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SOME IMBEDDING THEOREMS AND NONLINEAR
DIFFERENTIAL EQUATIONS

Abstract

This work is devoted to the study of some pn-spaces and non-linear equations.
Besides anisotropic pn -spaces are studied, some imbedding and compactness theorems

are proved.
Using the obtained results for pn-spaces it is proved the solvability of the

bowundary value problem for a class of elliptic-parabolic equations. The considered class
of equations, in particular, contains the unstable filtration equations type equations.

The research of boundary value problems often leads to the study of functional
spaces directly related with considered problems. In other words, while studying
boundary value problems there arise spaces being the domain of definition of operators
generated by the considered problems, for instance we can say that Scbolev spaces and
their different generalizations arises namely so while studying boundary value problems
for linéar differential equations {see [1]).

Unlike linear boundary value problems, in the case of nonlinear boundary value
problems, the sets generated by these problems, i.c. the domain of definitions of
corresponding operators generally speaking are the subsets of linear spaces not
possessing the linear structure. In particular, these sets are the subsets of Sobolev spaces
(see [2,3]). Note, for example, the subsets arises in papers [4,5] and called pn-spaces
proceeding from the structure that they possess. (Note that these spaces possess and the
metric spaces structure, i.e. they are metric spaces).

In the given paper, the classes of pn-spaces, related with nonlinear boundary

value problems, and some nonlinear boundary value problems are studied. The following
mixed value problem and related spaces are also studied:

?Ji‘l_._

—-ZD[A,(xruDu)+B(xru)]+f(xtu) 0, (x.r)eQ, (i)
it

u(x,0)=uy(x}, xeQcR", n21, p20, - {2

u|r=c;f(x',t), (x’,t)e GQX[O,T]EI“, QEQX(O,T), (3)

where Qc R" is a domain with sufficiently smooth boundary 82 and Q=Qx(0,7),
and 4, (x,t,g’,q), B, (x,t,f), S (x,t,cf), u, (x), y/(x',t), (i=1,_n) are given functions,

d
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In particular, the problems are studied where the equation (1) has the following
form:

i
or
p>-l, py22, p>1
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6|u|‘°u
ot
p>0, p22, u>0,v>-1.

The (1)-(3) type problems under different conditions on the function
A,(x,2,£,7) B,(x,#,&) and on the domain { (i.c. in cases, when Q is a free boundary or
a fixed boundary domain) have been considered in many papers (see [5,6] and their
references). In these papers, the problem is studied under such conditions that the elliptic
part of the problem in the most general case may genecrate a variational calculation
operator ([8]). In the given paper the problem (1)-(3) is investigated in more general
conditions, in particular, as in papers [4,5], here a homogeneous problem is studied for
the equation of the form (1), in particular, the equations (4) and also (5). Besides, here
the problem with inhomogeneous conditions is considered under more general
conditions, and the method in the indicated papers may not be directly applied to this
problem. Therefore, the method used in papers [4,5] is somewhat modified, and this
requires more detailed study of corresponding pw-spaces. Thus, at first some class of
pn-spaces (p.1) is investigated both in isotropic and in anisotropic cases, and next the
solvability of the problem (1)-(3) and more general problems (p.2) is proved.

We are to note that the (1) type equations (see (4) and (5)) arise in filtration
theory, diffusion and other processes, in particular, the equation (1) describes the
processes related with fluid in a porous medium (see references of papers [4,5) and
others).

- iD, [a, (x,8,u)y 2 Do + b, {x, t,uulul”| D’ D,u]+ Flet,u)=0, )
=]

1. Some pn-spaces and imbedding theorems.
Let Qc R” (221) be a bounded domain with sufficiently smooth boundary 90,
Q=Qx(0,T). Consider the following classes of functions: u:Q—R', u:@—» R’

Spun (@)= {u(x)e L (Qj[u}‘g‘;:y - ]a!% [ ﬁﬂu|‘"|D“u ”dx] < +oo} : (6)

1
D%l dx]ﬂ"w" <40}, N

Suse @)= {u)e L, = 2

L,(0.7;5, ;5(Q)= {u(x,t) el, (Qj[u]fp(sﬁl = :j'[u]';;_ dt <+w, p= 1} . (®
L., 0.7)= {u(x,t)e L@E )= il e <o, p 1} o

$ iz @)= 5, 2o @N G =0} 4,20, v, 2L m21 lafsm,  (10)
Fuiol@)=bl)e @D ues, @) 18=1], an

sk Q)= ﬁ§ Q) k20

0 (12)
§ mas@=50 7N L(x]D"uIm =0, |B<k- 1} k21
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here and everywhere later on, the zero from above means that this is a class of functions
with zero boundary values (may be together with derivatives up to corresponding order
as in Sobolev spaces case), and the zero from below means the same, only on the part of
the boundary. Further, z,20,v, 20, m>1 are numbers, 7,V are vectors, the other

vectors are also determined, a=(a1,...,a,,) are multi-indices, and the other spaces of
type S of functions #:Q— R' are defined analogously, We are to note that some
special cases of reduced spaces were studied in papers [4,5,7] and others.

