{\overline{j}} = {}^{A_{j_1...j_q}}$. Thus the vertical lift ${}^{\nu}A$ also has components of the form (2.2) with respect to the adapted (B,C) - frame of $\sigma_{\xi}(M_n)$.

Let ${}^H\widetilde{\varphi}_L^K$ be components of ${}^H\varphi$ with respect to the adapted (B,C) - frame of the cross-section $\sigma_\xi(M_n)$. Then, from (3.1) we have

$$\begin{cases} {}^{H}\widetilde{\varphi}_{L}^{K} {}^{H}\widetilde{V}^{L} = {}^{H} (\widetilde{\varphi}(V))^{K}, & (i) \\ {}^{H}\widetilde{\varphi}_{L}^{K} {}^{V}\widetilde{A}^{L} = {}^{V} (\widetilde{\varphi}(A))^{K}, & (ii) \end{cases}$$
(3.2)

where $V(\varphi(A)) = \begin{pmatrix} 0 \\ V(\varphi(A))^{\overline{K}} \end{pmatrix} = \begin{pmatrix} 0 \\ \varphi_{in}^{l_1} A_{k_1..k_q}^{ort_2..l_p} \end{pmatrix}$.

Since the horizontal lift HV is projectable, and so is ${}^H\phi$ by virtue of (3.2) (i). Then ${}^H\phi$ has components (see [5])

$${}^{H}\widetilde{\varphi}_{l}^{k} = \varphi_{l}^{k}, \quad {}^{H}\widetilde{\varphi}_{\bar{l}}^{k} = 0 \tag{3.3}$$

with respect to the adapted (B,C) - frame, which is also projectable. Therefore, in the case K=k we get from (i) of (3.2) the identity $\varphi_i^k=\varphi_i^k$.

When K = k, (ii) of (3.2) can be rewritten, by virtue of (2.2) and (3.3), as 0 = 0. When $K = \vec{k}$, (ii) of (3.2) reduces to

$${}^{H}\widetilde{\boldsymbol{\varphi}}_{l}^{\overline{k}} {}^{V}\widetilde{\boldsymbol{A}}^{l} + {}^{H}\widetilde{\boldsymbol{\varphi}}_{\overline{l}}^{\overline{k}} {}^{V}\widetilde{\boldsymbol{A}}^{\overline{l}} = {}^{V} \left(\boldsymbol{\varphi} \widetilde{\boldsymbol{A}} \boldsymbol{A} \right)^{\overline{k}}$$

$$^{H}\widetilde{\varphi}_{\overline{l}}^{\overline{k}}A_{l_{1}...r_{q}}^{s_{1}...s_{p}}=\varphi_{m}^{l_{1}}A_{k_{1}...k_{q}}^{ml_{2}...l_{p}}=\varphi_{s_{1}}^{l_{1}}\delta_{s_{2}}^{l_{2}}...\delta_{s_{p}}^{l_{p}}\delta_{k_{1}}^{r_{1}}...\delta_{k_{q}}^{r_{q}}A_{l_{1}...r_{q}}^{s_{1}...s_{p}},$$

for all $A \in 7_q^p(M_n)$, which implies

$${}^{H}\widetilde{\varphi}_{I}^{\overline{k}} = \varphi_{s_{1}}^{l_{1}} \delta_{s_{2}}^{l_{2}} ... \delta_{s_{n}}^{l_{p}} \delta_{k_{1}}^{r_{1}} ... \delta_{k_{n}}^{r_{q}}, \quad p \ge 1,$$
(3.4)

where $x^{\bar{l}} = t_{i_1...i_p}^{s_1...s_p}$, $x^{\bar{k}} = t_{k_1...k_p}^{l_1...l_p}$.

