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GASIMOV Z.M,
INVERSE SINGULAR PERIODIC PROBLEM OF STURM-LIOUVILLE
Abstract
Inverse spectral problems for differential operator of Sturm-Liouville on finite
interval with non-integrable singularity at one of the ends of interval were investigated.
The necessary and sufficient conditions and procedure of solution of inverse periodic

problem were obtained.

Consider boundary value problems, generated on interval {0;7) by equation

- y"(x)+ a(elx)= p i) (1)
(4 is a complex parameter) with real potential
no4

7=+ (). 2)

where p,.e(l;%) and A, (i:i,_m) are real numbers, ¢,(x)e L,]0,7] and seperated
boundary conditions

»0)=0, yr)=0 (3)
or,

Wo)=0, y(@)=0, @

#0)- yla)=5(0)- y'(z)=0

H0)+ y(z)=y'(0)+ y'(x)=0

and also periodic
and antiperiodic

boundary conditions. _

By virtue of singularity of potential, the derivative of one of linear independent
solution diverges at the neighborhood of point x=0 {see [1,2]).

At paper [1] it was shown that eigenvalues (EV) of problem (1), (3) are the roots
of equation s(x,ﬁ.)= 0, (EV) of the problem (1), (4) are roots of equation s'(z,A)=0;
and {EV) of periodic problem are roots of system

s{z,A)=0
s, A)=1"
(EV) of antiperiodic are roots of system
' s(z,A)=0
s'(m,A)=~-1
where s(x,A) is solution of equation (1) with initial conditions s(O, .3,) =0, 5(0,1)=1,
and satisfying to the following asymptotic formulas for {2 —> o> by virtue of [1, 2]:

sin Ax + —%]éin).(x —t)sin A tqlt)dr HIImlle[R—z(%)], ()
RS 2

s(x, )=

A =costx++ feosils-sinde- gl + Ol W], )
0

where
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R(;L) frlq(r]dr+ Iﬂq(r]dt )

Using conclusions from {1-3], asymptotic formulas (5-7), we obtain, that (EV) of
congidered boundary value problems satisfies to the following asymptotic formulas:

A =k+ —I—T[sinz it -gltkdt + e, , ®)
J_ k- (k 73, Join® (e~ 2 - qlehar + ﬂt , ©)
JE:ka--jsiu k- g(t)dt + 5, (10)

where a,, By, €; —ORz(k)] and ZI“#I +|ﬁk |sk| <o, 4, are (EV) of problem (1),

(3), v, are (EV) of problem (1), (4), 145, are (EV) of periodic, u3,,, are (EV) of
antiperiodic problems.

All considered boundary value problems are self-adjoint, its (EV) are real, EV of
problems (1), (3) and (1), (4} are simple, and (EV} of periodic and antiperiodic problems
could be multiple. From classical oscillation theorems for solutions of equation with real
potential it follows, that mutual artangement of these (EV) is:

—o<Y <A <y <A, <vy <,

—o< g < py Sh S <py << <
At paper [4] inverse problem was solved by two spectrums in case of separated boundary
value problems (1), (3) and (1), (4) with considered potential (2} in terms of necessary
and sufficient conditions, which formulated by the following way:

Theorem 1. For two sequences of real numbers {/’Lk}, o} k=12,..) to be
spectrums of boundary value problems, generated by the same Sturm-Liowville equation
(1) and with real potential (2), it is necessary and sufficient for these sequences to
alternate and satisfies to asymptotic formulas: :

B=k+ 2540 k7 244 a,, an
i=]
=k -1/2) + —ZA,CM (k-1/2" -24+8,, (12)
i
P 2 2?;—3

, A are arbitrary real numbers

where C, -—-J's

o & "E:(p,—nr(pf ] 21

and Z|a,,| +1bk| <o,

The method of proving of this theorem is analogous to [3], we reduce it to the
solution of inverse scattering problem on halfplane 0sx<w generated by Sturm-
Liouville equation (1) and boundary condition y{0)= 0, which have

1 () {QI(I)*'%(JC) O0<xsz

, X>T




‘E"
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where q,(x) is such that ’]'x}{‘lql(xldx <, g, (x)e L,[6;7 ];
0

2) discrete spectrum is absent.
The total solution has shown has shown at paper [5], at paper [4] was noted, that
function of scattering ${) have form:
s(z):%, where ¢(1,0)= e [s'(2,7)-i2s(1,7)).
L P
By similar way from [6] we can state
Theorem 2. For the function u(z), 9(z) to allow the representation

u(z)=sinzz + ]S_i_nfg”_‘i)q(,)sin stdt + Am 4:c§sxlz N f(2) ’
0 z z° - z

sinzz g(z)

