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ON UNIFICATION OF RHEOLOGICAL AND HYDRAULIC
' CALCULATIONS

Abstract

The article is devoted to an engineering method of rheological stationary fluids
flow calculation in pipes and channels. By means of a complex variable method the
universal formulas for velocities and flow rates distribution have been received.
Characteristic linear size for single-bonded areas selection methods have been offered.
The quasi Newtonian approach method has been suggested for the first time.

The «realy rheological equation of condition construction has been pointed out
and nonlinear viscosity plastic fluids differential equations have been worked out. The
resistance laws generalized for the rheological stationary fluids have been received.

Introduction. In many fields of industry (oil, chemistry, power, light industry,
food industry and others) the technologic processes deal with the fluid motion, with
different rheologic properties in the pipes and channels with arbitrary cross-section [1,3-
6]. Complexity of working out of rheologic hydraulic calculations in the pointed out
processes is caused generally by the following reasons:

- the existing exact formulas allows determine the channel capacity and hydraulic
losses for the channels with simple geometry;

- the working fluid within one and the same process in dependence on external
conditions can behave both Newtonian and non Newtonian;

- there absents the unique methodic for determination of rheoconstans of
anomaly fluids which are invariant with respect to the geometry of the flow;

~« adequacy of the taken rheologic models is often provided only for the limited
diapason of the working gradients of the velocity; :

- there absents the unique approach for the choice of the characteristic linear size
coming into Reynolds number which let determine the hydraulic losses independently on
the geometry of the cross-section.

In this work the results of investigations of recent time on rheology and
hydrodynamics of fluids carried out in Azerbaijan State Qil Academy which are the base
of the complex approach to calculation of hydrosystems relating to different fields of
production.

Invariant representation of the existing formulas
The differential equation of the laminar flow of the viscous fluid in the channel
with arbitrary cross-section for constant gradient of pressure has the form [3]:

e 0

with the boundary condition # =90 on the contour.
The precise solution of equation (1) was obtained for the channels with the
simple sections [1,3]. For invariant representation of the existing dependencies Q- Ap

as the force factor the mean by the perimeter the tangential stress 7, is suggested and as
the kinematics characteristic the equalent gradient of the shear velocity y,, is suggested.
The value of 7, is determined from the equilibrium of pressure and function forces
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7, =L, @)

The equivalent gfadient of the shear velocity is determined by analogy to the
fluid flow in the circular pipe, i.e. according to Hagen-Poiseuille formula

y, =42, 3)

 where r, =2r, /£.
Thus, the correlation

7, =dp @
Y,
is universal for the channels with arbitrary cross-section.

Unification of velocity for the viscous fluid

For construction of the field velocities in the channel with arbitrary cross-section
the complex variable method [7] is used.

Introducing function _

cus 2P (2,2
w_u+4p](x +5?) )
equation (1) is transformed to Laplace equation with the boundary condition
= Ap(xz + yz);‘ 44 on the contour.

That substitution has the following hydradynamic interpretation: the problem of
determination of the field of velocities for the flow of the viscous fluid in the channel
with arbitrary section has been reduced to the problem of determination of flow of the
ideal-fluid in the prism with the same section rotating with the angular velocity
@=Ap/2ul . In order to find the function y/(x, y) for arbitrary area, at first the interior

of this area in z-plane (z = x +iy) is reflected into interior of the unique circle in ¢ -
plane (Q' =E+in= pew) with help of the power series

I=a + @l vl vt a L .. 6)

Then using Schwarz’s integral the function f(¢) is determined in the unique

circle by the given real part on the contour. Then taking into account the boundary
condition (¢} is determined in the unique circle by the given real part on the contour.

Then taking into account the boundary condition yx:%az -z for flow function we
obtain

0[2 >al+ Zp coskSZa am] D

k=1
Following (5) we find the velocities dlstnbut:lon in £ -plane

u~—-[ a2 2")+fjp*coswfaxam(l—p’*)} ®
2k={l k=l 5=l
Distribution of velocities u(x, y) in z-plane is constructed according to

x= Z‘%P coskf, y= Za*p sinké .

k=]
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Composition of the results of numerical calculations by (8) for the channels with
the cross-section in the form of ellipse, the square and infinite strip with the velocity
diagram constructed by the exact formulas was given in [13] which cemﬁcates of
validity of the suggested method.

