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BEHAVIOR IN UNBOUNDED DOMAINS OF SOLUTION OF DEGENERATE
ELLIPTIC EQUATIONS OF THE SECOND ORDER IN DIVERGENCE FORM

Absiract

The class of elliptic equations of the second order of divergent structure with
non-uniform power degeneration at the infinity was considered in present paper. For the
solution of mentioned equations theorems of the Phragmen-Lindelof type are proved.

Introduction, Let D be unbounded domain in #-dimensional Euclidian space
E, of points x=(x,...,x,), n23, and 6D be a boundary of D. Consider in D the
following equation

Lu= Zax [ u(x}—] (H
1=l

with assumption, that Ila,j (xll is real symmetric matrix with measurable in D elements

and for x e D, & € E, the following condition holds

FZ'@(’—');: s Zaq(xkf su IZA (x)fr ’ (2)

#=l i 4=1

where u&(0,1] is constant, }!,(x)::(l+|x]a T“’ , lxja =Z|x,|33«7 , a={a,...a,), o€
. i=]

6[0,—3-1—], (i=1,...,n), moreover, if n=3, then la|=a + , + a5 <2.
nu-

The aim of present article is to prove theorems of the Phragmen-Lindelsf type for
solution of equation (1). For this direction we could mention papers of E.M. Landis [1-2]
and V.G. Maz'ya. Later investigations of this subject were described at papers [4-9]. Tt
must be noted, that analogous by statement of problem of present article result for elliptic
equation of non-divergent structure was obtained in [10].

1°. Denotations, definitions and auxiliary statements. l.et G be some bounded
domain in E,. Denote by W.}M (G) the Banach space of functions u(x), defined on G,

with finite norm -
. (ay] )
||u||w,=,(a}=[g{“’ $6E) H

and by W‘2 F(G) we denote subspace of #, " (G), the dense set in which is aggregate of
all functions from C*(G).

" Let A(x) be almost everywhere positive and finite in G function. By Z,,{G) we
will denote Banach space of functions #{x}, defined on G , with finite norm

Moo= ztx)dxdx]
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We will say that function u(x), defined on D, belongs to space Wi’i"‘ (D), if
ulx)e W, ,(DNQy) for each R>0.Here Q, is open ball with radius R and centered at -
the origin.

Function u(x)e Wzl‘;i“(D) is called a weak solution of equation (1) in D, if for
arbitrary function @(x)e C5(D) the following integral identity holds

_[Zay x)f—u—gﬁdx 0.

DI, j=1

Let B, and B, be bounded sets in E,,, B, B, and d be some constant. We
will say, that function u(x)e Wz"a (B,) is more than or equal to 4 on B, in the sense of
Wl'l.a , if there exists the sequence of functions {19j (x)}, J=12,..., such that

8,(x)eC*(8,), 9,(x)2d for xe B, and };1?;",9_,. -4 vitoy =0
If B, and, maybe, B, are unbounded seis, then we will say, that function
ulx)e ”"‘(Bz) is more than or equal to 4 on B, in the sense of W, ,, if for any R>0
there exists sequence of functions {S{R)(x)} =12,..., such that SER}(x)e c” (B2 N QR),

$P(x)2d for xe B, Oy and m"&f") 4,

:,a( ann
By the same way we determine notions u{x)<d and u(x) =d in the sense of
Wy

For yeE,, R>0, k>0 by Ei(k) we will denote closed ellipsoid

{ Z(x‘ y ‘)2 s(kR)J} Let X be some ellipsoid, X be strict interior with respect to

=l

2. compact,
5 (K)= {uerﬂ(Z) u>lonKmthesenseW2a}, Jy ()= jZay —?—u——dx
Sl 0% O
The number capz m{ )Jz(u) is called a capacity of compact K with respect to

2., generated by operator L.

There exists unique function Uz(x) giving the minimum to functional Jz(u)
(see [11]). It calls capacitary potential K with respect to X . For this there exists unique
measure gz with support on external boundary of the compact X, such that

Uz(x)=}!g(x,y)dy(y), #(K)=caps(K) and Ug(x)=1 on X in the sense of W,,.