Similarly, we have

$${}^{H}\widetilde{\varphi}_{\bar{l}}^{\bar{k}} = \delta_{s_{1}}^{l_{1}}...\delta_{s_{p}}^{l_{p}}\varphi_{k_{1}}^{r_{1}}\delta_{k_{2}}^{r_{2}}...\delta_{k_{p}}^{r_{q}}, \quad q \ge 1.$$
 (3.4')

When $K = \overline{k}$, (i) of (3.2) reduces to

$${}^{H}\widetilde{\varphi}_{i}^{\bar{k}} {}^{H}\widetilde{V}^{i} + {}^{H}\widetilde{\varphi}_{\bar{i}}^{\bar{k}} {}^{H}\widetilde{V}^{\bar{i}} = {}^{H}\left(\varphi_{i}^{\tilde{i}}(V)\right)^{\bar{k}}. \tag{3.5}$$

We will investigate components $H \widetilde{\varphi}_{l}^{\overline{k}}$.

Let $\xi \in \mathbf{7}_{q}^{p}(M_{n})$. We consider the Vishnevskii operator

$$\left(\Phi_{\varphi} \xi \right)_{lk_{1}...k_{q}}^{l_{1}...l_{p}} = \varphi_{l}^{m} \nabla_{m} \xi_{k_{1}...k_{q}}^{l_{1}...l_{p}} - \begin{cases} \varphi_{m}^{l_{1}} \nabla_{l} \xi_{k_{1}...k_{q}}^{ml_{2}...l_{p}}, & p \ge 1, \\ \varphi_{k_{1}}^{m} \nabla_{l} \xi_{mk_{2}...k_{q}}^{l_{1}...l_{p}}, & q \ge 1 \end{cases}$$
 (3.6)

Remark 1. Let φ be an integrable φ -structure in M_n and $\nabla \varphi = 0$. If $\xi \in \mathcal{T}_q^p(M_n)$ be a pure tensor field with respect to φ -structure, i.e.

$$\phi_m^{l_1}\xi_{k_1\dots k_q}^{ml_2\dots l_p}=\dots=\phi_m^{l_p}\xi_{k_1\dots k_q}^{l_1\dots m}=\phi_{k_1}^m\xi_{mk_2\dots k_q}^{l_1\dots l_p}=\dots=\phi_{k_q}^m\xi_{k_1\dots k_p}^{l_1\dots l_p}\,,$$

then equation $(\Phi_{\varphi}\xi)_{h_1..k_q}^{l_1..l_p} = 0$ is the condition for ξ to be holomorphic (see [6, p.184]).

From (3.6), we have

$$V^{l}\left(\Phi_{\varphi}\xi\right)_{lk_{1}..k_{q}}^{l_{1}..l_{p}} + \varphi_{l}^{l_{1}}\nabla_{V}\xi_{k_{1}..k_{q}}^{ll_{2}..l_{p}} = \nabla_{\varphi(V)}\xi_{k_{1}..k_{q}}^{l_{1}..l_{p}}, \ p \ge 1$$
(3.7)

Using (2.9), from (3.7) we have

$$\begin{split} V^{I} \Big(\Phi_{\phi} \xi \Big)_{lk_{1}...k_{q}}^{l_{1}..l_{p}} + \phi_{I}^{l_{1}} \nabla_{V} \xi_{k_{1}...k_{q}}^{ll_{2}...l_{p}} &= V^{I} \Big(\Phi_{\phi} \xi \Big)_{lk_{1}...k_{q}}^{l_{1}...l_{p}} + \phi_{s_{1}}^{l_{1}} \delta_{s_{2}}^{l_{2}}...\delta_{s_{p}}^{l_{p}} \delta_{k_{1}}^{r_{1}}...\delta_{k_{q}}^{r_{q}} \\ \nabla_{V} \xi_{r_{1}...r_{q}}^{s_{1}...s_{p}} &= \Big(\Phi_{\phi} \xi \Big)_{lk_{1}...k_{s}}^{l_{1}...l_{p}} {}^{H} \widetilde{V}^{I} - \phi_{s_{1}}^{l_{1}} \delta_{s_{2}}^{l_{2}}...\delta_{s_{p}}^{l_{p}} \delta_{k_{1}}^{r_{1}}...\delta_{k_{q}}^{r_{q}} {}^{H} \widetilde{V}^{\bar{I}} &= -{}^{H} \Big(\phi \widetilde{V} \Big)^{\bar{k}} \end{split}$$

or

$$\left(\Phi_{\varphi}\xi\right)_{lk...k.}^{l...l_{p}-H}\widetilde{V}^{l} - \varphi_{s_{1}}^{l_{1}}\delta_{s_{2}}^{l_{2}}...\delta_{s_{n}}^{l_{p}}\delta_{k_{1}}^{r_{1}}...\delta_{k_{n}}^{r_{q}-H}\widetilde{V}^{\bar{l}} = -\frac{H}{\left(\varphi(V)\right)^{\bar{k}}}.$$
(3.8)