The generalized formula of the volume expense of the viscous fluid.
Taking into account (5), passing to the polar coordinates in & -plane, for fluid

discharge we obtain

Q= Hudxajz f I pdpd@—--—-m I j

Substituting the value of w(p,e) from (7) and takmg into account (6) from the
last we have

2
pdpdf. (%)

z-.._—
4

[ZZa,«asta By + 3 ZaEZ(k l)am——Zk@a ak.,ﬂ (10)

=t j=) .

Therefore, for the known representation function z=z(¢) by (10) we can

determine the discharge of the viscous fluid in the channel with arbitrary single-bounded
cross-section. Particularly, for the circle {a; = R, a, =@, = a, =...=0) it coincides with
Hagen-Poiseuville formula. The validity of (10) for some channels was checked with
results were given in [13].

It should be noted that unification of the discharge characteristic for different
channels can be realized also with use of the hydrodynamic analogy by Boussinesq [1].
The generalized formula for discharge of the viscous fluid will be represented in the
form:

4
g=225 an
167~ pad i

Representing (11) in the form of (4) for the approximate value of the equalent

radius we obtain:

ri=8 At Jgr, =2r, 1£, (12)
where &' =872J, /Sy’ is the approximate value of the coefficient of the form.

In the cases of the circle and the elliptic channels the equation {11) coincides
with the exact formulas. For the right r-angle

2 °

s, T 2180
=——| }+3ctg*——1.
3n’[ 8 J

Selection of the characteristic linear size
From the above-represented methods of generalization it follows that the

characteristics linear size of the cross-section of the channel can be determined by three
ways:
1) by the exact solution of equation (1);
2) on the base of Boussinesq’s analogy;
3) with help of the conform representation method.

The generalized formula (10) gives reason to determine the discharge of the viscous
fluid in the channel with arbitrary section as in the case of flow in the circular pipe
whose radius is equal to the conform radius 7 of the section of channel {9]. In table 1
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the values of the equivalent and conform radiuses and also of the coefficients of the
forms for some areas have been given.

Quasi Newtonian approach to the calculation of flow of the anomaly fluids

The rheologic behaviour of most of fluids, polymer and paintwork materials, clay
and cement mixtures, paraffin-resin oils and oilproducts, confectionery and food
products, pastes and suspensions of nuclear fuel, pharmaceutical masses and blood and
etc. differ from behaviour of ordinary liquids and relate to the non Newtonian systems
[1,4,5,6]. The existing of rheology-hydraulic calculations methods are restricted or with
much calculation works. The suggested method of the quasi-Newtonian approach gives
an opportunity to forecast the flow of any rheostabil fluid in the channel with arbitrary
section on the base of data of the capillary rheometry. The crux of the quasi Newtonian
approach is in the following: the equivalent viscosity x4, of the non Newtonian fluid is

substituted by the viscosity of the ordinary Newtonian fluid which origins during flowing
as the resistance as the given non Newtonian fluid. Vahie of u, for the given velocity
gradient is determined by the consistent curving constructed in the coordinates 7, -y,
which are named the consistent variables. Consequently, the correlation
Te =MtV (13)

is considered universe as for the Newtonian, as for the non Newtonian, that is, flow of
any rheostabil fluid in the channel with arbitrary section, in the integral approach can be
represented as the flow of the Newtonian fluid with equivalent viscosity in the circular
pipe whose radius is equal to the equivalent radius of the non-circular channel. In Table
2 the formulas for the equivalent viscosity and the mean velocity for the particular
rheologic models are reduced.

Validity of quasi Newtonian approach had been tested by working-out of a lot of
data which there are in [12,15] and by own tests which results are given in fig. 1,2.
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Fig. 1. Data of a capillary rheometry for channels with different cross sections; 1- for solid oil “C”
under +=30°C [12), 2- for 7%th solution of CCM under t=20°C [15] (the denotations in the figure
corresponds to cross sections forms).
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Fig. 2. Rbeological curve of oil for well Ne735 of Kyurovdag deposit under t=1 8°C; 1- data of 2
porous medium with air permeability of 16,5 darcy; 2-data for a plane slot of 1,2mm height; 3-data
of a capillary viscosimeter d=1,5mm.