Here g(x,y) is the Green's function of operator L ([11]). Measure u is called
capacitary distribution of K with respectto 3.,

If capacity of compact X is generated by operator L, = Z o, A,(x)—-——)

=l

we will denote it by Capz(K). If Z— »» therr we will denote the corresponding
capacities by cap(K) and Cap(X).
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Lemma 1 ([12]). Let u(x)e W;i"‘ (D) be a weak solution of equation (1) in D,
with respect to coefficients of which condition (2) holds. Then function u(x} is continuous
in the Hilder s sense at each bounded strictly interior subdomain of domain D .

Lemma 2 ([13]). Let u(x)e W, (D) be non-negative in the sense of W, weak
solution of equation (1) in D, moreover, with respect to coefficients of operator L
condition (2) holds. Then, if £,(k)c D, then

sup u<C (g, a,n) inf u.

aelk) #(k)
Here and further the record C(-) means that positive constant C depends only on
contents of the brackets.

For k>0 by u"(x) we denote the average by Friedrichs of function #{x), and let

L, = Elax [ag(x) }

Lemma 3. Let G be bounded domain in E,, and coefficients of operator L are
defined in G, satisfying to condition (2). Then, if qa(x)e W, ﬁ(G) is defined function, and
ulx) and u,(x) are weak solutions of boundary value problems Lu=0 in G,
u—p eli’;’a and Ly, =0 in G, u, —@" ﬁ’l (G) correspondingly, then

fimfu - “h"w' = 3)

Proof. We will use the following fact, that has been proven in [14]: if
&(x)e W, ,(G), and H(x) is a weak solution of boundary value problem

L3=f+i% n G; 8-LeWl,(0), )

i=l

where feLQ(G), j}eLz,gl(G), i=1,...,n,then

"'9"3’1'_“@?) <G (’J’a’n’G("g”W,‘ﬂ(G) + uf”x,z(s) + g_l:"fi ”1,,4;‘{6}} : ()

For this under weak solution of equation of boundary value problem (4) we understand .
function $(x)e W, ,(G) such that for any y(x)e Cy (G) the following identity holds
2 08 dy L oy
ay(x)_———dx= ||~ fy+ ;:—de
é[;’)(z=1 d 6xf ox g G E axf
Suppose & =u —u,. It is easy to see that function & is a weak solution of boundary value

problem (4) with £ =g - 9", £ =0, f, =——Z(a —-a )—— According to estimate (5)
J=l

i(aﬁ "“g)g%

s @y SC2 lo-o" "w;,,(c} +3 ~ ;

=1

(6)

& it @

Moreover, according to the average property )
‘m”‘*’ 4 "w* @ - 7
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From the other side

"

Z

i=l

n #\0
Z(“i; “v 5:;!

J=t

2
2 < ] dx
< - - =
L &) " ‘Jz=’é[(ag K )z(axf ] m

Y ?
=nt 3 _M__ .Ea.u_"’ dx 8
" fék!{ Ax); (x } A,(x{axj . ®
a,;,-(x)
.‘/Afixﬁjixi
ag.(x)
,[ﬁ.,ixi)tjix;

| a-a || a6 [ o) ] oo .
NEXS (le I\F (B, () | Y4004, () NEXOTHE)

[0
6,

where 0; = {y:|x-y|<h}, and @, is akemnel of average. Let i=1,...,n, xeG, ye ().

Then
[ g e

where }jnga&(h):ﬂ. Therefore from (9)we obtain, that for ¢, j=1,...,n almost

From condition (2) follows, that matrix is uniformly positively defined in

G, ie for i,j=1,...,n function are bounded almost every where in G.

We have

w, (e y)y; (i,j=1,...n), @

everywhere in G
lj (x) a:_,t (X} (10)
Taking into account of (10) in (8), we conclude
nin B &‘k <
-4, <d,lh | s
Sl sl

L, ©)
where limdj, {(n}=0.
We again use estimate (5).. We have for sufficiently small 4

leslas i) <€ (“4"" ~ ¢'“w,:,(o) + “‘Phw,l_,,(c)) < CZG + llw\lw;”@]- (12)

Now from (6}, (7), (11) and (12) follows required equality (3). Lemma is proved.
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2°, Some capacitary estimates.
Lemma 4. Let R21, |a|=a, +++a,. Then there exist constanis C;(a,n) and
C,la,n) such, that
H—Z—lgl - _l_f‘_'l
C,Rt scaplgl))<c, R (13)
Proof. Let [1; = {x i< R = l,...,n}, Iy = {.r:|x,|$2R'”“"'2;i=l,...,n}.