ž,

Comparing (3.5) and (3.8), and making use of (3.4), we get

$$\left(H \widetilde{\varphi}_{l}^{\overline{k}} + \left(\Phi_{\varphi} \xi \right)_{lk_{1} \dots k_{q}}^{l_{1} \dots l_{p}} \right) V^{l} = 0,$$

for any $V \in 7^1_0(M_n)$, from which

$$^{H}\widetilde{\varphi}_{l}^{\vec{k}}=-\left(\Phi_{\varphi}\xi\right)_{lk_{1}\dots k_{q}}^{l_{l}\dots l_{p}}\ ,\ \ p\geq1\,.$$

Similarly, we obtain

$${}^{\mathcal{H}}\widetilde{\varphi}_{l}^{\vec{k}} = - \left(\Phi_{\varphi} \xi \right)_{lk_{1}...k_{q}}^{l_{1}...l_{p}}, \quad q \geq 1.$$

Thus the horizontal lift $^{H}\phi$ of ϕ has along the cross-section $\sigma_{\xi}(M_{\pi})$ components

$$\begin{cases} {}^{H}\widetilde{\varphi}_{l}^{k} = \varphi_{l}^{k}, & {}^{H}\widetilde{\varphi}_{l}^{k} = 0, & {}^{H}\widetilde{\varphi}_{l}^{\bar{k}} = -(\Phi_{\varphi}\xi)_{lk_{1}...k_{q}}^{l_{1}...l_{p}} \\ {}^{H}\widetilde{\varphi}_{\bar{l}}^{\bar{k}} = \begin{cases} \varphi_{s_{1}}^{l_{1}}\delta_{s_{2}}^{l_{2}}...\delta_{s_{p}}^{l_{p}}\delta_{k_{1}}^{r_{1}}...\delta_{k_{q}}^{r_{q}}, & p \ge 1, \\ \delta_{s_{1}}^{l_{1}}...\delta_{s_{p}}^{l_{p}}\delta_{k_{1}}^{r_{1}}\delta_{k_{2}}^{r_{2}}...\delta_{k_{q}}^{r_{q}}, & q \ge 1, \end{cases}$$

$$(3.9)$$

with respect to the adapted (B,C)-frame of $\sigma_{\xi}(M_n)$, where $\Phi_{\varphi}\xi$ is the Vishnevskii operator.

Remark 2. The formula (3.6) is valid if and only if $\Phi_{\varphi}\xi$ is the Vishnevskii operator, i.e. $^{H}\varphi$ in the form (3.9) is unique solution of (3.1). Therefore, if $\overset{\bullet}{\varphi}$ is element of $7^{1}_{1}(T_{q}^{p}(M_{n}))$, such that $\overset{\bullet}{\varphi}(^{H}V)=^{H}\varphi(^{H}V)=^{H}(\varphi(V))$, $\overset{\bullet}{\varphi}(^{V}A)=^{H}\varphi(^{V}A)=^{V}(\varphi(A))$, then $\overset{\bullet}{\varphi}=^{H}\varphi$.

Theorem 3.1. The horizontal lift $H: End M_n \mapsto End T_q^p(M_n)$ along the cross-section $\sigma_{\varepsilon}(M_n)$ is a monomorphism.