Table 2,
Rheomodels U, u
Bi -Schwedoff T Al =T, ) 45
ingham-Schwedo q'(1+lSen] 7L Ty) 47
Ostwald-de Waele k(am /iy *1“"9 =, /&
4
Kesson-Shulman itn T 1, N B
n’{n&s.en] ] i b @y T

Determination of «aeal» rheological equation of condition.
In order to use the rtheometric data for determination of the local characteristics
of the flow and also for solving of the problems of convective heat mass transfer it is
necessary to construct the «real» rheological equation of condition of the anomaly fluid,
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The real values of the velocities gradient on the wall of the channel are determined by
Mooney- Rabinowitsch formula [6]

Fu= 2 a, 7). (14)

The dependence y, = F (Tw) is found by the way of working out of the data of
capillary rheometry. The selected model must be differed by adequacy and simplicity.
The model is considered adequately if F,,, < F,, [10], where F is Fischer’s variance

ratio. As the result of working out of data of 26 tests it was ascertained that at 20 tests
(= 77%) Kesson-Shulman’s model was adequately

2" = + )" (15)
Taking into account the rheomodel (15) represented in the consistent variables from (14)
we find
1 1
RS § PN m— (16
& 4"[ 1—(::;)“”} ’

For every T, by (16) the value of y, is constructed which is the «real»
theological equation of condition and the found constants z,,7 are the «real»

rheoconstants of the model (15). The results of the calculations had shown that passing
from the consistent variables (7,,7,,) to the model's (r,7) the values of the limit shear

stress differ much. Moreover, the difference of values of the structure viscosity is neglect
small for practice.

The differential equations of motion of the non-linear visco-plastic systems
Taking into account that the deformation condition of Genky’s plastic body after
passage through the flowing condition and the rheological behavior of Kesson-
Shuiman’s flluid almost coincide, then the differential equations of motion for the last
one can be completed on the base of the deformation theory of plasticity by Genky [2].
By this theory between the intensity of the tangential stress 7' and the intensity of the
shear deformation & the correlation exists

l .
IT'=—=¢. 17
50 (17)
The value @ in (17) is named Genky’s coefficient what in the general case is the

function £. The view of this function is determined by tests. For Kesson~ Shulman fluid

it will be:
2—1(’;2[(% !a)"” +(n”")]', (18)

Taking into account (17) and (18) in the equation of motion of the continual
medium

brl - '
— = poF +divT ' 19
Py =P _ | (19)
after some transforms we obtain
DU = :
- = pF —gradP +\n'" + 1" M v2 +.
24 Dt pi Br (?? + f T u - (20)

nréf"( ;"M+171’"T—ls gradP
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Correlation (20) is the vector form of the differential equations of motion of nonlinear
visco-plastic fluids. For 7, =0 from (20) we obtain Navier-Stokes equation of the
Bingnam and Shvedov’s {4], for n=2 - the equation of motion of Kesson’s fluid.

Now we will complete the differential equations of motion of the low-
compressible non-linear visco-plastic fluid in the elastic porous media [11]. The
consistent variables are represented by the correlations:

.= AP\/_ =t @1

Then the filtration process is described by the following system:
- equation of continuity

divlpi, )+ o(om)ior=0; (22)

- equation of condition of the system fluid-porous media

pm Pumo(l + L ;‘%) : @3)

- equation of motion
K 1in n gradP
u, =——\gr -G . (24)
Taking into account (23) and (24) in (22) we cobtain the differential equation of
motion of the low-compressible non-linear visco-plastic fluid in the elastic porous media

P , » dP
P _ yagraar(™ - G¥ e (25)

1/n

ot
For 7, =0 the well-known equation by Shelkachev V. N. [11] is obtained.

The generalized low of resistance rheostabil fluids
Let’s represent the formula by Darcy- Welsbach in the form

—;L TR (26)

Comparing (26) with the rheological equation (15) we obtain
_ 64 64
2par,/p, Re'

This formula is the generalized low of resistance of the laminar regime for all
rheostabil fluids. For the filtration case in (27) the mean velocity is substituted by the

equalent radius is substituted by the values 44X .