Soas £5(1)cI1,, then

Caplgd 1)< Cap(TT,e). | (14)
Consider functions f(f)eCy(E,) such that f,()=1 for {{<R™7, £{)=0 for
=28, 0< £,()<1, and

d C

%‘ R‘*‘:ﬂ’ i=l,...,n. (15)

Then, if u(x)=] ] ,{x, ), then u(x)=1in [T, u(x)=0 out of IT}, u(x)e C7(E,)., and,
7=
by virtue of (15),

Oul G . .
o oo
Therefore,
" Ou 2
Cap([1;)< jx,(x{-a-x-] dx. an
=1 [T e i

n 2
From the other side for x e [T5\[1, Ixj| > g™ j=l..,n,ie. ‘x’a = Z|xj|2—-¢¥; ZnR,
=

and

A(x)<(+nR);i=1,. . 1. (18)
Taking into account (16) and (18) in (17), we obtain

Cap([1,) scsz | (

=1 T ATT, 1+nR
and this inequality with inequality (14) give the upper estimate in (13) with C, =C; x
x2"n. For the proof of the estimate from below we make space transformation

1-e;/2
y,:[—J X, i=1,...,n. Let -9(x)eC3°(E,,), S(x)zl on [1g. Then, if §(y) is an

n+2~-|fr-1
2

) R'zdeCsnR'zmes( k)=C5-2"nR

R
image of function 9(x), then 9(y)e C7(E,), §(y)>1 on [],. We have

ij)ui(x de Z]{I+ZR[_L]R|}: |z-a x

=1 g =l g J=1l

~E(a8Y il (53
xR*2.R 2 = 2 — ] il B
or i (3o

i = g
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n21e
>Rz > (y{asJ

=1

,Fh...._.

Condition R 21 bave been used here, Thus,

w2l

Capl[lz)2 R * CapTl,). (19)
Let U(x) and g are capacitary potential and capacitive distributions of I,
correspondingly, and g(x, y) is the Green's function of operator Z;,. We have

U(x): jg(x,y)dp{y);p(@l’[l)= Cap(nl )-

a1,
So as 0¢ 8T, , then function U(x) is continuous at the point 0, and U (O)= 1. Moreover,
for y e 811, 20, ¥)< Cs(n.@). Therefore

1=U(0)< Cﬁp(ﬁnl)= CGCap(l_II) ’

and with (19) it gives '

|

a2t |
Cap(fl)=C R 2. o)

1
Now it is enough to take into account, that [I, c &1}, where p=n 2", o*=

= max{e,,.. a} and from (20) follows the estimate from below (13) with

n-2

L =Clp . Lemma is proved.

Lemma 3. Let =1, x¥ =(0,...,0,—;—Rlﬂ%), ¥ e(ﬂ,i—] is constant. Then

Cap(z;;f (1))2 c, (a,an‘i)’"zigl .

This Lemma can be proved quite similar to the previous one.

3°, Theorem on increasing of positive solutions.
Lemma 6. Ler R21, =& (1) Hc23(1) is compact, Uz(x) is capacitary
potential of H withrespectto 3.. Then

inf Uy (x)2 Cyla,n,)E "p(H ), | 1)

6%" 0]
Proof. Suppose, at first, that 0 is sufficiently smooth surface. Let for k>0

operator L, have the same sense as it was above. Consider the Dirichlet problem
LU, =0; xeX\H; Uhlaﬁ=1; U,,|82=0. (22)
For each #>0 the solution U, of problem (22) exists, and converges to Uy in
norm #, ,(Z\H). By the Green’s. formula we have

2
[ L0 Fas= [ U,V ex, @
T\H =) eV )

where Etz is a derivative in direction of outward, relative to Z\H , conormal, generated
v
by operator I, . From (23) according to (2), we get
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fzoi‘i = [Shas