Proof. The pecularity

$$\left(\Phi_{a\phi_1+b\phi_2}\xi\right)_{lk_1...k_n}^{l_1...l_p} = a\left(\Phi_{\phi_1}\xi\right)_{lk_1...k_n}^{l_1...l_p} + b\left(\Phi_{\phi_2}\xi\right)_{lk_1...k_n}^{l_1...l_p}, \ \forall a,b \in R$$

of the Vishnevskii operator and from (3.9), we find that, $^H: End M_n \mapsto End T_q^P(M_n)$ is a linear. From (3.1), we write

$$\begin{array}{l}
H\left(\varphi\circ\psi\right)(^{H}V)=^{H}\left((\varphi\circ\psi)(V)\right)=^{H}\left(\varphi(\psi(V))\right) \\
=^{H}\varphi(^{H}\psi(V))=^{H}\varphi(^{H}\psi(^{H}V))=\left(^{H}\varphi\circ^{H}\psi\right)(^{H}V), \\
H\left(\varphi\circ\psi\right)(^{V}A)=^{V}\left((\varphi\circ\psi)(A)\right)=^{V}\left(\varphi(\psi(A))\right) \\
=^{H}\varphi(^{V}(\psi(A)))=^{H}\varphi(^{H}\psi(^{V}A))=\left(^{H}\varphi\circ^{H}\psi\right)(^{V}A).
\end{array}$$

With respect to the Remark 2, we find

$${}^{H}(\varphi \circ \psi) = {}^{H}\varphi \circ {}^{H}\psi, \qquad (3.10)$$

i.e. H is a homeomorphism. However, $^{H}_{\phi}=0$ if and only if $\phi=0$, i.e. H is a monomorphism.

Let \mathcal{A}_m be an associative commutative unital algebra of finite dimension m over the field R of real numbers. An algebraic Π -structure on M_n is a collection $\Pi = \left\{ \begin{matrix} \phi \\ \alpha \end{matrix} \right\}$, $\alpha = 1,...,m$ of tensor fields of type (1,1) such that $\phi \circ \phi = C_{\alpha\beta}^{\gamma} \phi$, where $C_{\alpha\beta}^{\gamma}$ are the structure constants of the algebra \mathcal{A}_m . From (3.10), we obtain $\frac{H}{\alpha} \phi \circ \frac{H}{\alpha} \phi = \frac{H}{\alpha} \left(\phi \circ \phi \right) = \frac{H}{\alpha} \left(C_{\alpha\beta}^{\gamma} \phi \right) = C_{\alpha\beta}^{\gamma} \frac{H}{\gamma} \phi$. Thus we have

Theorem 3.2. If $\Pi = \left\{ \begin{matrix} \varphi \\ \alpha \end{matrix} \right\}$, $\alpha = 1,...,m$ defines an algebraic Π -structure on M_n , so does $^H\Pi = \left\{ \begin{smallmatrix} H & \varphi \\ \alpha \end{smallmatrix} \right\}$ on $T_q^p(M_n)$ along the cross-section $\sigma_\xi(M_n)$.

Now, on putting $B_{\bar{j}} = C_{\bar{j}}$, we write the adapted (B,C)-frame of $\sigma_{\xi}(M_n)$ as $B_J = \{B_j, B_{\bar{j}}\}$. We define a coframe \widetilde{B}^J of $\sigma_{\xi}(M_n)$ by $\widetilde{B}^I(B_J) = \delta_J^I$. If $B_J = B_J^K \widehat{\sigma}_K$, then we have

$$B_J^K \widetilde{B}_K^I = \delta_J^I, \tag{3.11}$$

where $\widetilde{B}_{K}^{I} = \widetilde{B}^{I}(\partial_{K})$. From (2.7), (2.8) and (3.11), we see that covector fields \widetilde{B}^{I} have components

$$\widetilde{B}^{i} = \left(\widetilde{B}_{K}^{i}\right) = \left(\delta_{k}^{i}, 0\right), \tag{3.12}$$

$$\widetilde{B}^{\bar{i}} = \left(\widetilde{B}_{K}^{\bar{i}}\right) = \left(-\partial_{k} \xi_{i_{1} \dots i_{p}}^{j_{1} \dots j_{p}}, \delta_{i_{1}}^{i_{1}} \dots \delta_{i_{p}}^{i_{q}} \delta_{i_{1}}^{j_{1}} \dots \delta_{i_{p}}^{j_{p}}\right)$$

with respect to the natural coframe $\{dx^k, dx^{\overline{k}}\}$.