The turbulent motion of rheostabil fluids was studied on the base of the model of
academician Millionshikov M.D, [8] that was founded on the superposition principle of
the molecular and turbulent viscosities. The following physical reasons were accepted:

- the turbulent motion of the rheostationary fluids happens by the two layer
scheme by Prandtle- Taylor;

- the thickness of the laminar sublayer is too small in companson with the
characteristic transverse size of the channel;

- the viscosity of the laminar sublayer in the case of the anomaly fluid is equal to
the value of the equivalent viscosity on the wall of the channet;

- in the turbulent kernel area the structure of turbulence is the same for the
Newtonian and the non Newtonian fluids,

@7
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Fig. 3. Comparison of the generalized resistance law (dotted lines) with the experimental data on
the flow; 1- of kerosene in a porous medium under K=2000 darcy [14]; 2- of the solid oil in a
triangular channels (b=4,4mm, h=3,8mm) [12]; 3- of the resin oil in a plane channel (§=1,24mm)
and in a circle capillar (d=1,5mm); 4- of the 14,3% water mixture of clay in a circle channel [16];
5- of water in a rectangular channel (7,9%x27,8mm) [17]; 6- of the paraffin oil in the pipe-line
Grozny-Gudermes (1=41,65km, d=196 mm) {18]; 7- of the 1%-th CCM in rectangular (a/b=1; 2,5;
6,25; 16,67) and triangular (a=60°; a=49mm) pipe-lines, correspondingly [19].

-
The twabulent motion equation is written in the following form:

- 7,0~ 7)=(u, +#,)§,J”;- (28)

For djsg;ribrution of velocities we obtain
' ulu,=n for 0<n<?,

E 3

- 29
ufu.=—£—1n[1+a(r;—§)]+§, for n=d. 9

The mean velocity is determined by
1
a=2{(t-y)udy . (30)
0
Taking into account (29) from the last we find '
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W %Re- B= %(52 ~5 454 14)+
. (31)
+ %[az(lna ~15)+2a-05]+6.
The formula (31) with the formula by Darcy-Weisbach represented in the form
PYS S (32)
(Re"- 12}

gives the generalized low of the turbulent motion of the rheostabil fluids in the
parametric form where the parameter is 4.

In fig. 3 the universal laws of resistance (27), (31) and (32) and also the data on
hydroresistance of some rheostabil fluids [12,14, 16-18] are represented.

Denotations
u is the velocity of the fluid in the given point; # is the mean velocity of the
flow; 0 is the volume discharge; AP is pressure differential; R,! are the radius and the

length of the channel, correspondingly; s is the dynamic viscosity of the Newtonian
fluid; 7, is mean by the perimeter tangential stress; y, is the equivalent gradient of
velocity on the wall of the channel; », is the equivalent radius o the channel; 7, is the
hydraulic radius; & is coefficient of the form of the cross-section; J, is the polar
moment of resistance of cross-section; g, is the equivalent viscosity of the non
Newtonian fluid; 7, is the limit shear stress; 5 is the plastic viscosity; & is the
coefficient of consistence, n is the index of flow or parameter of non-linearity;
75,1, k',n’ are the rheoconstants determined from the consistent curving; Ty =1;,/7, is
the dimensionless limit stress of shear; Sen=2ryr, /7 is Saint- Venant and Ilyushin
parameter; A4 is the coefficient of the hydraulic resistance; Re” =2pur,/u, is the
generalized Reynold’s number; ¥ is the dimensionless distance from the wall of the
channel; 4, is the turbulent viscosity; u,,7,, are the values of the equivalent viscosity
and gradient of the velocity on the wall of the channel, correspondingly; u, = NE,lp s
the dynamic distance; & =u,pd,/u, is the dimensionless thickness of the laminar
sublayer; 8=y, /rup;8, is the thickness of the laminar sublayer; & =6, /7, = §8;

a=1+ %(1 -5 ); a is Prandtle-Karman constant; M =£"; m, K is '@ porosity and

penetrability ratio of the porous media; u, is the filtration velocity; G, =1, /VK is the
initial pressure gradient in the porous media; c=.B/pm, is the velocity of
distribution in the system porous media-fluid; m,, o, are the porosity and density of the
/2

1+ Bpimf,

the volume elasticity of the fluid and the porous media, correspondingly; y = pke* /7 is
the piezoconductance coefficient.

fluid under pressure F,; B volume elasticity; f,,5, are mediums of
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