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ON THE APPLICATION OF COMPULSION MEASURES
TO ELASTICITY THEORY PROBLEMS

Abstract

A differential variational principle of elasticity theory based on the compulsion
measure and on Hu-Vasidzy’s variational principle is suggested in the paper. Lagrange-
Gauss principle is constructed on this principle. It is shown that the functional of this
principle achieves its minimum for real values.

Introduction. Dynamical problems of elasticity theory conditionally may be
divided into two groups. To the first group belong the problems for the solution of which
at the moments f =, and t =1, the displacements of the points of the body are given,

where £, and ¢ are correspondingly the beginning and the end of the time interval on

which the motion process in studied. To the second group belong the problems of which
at the initial time moment the displacements and velocities of the arbitrary point of the
body are known. The construction method of variational principles for solving problems
belonging to the first group is known. Corresponding functionals are analogous to the
Hamilton functional. By the constructing variational principles for solving problems
belonging to the second group there arises some difficulties related with inclusion of
corresponding functional both the equations of elastic body motion and initial conditions
to Euler’s equation system. In many cases we can overcome these difficulties by
infroducing the convolution: in Hamilton type functionals, the multiplication is replaced
by the convolution and additional terms are introduced. Numerical realization of such
variational principles leads to some difficultics. Therefore, it is necessary to construct
other functionals. The aim of this paper is the formulation of variational principles for
dynamical problems of elasticity theory when initial conditions are given..

1. Differential variational principles of elasticity theory.

Variational principles of mechanics are divided into differential and integral
ones. The first principles give the real motion criteria for the given fixed time moment,
but the second ones - at the final time interval [1). Among differential variational
principles of mechanics we distinguish the Gauss principle (the least compulsion
principle) for a mass points system. This principle says: among comparatively kinematics
possible motions, the real motion is distinguished by the fact that the compulsion
measure Z is minimal for it, where [1]:
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m; is a point mass, W, is the acceleration, F is the resultant force effecting to the
chosen point, NV is the number of points contained in the system. Hence we have that the
quantity Z considered as a function of possible accelerations is minimal at the values of
accelerations of the points of the system corresponding to the real motion.

The choice of the Gauss principle among the differential variational principles of
mechanics in explained by the fact that the motion equations of elastic body points
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depend on acceleration. The system of motion equations of the elastic body.points take as
2k
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where o¥ are the components of stress tensor, p is the density, #’ are the components

of a displacement vector, ¢ is the time, A" are elasticity modules, e,, are the

components of strain tensor, the comma means a covariant differentiation with respect to
the coordinate, S, is a part of the considered body on which the displacements #; are

given, §_ is the remaining part of the surface on which surface efforts 7 are given, »,
are the components of the normal vector. We take the initial conditions for solving the
system (2) as follows:

Jor t=¢t, wu= =u’; %w)f xeV, (3)

' Rewrite the system (2) as;
ol =pw'; o'=4
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where the point means the differentiation in time. The quantities w, are defined from the
following equations:
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In addition it was supposed that the quantities # have necessary number of
derivatives. To obtain the solution of the system (2) from the solution of the system (4)
the Cauchy relations, and boundary conditions twice must be integrated in time. By
integrating boundary conditions it is necessary to use the initial conditions (3), namely

Jor xeS§, %-* =vl; u£|,=,o=uf. (5)
at i=iy
By integrating Cauchy relations it is necessary to use the following equalities:

éff[m,, = %('92,1 + ‘91?::} xt|e=t, =%(“I?J +uf0,k) . ©)
obtained from the equalities (3). Thus, it is shown that the system (4) with initial
conditions (3), {5), (6} is equivalent to the system (2) with initial conditions (3).

To solve the equation system (4) we suggest a variational principle. The
suggested principle is based on the compulsion measures (1) and on one of the
variational principles of the elasticity theory. If , in particular, we take Hu-Vasidzy’s
variational principle [3], we have:
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where varying quantities are o¥,&,,w, (the quantities e, are not varied). Considering

that variation operator functions only on indicated quantities, we find the expression of
the first variation, It has the view:

&= I{Jaﬁ[ég —-;—(wu + W;,f):| + &'q(o-“ - AMe,, )-o"f&vi_j - pvw’&v,}dV +
14
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Apply the Gauss theorem to the third term of &7 and by grouping &J with respect to the
variation of independent guantities, we get:
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By writing the above equality it was considered that the surface of the body consists of
two surfaces S, and S, , and they don’t intersect. From the stationary state condition of
the functional (7) &7 =0, by equaling the coefficients to zero by variation of
independent quantities we get that Euler’s equations system of the functional J coincides
with the equation system (4). Thus, we can show that the solution of the equation system
{(4). Thus, we can show that the solution of the equations system (4) is equivalent to the
finding of stationary value of the functional (7). Since the system (4) is equivalent to the
system (2), we can formulate the following principle by Hu-Vasidzy-Gauss; real motion
of the elastic body points differs from all other ones by the fact that for them the
functional (7) accepts a stationary value. Note that this principle is admissible both for
the first group of dynamical problems of the elasticity theory, and for the second one,
when integral variational principles may be applied only for the first group of problems.

2. Extremal property of differential variational principles of elasticity theory.

By analogy with the functional (7) we can construct many functionals
corresponding to differential variational principles of the elasticity theory based on
variational principles of elasticity theory, In particular based on the Lagrange functional
and compulsion measure we construct the following functional similar to (7):
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where independent quantities are w' and the quantities u, are not varied. Tt is clear that -

the Euler equations found from the stationary state condition (8) coincide with the
system (2) under corresponding transformations. Note that the functional (7) is complete
and the functional (8) may be obtained from (7) by the corresponding transformation.
Therefore, (7) may be considered partial by analogy with (7),we may call it the
Lagrange-Gauss functional.

Analyze the stationary value of the functional (8). In this functional, with respect
to the chosen varying quantity, all terms, besides one, are linear. Therefore, the second
variation has the form:
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Quadratic form appearing under the integral is positively defined, since p>0.
Hence it follows that for the solution of the system (4), the functional accepts the
extremal value, namely the minimal value. Note, that the extremal property of the
Lagrangian functional has been proved only for the problems of statics. The extremal
property of Lagrange-Gauss functional distinguishes it among similar functionals by
numerical investigation of solution of a dynamic problem of the elasticity theory, when
initial conditions are given.
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