Taking into account of representation ${}^{H}\phi = {}^{H}\widetilde{\phi}_{I}^{J}B_{J}\otimes\widetilde{B}^{I}$ and

$${}^{H} \varphi_{L}^{K} = {}^{H} \varphi(dx^{K}, \partial_{L}) = {}^{H} \widetilde{\varphi}_{I}^{J} B_{J} \otimes \widetilde{B}^{I}(dx^{K}, \partial_{L}) =$$

$$= {}^{H} \widetilde{\varphi}_{I}^{J} dx^{K} (B_{J}) \widetilde{B}^{I} (\partial_{L}) = {}^{H} \widetilde{\varphi}_{I}^{J} dx^{K} (B_{J}^{H} \partial_{H}) \widetilde{B}_{L}^{I} =$$

$$= {}^{H} \widetilde{\varphi}_{I}^{J} B_{J}^{H} \delta_{H}^{K} \widetilde{B}_{L}^{I} = {}^{H} \widetilde{\varphi}_{I}^{J} B_{J}^{K} \widetilde{B}_{L}^{I},$$

and also (2.7), (2.8), (3.9) and (3.12), we have along $\sigma_{\xi}(M_n)$ the formulas

$$\begin{split} ^{H}\phi_{l}^{k} &= \phi_{l}^{k}, \quad ^{H}\phi_{l}^{k} = 0, \\ ^{II}\phi_{\bar{l}}^{\bar{k}} &= \begin{cases} \phi_{s_{1}}^{l_{1}} \delta_{s_{2}}^{l_{2}} ... \delta_{s_{p}}^{l_{p}} \delta_{k_{1}}^{r_{1}} ... \delta_{k_{q}}^{r_{q}}, \quad p \geq 1, \\ \delta_{s_{1}}^{l_{1}} ... \delta_{s_{p}}^{l_{p}} \phi_{k_{1}}^{r_{1}} \delta_{k_{2}}^{r_{2}} ... \delta_{k_{q}}^{r_{q}}, \quad q \geq 1. \end{cases} \\ ^{H}\phi_{l}^{\bar{k}} &= - \Big(\Phi_{\phi} \xi \Big)_{lk_{1}...k_{q}}^{l_{1}...l_{p}} + \phi_{l}^{m} \partial_{m} \xi_{k_{1}...k_{q}}^{l_{1}...l_{p}} - \begin{cases} \phi_{m}^{l_{1}} \partial_{l} \xi_{k_{1}...k_{q}}^{m...l_{p}}, \quad p \geq 1 \\ \phi_{k_{1}}^{m} \partial_{l} \xi_{m...k_{q}}^{l_{1}...l_{p}}, \quad q \geq 1. \end{cases} \end{split}$$

Thus, $^{H}\varphi$ has along the cross-section $\sigma_{\xi}(M_{n})$ components of the form

$$\begin{cases} H \varphi_{l}^{k} = \varphi_{l}^{k}, & H \varphi_{\bar{l}}^{k} = 0, \\ \theta_{\bar{l}}^{\bar{k}} = \theta_{l}^{\bar{k}}, & H \varphi_{\bar{l}}^{\bar{k}} = 0, \end{cases} & H \varphi_{\bar{l}}^{\bar{k}} = \begin{cases} \varphi_{s_{1}}^{l_{1}} \delta_{s_{2}}^{l_{2}} ... \delta_{s_{p}}^{l_{p}} \delta_{k_{1}}^{r_{1}} ... \delta_{k_{q}}^{r_{q}}, \quad p \geq 1, \\ \delta_{s_{1}}^{l_{1}} ... \delta_{s_{p}}^{l_{p}} \varphi_{k_{1}}^{r_{1}} \delta_{k_{2}}^{r_{2}} ... \delta_{k_{q}}^{r_{q}}, \quad q \geq 1 \end{cases}$$