Hz)=coszz + sinz(x - 1) ——— T 2o(¢)sin zedt - BriRIZ
0 4 rt

where q(t)zit—éﬁ-qc (t) A, B, A; are regl constant numbers, p, E(l;5/4), qo(r)e
: 4P

e L,[0, z), f (z)= J F(e)cosztdr, fl)e L,[o; x|, f[f(t)dt =0, glz)= ?ﬁ(r)sm ztdt ,
0 0
g(t) €L, [o; 7:] it is necessary and suﬁcrent that

ulz)= n‘zl_fu”r 5'( )=ﬁ i —= ,

where

o ”—}—[A+Z*—""*—Ai ]+5§~ (13)

& kZ‘P k i z(pl —'I}Z'p’
_l _]:_m A'Cf’l I ‘- b, _
Be=k 2 7% (k-2 k- 1/2[ pr 2(p —1)%] k-1/2 (19

and moreover, i‘%‘ +|bki <0,
P

In the statement of this theorem, functions u(z) and 9(z) are not less, than
functions zs{z,7) and s'(z,7).

Now we will consider inverse periodic singular problem of Smrm-Lmuvﬂle on
the finite interval. It can be stated by the following way: to find out necessary and
sufficient conditions, to which should satisfy two sequences of real numbers to be
spectral periodic and antiperiodic boundary value problems, generated by the same
equation with potential of the form (2); and to find out method of construction of all such
eqiations.

The sequence —oo < ity < 2y S gy < iy S gty < gy <+ consists of (EV) {ink} of
periodic and {pf,,_i} of antiperiodic boundary value problems, generated by equation (1)
with real potential of the form 2). Then sequence

oo<0<(u, ,uo) (u —;.LD) (u' —_uo) (;1; —,uo) .-« consists of (EV) of periodic
- Ho } and antiperiodic {;42 ,uo} boundary value problems, generated by equation
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= y'(x)+ [ax) - pro )= 1 1x)
with real potential 4(x)~ 4, from the class of potential of the form (2) as well. Therefore,

without lose of generality, we can suppose 4, =0.

Substituting potential of the form (2) to the formula (10), using conclusions
similar to that was done at paper [1,2], we obtain following asymptotic formulas:

ut = (k) + %iA,.Cm ()P —24+a5,, (15)
: =l
i =Qk-1F + iiA,.cm (k-1 -24+45,,,. (16)
T =)

If we make correspondence w3, —> 4; (p;) and 45, , > Mg (”;-1;’2)’ and supposing

def def
gy = Ay, and g4, = v, , from asymptotic formulas (15), (16} we obtain that sequences
{A;} and {v},} satisfies to asymptotic formulas (11) and (12), and therefore to (13), (14).
Really,

m 12 m AC +
\/}._;=[k2+g-z,4icplk”"' -—2A+ak] =k+—l-z-{-—’i—i+a—"+
7 =

T kT k2%
1 1&4C, 4 &
+ O |k = L G
O[kS—zk,—p,:l ﬂé k2—p. k k

and by analogous way, we obtain

-

- 1. 1& AC, 4§
Wi =k 2+:r§(k—1/2)2"" -2 k-2

=l 12, R
where 3 |d,| +‘bk| <,
P

Thus, we obtain, that by sequences {u.fk} and Z*H} we can determine functions
s{4;7) eand 5'(4;x) by virtue of Theorem 2, and this is enough for Theorem 1 for
reconstruction of potential. '

Therefore, we state theorem

Theorem 3. For sequence —oo< gy <py S <y Su; < to consists of
spectrums of periodic (Un,ﬂz_ SH3  Hy s iy ,) and antiperiodic (p,’ T oy ,)
boundary value problems, generated on the interval (0,7) by the same equation (1) with

potential of form (2), it is necessary and sufficient for this sequence to be represented in
the form

=k 240, 2dnat,
o=
o = 2
where p,e(;5/4), A, A are arbitrary real numbers, CP:=I51;:6“§ and
0 (]

5

2 | e
+lgkl <o,
I=]

e;

Remark 1. At paper [1] it was proved, that asymptotic formulas (5), (6) take
place in case of singular points at the ends of interval in case of potential, which satisfies
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to condition ’]x(rr - x)g(x)}dx <o with the only difference, that in remainder member
0

R(2) in formula (7) will be functiou

NA)= I!|q(r]dt+| A J]q(r]a’r+ j(:r t)ale )t .

z-1j]
But asymptotic formulas (8)—(10) take place for potentials from class

Aglx}e L, (0,7] and condition i]akfz +18, + !sflz < holds for potentials from class
=

XV [q(x] el [O;ﬂ'].

Remark 2. All described results on solution of inverse problems in regular case
were of excellent studying and were stated on paper {see, for example, [3]).

As a conclusion I would like to express gratitude for Professor LM. Guseinov for
useful advises in discussion of results.
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