PRV gL o O
So as U, is capacitary potential of H, generated by operator L, , then from here it
follows that

aU,,

caph (H)= J‘ (24)

where capz is capacity, generated by operator £,. We denote a:?,,p U, by b, It is
n _
obvious, that b<1. Let
E ={x:xeX,U,(x)=8}, 4,={x:xeX, Uk(x)>b}.
So as in Y\ER() U,(x)<b, then 4, c £];(1). Moreover, 84, =E;, Hc 4, (s0 as
Upl, =1>b). Then, if ¥, = % , then from (24) we obtain

arg IaV,,, o= (U
b

capy(4,)= j v Ea—;ds, (25)

where .ég,'_ is a derivative in direction of outward, relative to 3\ 4, , conormal, generated
V .
by operator L,. We will again apply the Green’s formula for the function U} in the
domain 4, \ H. Denoting by ;; the derivative in direction of outward, relative to
v

A, \ H , conormal, generated by operator L, , we obtain
au,

0= [LUdx= [ Zgs,
A.,\IH" ’ 6(4,{”)6‘»"
1e. '
Iau,, IaU,, fZU? om IaU,, " )

Using (25) and (26) in (24), we conclude
_caph() | _capk(H)
capsl\a,}  capy\eap
2(4,)" cap}lg 1))
But, according to Lemma 2, als;];t; 1}U,,, >C7'b . From last inequality and (27), we have
R

inf U zc-'——p(L)c“ 2 (H) .
agh(y " ! cap} 2.1

Tending 4 to zero, we obtain

H)
inf U, 2C"—GP(L)C ( - | 28
) T caps (€% (1) “

It is easy to see, that if X' is ellipsoid, which contain 2., then for this ellipsoid inequality
of (28) type is valid, i.e. :

@7

H

caps: (H)
inf Uy 2C .
o2l E ‘(“"” ) apziggk(l))
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If now the length of the least halfaxis of ellipsoid 3’ we tend to infinity, then from the
last inequatity follows, that

it Uy 20, —H)
oy = capigzok(l)j

Using Lemma 4 and fact, that for any compact Bc £, pCap(B)S. cap(B)s y’ICap(B),

we conclude
inf Uy 2Cylan, p)ﬂ{f) (29)

2

653(}

From the proof it is seen that inequality (29) is valid and in that case, when H ¢ &£ ER ().
2

Let now H csg(l) be an arbitrary compact. Then there exists sequence of compacts
H,}, m=12,.; H, eng(l) with sufficiently smooth boundaries 8H,, which
2

approximates A from outside. If Ug is capacitary potential of H, with respect to X,
then, according to (29)

Now, it is enongh to take into accoumnt, that for m — Cap(H ,,,)—) Cap(H ) ., Us (x)>
Uz(x) uniformly on 25(1) (see [11] and Lemma 3), then we get, and that inequality
(29) is valid for arbitrary compact H < £x (1) Lemma is proved.

Theorem 1. Let G be domain in %(1), which has limit points on 0 %) and
which intersects Ep(l). Let also u(x) be a weak solution of equation (1) in G, non-
negative in G, and vanishes on that part T of boundary of 3G, which lies strictly in
Efk(l) (in the sense of W;,a ), moreover, with respect to coefficients of operator I
condition (2) holds. Then, if R>1 and H = £3()\ G, then

supu =1+ Cw(o: n, ,u)—-j-— (30)

s ;‘ cnsz(s)

Proof. Let U(x) be capacitary potential of H with respect to £2,(1), M = Supu

Consider auxiliary function W (x)= Ml ~U(x)]-u(x). It is clear, that W{x) is a weak
solution of equation (1} in G', moreover
W looroen =M ~ Hoorogy 205 Wl = Mi-UJ )2 0.
According to meximum principle W(x)20 in G, ie. ulx)< M (l ~ U}r ), and, in
particular,
sup #< sup uSM[I— inf U] 31
ongx)  Gnask() 2 ()