$$\begin{cases} H \varphi_{l}^{\bar{k}} = \varphi_{l}^{m} \left(-\sum_{\lambda=1}^{p} \Gamma_{ms}^{l_{\lambda}} \xi_{(k)}^{l_{1} ... s_{s}... l_{p}} + \sum_{\mu=1}^{q} \Gamma_{mk_{\mu}}^{s} \xi_{k_{1} ... s_{s}... k_{q}}^{(l)} \right) + \varphi_{m}^{l_{1}} \left(-\sum_{\mu=1}^{q} \Gamma_{lk_{\mu}}^{s} + \sum_{\mu=1}^{q} \Gamma_{lk_{\mu}}^{l_{1}} \xi_{(k)}^{l_{1} ... s_{s}... l_{p}}^{s} + \sum_{\mu=1}^{q} \Gamma_{mk_{\mu}}^{s} \xi_{(k)}^{(l)} \right), \quad p \geq 1 \end{cases}$$

$$\begin{cases} H \varphi_{l}^{\bar{k}} = \varphi_{l}^{m} \left(-\sum_{\lambda=1}^{p} \Gamma_{lk_{\lambda}}^{l_{1}} \xi_{(k)}^{l_{1} ... s_{s}... l_{p}} + \sum_{\mu=1}^{q} \Gamma_{mk_{\mu}}^{s} \xi_{k_{1} ... s_{s}... k_{q}}^{(l)} \right) + \varphi_{k_{1}}^{m} \left(\sum_{\lambda=1}^{p} \Gamma_{lk_{\lambda}}^{l_{\lambda}} \xi_{k_{1} ... s_{s}... k_{q}}^{s} - \sum_{\mu=2}^{q} \Gamma_{lk_{\mu}}^{s} \xi_{mk_{2} ... s_{s}... k_{q}}^{s} - \Gamma_{lm}^{s} \xi_{m... k_{q}}^{(l)} \right), \quad q \geq 1 \end{cases}$$

$$\begin{cases} \xi_{l_{1} ... s_{s}... l_{p}}^{l_{p}} - \sum_{\mu=2}^{q} \Gamma_{lk_{\mu}}^{s} \xi_{mk_{2} ... s_{s}... k_{q}}^{s} - \Gamma_{lm}^{s} \xi_{m... k_{q}}^{(l)} \right), \quad q \geq 1 \end{cases}$$

with respect to the natural frame $\{\partial_k, \partial_{\bar{k}}\}$ of $\sigma_{\xi}(M_n)$ in $\pi^{-1}(U) \subset T_q^p(M_n)$ [7].

In particular, if we put p=1, q=0 (p=0, q=1) in (3.13), then ${}^H\phi_L^K$ are the components of the horizontal lift of φ from a manifold \Re to its tangent (cotangent) bundle with respect to the natural frame $\{\partial_k, \partial_{\overline{k}}\}$ of $\sigma_{\xi}(M_n)$ [2], [4, p.94] ([3], [4], p.281).

4. On a new class of the quasi- A -holomorphic tensor fields.

Let M_n and N_m be two manifolds with algebraic structures $\Pi = \left\{ \begin{matrix} \varphi \\ \alpha \end{matrix} \right\}$ and $\widetilde{\Pi} = \left\{ \begin{matrix} \psi \\ \alpha \end{matrix} \right\}$, $\alpha = 1,...,m$ determined by the same associative commutative unital algebra \mathcal{U}_m . A differentiable mapping $f: M_n \mapsto N_m$ is called a quasi- \mathcal{A} -holomorphic mapping with respect to $\left(\Pi, \widetilde{\Pi} \right)$ (see [8]), if at each point $P \in M_n$

$$df_{P} \circ \underset{\alpha}{\varphi}_{P} = \underset{\alpha}{\psi}_{f(P)} \circ df_{P}, \ \alpha = 1,...,m.$$
 (4.1)

As the mapping $f: M_n \mapsto N_m$ $(m = n + n^{p+q})$ we take a cross-section $\sigma_\xi^\Pi: M_n \mapsto T_q^P(M_n)$ determined by the pure tensor field $\xi \in \mathcal{T}_q^P(M_n)$ with respect to Π -structure. A pure cross-section $\sigma_\xi^\Pi: M_n \mapsto T_q^P(M_n)$ can be locally expressed by (2.6). In (4.1), if $\widetilde{\Pi} = \left\{ \psi \right\}$ is the algebraic H Π -structure defined in §3, the condition that the pure cross-section $\sigma_\xi^\Pi: M_n \mapsto T_q^P(M_n)$ be quasi- \mathcal{A} -holomorphic tensor field with respect to $\left\{ \Pi, H \Pi \right\}$ is locally given by

$$\varphi_l^m \partial_m x^K = {}^H \varphi_M^K \partial_l x^M, \quad \alpha = 1, ..., m, \tag{4.2}$$

where ${}^H \varphi_M^K$ are components of ${}^H \varphi$ along the pure cross-section $\sigma_{\xi}^{\Pi}(M_n)$ with respect to the natural frame $\{\partial_k, \partial_{\bar{k}}\}$.

In the case K = k, by virtue of (2.6) and (3.13) we get the identity $\varphi_l^k = \varphi_l^k$. When $K = \overline{k}$, by virtue of (2.6) and (3.13), (4.2) reduces to

$$\begin{split} & \phi_{l}^{m} \partial_{m} x^{\overline{k}} -^{H} \phi_{M}^{\overline{k}} \partial_{l} x^{M} = \phi_{l}^{m} \partial_{m} \xi_{(k)}^{(l)} -^{H} \phi_{m}^{\overline{k}} \delta_{l}^{m} - \\ & -^{H} \phi_{\alpha}^{\overline{k}} \partial_{l} \xi_{(m)}^{(n)} = \phi_{l}^{m} \partial_{m} \xi_{k_{1} \dots k_{q}}^{l_{1} \dots l_{p}} - \phi_{l}^{m} (-\sum_{\lambda=1}^{p} \Gamma_{ms}^{l_{\lambda}} \xi_{(k)}^{l_{1} \dots s \dots l_{p}} + \\ & + \sum_{\mu=1}^{q} \Gamma_{mk_{\mu}}^{s} \xi_{k_{1} \dots s \dots k_{q}}^{(l)}) - \phi_{\alpha}^{l_{1}} (-\sum_{\mu=1}^{q} \Gamma_{lk_{\mu}}^{s} \xi_{k_{1} \dots s \dots k_{q}}^{m_{1} \dots l_{p}} + \\ & + \sum_{\lambda=2}^{p} \Gamma_{ls}^{l_{\lambda}} \xi_{(k)}^{ml_{2} \dots s \dots l_{p}} + \Gamma_{ls}^{m} \xi_{(k)}^{sl_{2} \dots l_{p}}) - \phi_{\alpha}^{l_{1}} \delta_{l_{2}}^{l_{2}} \dots \delta_{l_{p}}^{l_{p}} \delta_{k_{1}}^{m_{1}} \dots \delta_{k_{q}}^{m_{q}} \\ & \partial_{l} \xi_{m_{1} \dots m_{q}}^{m_{1} \dots n_{p}} = 0 \end{split}$$

$$\varphi_{l}^{m} \nabla_{m} \xi_{k_{1} \dots k_{q}}^{l_{1} \dots l_{p}} - \varphi_{m}^{l_{1}} \nabla_{l} \xi_{k_{1} \dots k_{q}}^{m l_{2} \dots l_{p}} = 0, \quad p \ge 1.$$
(4.3)

Similarly, we obtain

$$\phi_{l}^{m} \nabla_{m} \xi_{k_{1} \dots k_{q}}^{l_{1} \dots l_{p}} - \phi_{k_{1}}^{m} \nabla_{l} \xi_{mk_{2} \dots k_{q}}^{l_{2} \dots l_{p}} = 0, \quad q \ge 1.$$
 (4.4)

Thus quasi- \mathcal{A} -holomorphic tensor field with respect to $(\Pi, ^H\Pi)$ is given by (4.3) (or (4.4)).