Now it is enough to use Lemma 6, and from (31) follows required estimate (30)
with C,, =C;. Theorem is proved.
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4°. Theorems of the Phragmen-Lindelsf type.
Theorem 2. Let u(x)eW,(D) be a weak solution of equation (1) in D,
u| op SO in the sense of W, o> moreover, with respect to coefficients of operator L

condition (2) hkolds. Then
1) either u(x)<0 in D,

2) or %M (R/ex;{qo (a.n, y)%lfle-m[”’z 2 ]CGP( " )} >0,

m=1
where M(R)= sup u, H" = Sf,. (1)\ D, m=12,...,.
Dregz(t)
Proof. Let alternative 1) doesn’t hold, then there exists point x° € D , such that
u(x° )= a>0. We denote by m, the least natural number, for which x° & Sf,., {1), and let

for i=12,..., M, = sup u.According to Theorem 1
DNE5 (1)
—i[n—l—lg—l)
M, 2|1+ Cye CaplH')|M,. (32)

Let R21 is sufficiently large, and m > m,_ is natural number, for which €5 ()c £5(1)c
c 33.“ (1), ie.

e" SR<e™, (33)
Applying consequently inequality (32), we obtain

-t 24t
M(R)2M, > an[l +Cpe G ]Cap(H‘ )]

i=py

therefore

f=ml

| ol
M(R)> aex Em[nc,oe( 2]c@s(}af‘)ﬁ. (34)

, -4
According to Lemma 4 Cap(H‘)s Cap(gg (1))5 Cue ?/. From the other side for
telo.c,]
In(1+ C,gt)2 €y {C,,Cro ) 1 .

Therefore from (34) it follows, that
] e - | sl | n el
M(R)= aexp| C,, Zfe-‘[ : JCap(H‘)}-——aexpli%Zfe {[ ’ 2]C‘Jzzgv(jff‘)jl><
F=nty i=l

P s Al
x expl ﬁ[zle{ 2 2]cusgn»(h")-221;[ : 2]Cap(H’)} . (35)

2 il i=l

It is easy to see, that alternative 2) have contensive sense only in that case, when
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e
w n~2
Se [ ]cap(H‘) (36)
i=t
Therefore, taking condition (36) as valid, we conclude, that for sufficiently large m (i.e.
R)
I | f nacttl
m=t ~i n-2 i n-2
e [ ]Cap H' > 2& ( JC'ap(f:!').
fa] =
Therefore, from 835) we obtain
m-] —i[nvl—u) .
M(R)z aex “ Ye Cap(H’) (37)
i=]

Now, taking into accounts, that according to (33) m~12 [ln R]—- 2, from (37) and Lemma
4 we have

M(R)2ae C;l [hfze_{n-z_u)(;‘ap(ﬂ ! ):l = aex;{ 2“ [hiﬂe-i[“‘z*l)(l‘ap(!{ d ):( x

i=]l - =l

|
xexp{-—% [i:V_j'f]e [ 2 ]Cap(H i)}Zaexp[w C,Cyy Ix

ezt
xexp[gz‘-l[hfie ( 2 2JCap(H’)}.

i=1

Thus, alternative 2) takes place with n, = % . Theorem is proved.

Theorem 3. Let h>1, @, =a” =min{e,,...,a,}, %, is double cone {r:x2 >

n-i
> hzzxf}, D=E,\%,. Then, if u(x}e W2 (D) is a weak solution of equation (1) in

=t
D, ul,, <0 in the sense of W, . and with respect to coefficients of operator L condition

(2) holds, then
1) either u(x)so in D,

2) or li_mM(R)/ R¥ >0,
R0
where 1 =n, (a, n, p), B= ﬁ(a, n).
Proof. Let for R21 Qf and x® have the same sense as it has in Lemmas 3 and
5 correspondingly, H(R)=E3{)\ D. It is easy to see that _@*i,_, cH,.
R 2

4h
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Now we will find such p, that £% ()< D* ., . For this it is enough that for
R 3

T
1% RI‘%"
i=1,...,n the inequality p 2 <

to be hold. But, so as a,=a", then choosing

p= = R ——, we provide validity of required inclusion. From the other side,
(am)™ v
according to l.emma 5

3

w212l

R 2

Capl €7 . () 20— 5
o e 4"k

2n-4-
where ﬁ=ﬁ?————*—|a|.Therefore, for m=12,...,
-
| ol
m C m| n-2 3
Applying now Theorem 2 and taking into account (38), we obtain that if alternatlve 1)

doesn’t take place, then
_ I‘E M R)/exp[ o [lnR]] >0.

Thus, Theorem is proved with 7, =

(38)
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