Let Π -structure be an almost integrable structure with respect to the connection ∇ (with zero torsion), i.e. $\nabla_{\varphi} = 0$, $\forall \varphi \in \Pi$. Then, we obtain (see [9]

$$\left(\Phi_{\Phi}\xi\right)_{lk_{1}...k_{q}}^{l_{1}...l_{p}} = \left(\widetilde{\Phi}_{\Phi}\xi\right)_{lk_{1}...k_{q}}^{l_{1}...l_{p}},$$

where $\widetilde{\Phi}_{m}\xi$ is the Tachibana operator [10]

$$\begin{split} & \left(\widetilde{\Phi}_{\mathbf{q}}\xi\right)_{lk_{1}\dots k_{q}}^{l_{1}\dots l_{p}} = \mathbf{q}_{I}^{m}\partial_{m}\xi_{k_{1}\dots k_{q}}^{I_{1}\dots I_{p}} - \partial_{I}\xi_{k_{1}\dots k_{q}}^{*} + \\ & + \sum_{a=1}^{q} \left(\widehat{\sigma}_{k_{a}}\mathbf{q}_{I}^{r}\right)\xi_{k_{1}\dots r\dots k_{q}}^{I_{1}\dots I_{p}} + \sum_{b=1}^{p} \left(\widehat{\sigma}_{I}\mathbf{q}_{I}^{l_{b}} - \partial_{r}\mathbf{q}_{I}^{l_{b}}\right)\xi_{k_{1}\dots r\dots l_{p}}^{I_{1}\dots r\dots I_{p}}, \end{split}$$

where $\overset{\bullet}{\xi}{}^{l_1...l_p}_{k_1...k_q}$ is tensor field defined in Remark 1. The equation

$$\left(\widetilde{\Phi}_{\varphi}\xi\right)_{lk_1...k_q}^{l_1...l_p}=0\tag{4.5}$$

is the equation characterizing the usual almost holomorphic tensor field [10], [11]. Thus, if Π -structure is almost integrable, then our quasi- \mathcal{A} -holomorphic tensor field with respect to $(\Pi,^H\Pi)$ coincides with the usual almost holomorphic tensor field. In general, quasi- \mathcal{A} -holomorphic tensor field with respect to $(\Pi,^H\Pi)$ satisfying (4.3) (or (4.4) does not satisfy (4.5)).

References

- [1]. Ledger A., Yano K. Almost complex structures on tensor bundles. J. Dif. Geom. 1(1967), 355-368.
- [2]. Yano K., Ishiara S. Horizontal lifts of tensor fields and connections to tangent bundles. Jour. Math. and Mech., 16(1967), 1015-1030.
- [3]. Yano K., Patterson E.M. Horizontal lift from a manifold to its cotangent bundle. Jour. Math. Soc. Japan., 19(1967), 185-198.
- [4]. Yano K., Ishiara S. Tangent and Cotangent Bundles. Marcel Dekker, Inc., New York (1973).
- [5]. Shapukov B.N. Connection on differentiable fiber bundles. Itogi nauki i tekhn., VINITI, Problemy geometry 15(1983), 61-91, (Russian).
- [6]. Vishnevskii V.V., Shirokov A.P., Shurygin V.V. Spaces over algebras. Kazan Univ. Press., 1985.
- [7]. Salimov A.A. A new method in theory of lifts of tensor fields to a tensor bundle, Iz. VUZ. Matematika, 3(1994), 69-75.
- [8]. Salimov A.A., Almost ψ -holomorphic tensors and their properties. Dokl. RAN 324 (1992), №3, 533-536.
- [9]. Salimov A.A. The Generalized Yano-Ako operator and complete lift of the tensor fields. Tensor N.S. 55(1994), №2, 142-146.
- [10]. Tachibana S. Analytic tensor and its generalization. Tohoku Math. J. 12(1960), №2, 208-221.

[11]. Kruchkovich G.I. Hypercomplex structures on manifolds. 1. Trudy sem. vektor. tensor. anal. (1972), №16, 174-201.

Salimov A.A., Mağden A.

Ataturk University, Fen-Edebiyat faculty, Department of Mathematics. 25240, Erzurum, Turkey.

E-mail: amagden@hotmail.com

Received July 8, 1999; Revised May 22, 2000. Translated by authors.