We also consider the following prn -spaces of ftmctions v: Q>R

S, 1 (@)= vx)e L@ = Z(.ﬂvlﬂpvlwdx} +[M, @y <rere (13)

where g, 20, v, 21, {=1,n are numbers, these spaces are equivalent to the spaces of (7)
type corresponding to the case m=1. Note that in this case these spaces actually are
anisotropic {see [10,12]), in the sense that the derivatives at different directions have the
different integrability exponent on the whole domain.

In connection with these spaces we cite a class of anisotropic Sobolev spaces that
they are closely connected to. Namely, we shall consider spaces looked like the spaces
determined as follows:

W;(n)s{u(x] u(xl%eL,,(le,"n}, R

(note that such type pn-spaces in this case is for instance, the space determined in (7) for
m=1). It is easy to see that the inclusion:
Q) W, Q) p = min{p,.|f = 1,n}, 0<p, <
holds. ‘
Such spaces have been investigated in papers [10,12] and others, where the

imbedding theorem nave been proved and multiplicative inequalities have been obtained,
in particular, it is proved the following.

1]
Theorem ([12)). For each ﬁmclion ueC '(Q) it holds the inequality
1 1&1
_n , if P<n; _‘"_Z_ =c(”’.pi)»

=
[u"L s(0) 4 Hﬂv:-'L o P B B

and if p2n the inequality holds for each
s€ [l,oo) and ¢, = c(s,mesQy).
By virtue of known results on the compactness theorems from [10], arguing as in
[10], we obtain from this theorem that the following imbedding is compact

Q) L(Q)s<p =L, for B>n;
n—p

other imbedding are formulated analogously.
As we know (see for instance [6,9]) , the introduced spaces {6)-{10) and (2) by
virtue of general definition are weakly complete pn -spaces with introduced in them p-

norms, since the functionals [], determined on them satisfy the corresponding conditions
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from [6,9], unlike to them, the space (11) is not the same. This space is a kn-space. For
completeness reduce the definitions of kn(pn) -spaces from paper [5].

Definition 1. The set S called a quasi-pseudonormed {kn)-space, if S is a
topological space and we can associate to each element xe S rhe number [xl such that
Ny [x], z0,vxes; x=0=fx], =0,

Ny} there exists a convex non-negative function p(ﬁ.) such that
,u(l) =¢5; lim #a =¢, ¢20, i=0,1
e} ,,i,| Loatoo |,1|
[/‘[x], < p(A)x],, vxeS, vieR (where ¢, =¢, =1, or ¢, =0, ¢, =+o),
And if'it is fulfilled the condition:
Ny x= Oalx], 0, [xll [x2L DX £ Xy, XX, €8,
then S is called a pseudonormed (pn)-space, and the functional [x), is called k -
norm or p -norm respectively.

Note that using a general definition of pn spaces we get the existence of some
mappings of g (may be of vector) and Banach spaces B such that using the mappings
g , acting from some topological spaces X to another topological space Y , under some
conditions on gand a Banach space Bc Y, when R(g)n B+, kn-spaces may be
defined in the form of (see [5,6]);

=freXgWe B il Xl =g, <+}. (14

~ Using the integral properties from papers [4-6,9 and known results from book

[10] we get the validity of the following statement (everywhere further - H (r) is a
Heaviside function).

Proposition 1. Let the numbers p, 20,v, 21, p3 20, vy 21 be such that

and

Mo lVe =P Uy ¥V, =g +Vy for f=a-2, a=(a,,a,a,) and g, >m-2 for
m=1,2,3,4. Then the space determined in (3) is equivalent to the following

1
ynq-v,,
D“ ] +
(15)

+ H(m- 2{ > ﬂur"iD“ r ]#“ - +|d, t. X < L,(Q), X isaBanachspace

jef=m-2

5., ()= {ule)e L@l = (; ol

Remark 1. In exactly the same way in (10) the space of functions with zero
boundary values is determined. As it is shown in above papers for some values of 4 and

v, independent on m , when u|,,=0, p-norm from the definition (15) is equivalent to
the p-norm, not containing the last summand. Besides, we are to note that the space
L, (0,1";8,,,“-,,‘7 (Q)) and other spaces of such type are determined analogously.

The introduced spaces generally speaking are nonlinear in the sense that in these
spaces at the least the additivity condition is not fulfilled (see, for instance [4,5,6]).
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Now, since in the introduced spaces, generally speaking, the additivity condition
is not fulfilled and it will ke investigated an inhomogeneous problem that requires to use
the sum of functions from Mese spaces it is necessary to mention sufficient conditions
under which the function u(x), determined in the form of sums of two functions is

contained in the corresponding space §, determined in the form of (6)-(12).

Thus, further, everywhere we shall denote by u(x) (or u{x,r)) the function
determined in the form of: u(x)=v(x}-w(x} on Q (or u(x,t}=v(x,)~w(x,) on Q)
satisfying the condition %(x)=0 on &Q (or u(x,r)=0 on 8Qx(0,T)). The set of such
functions u(x) (or #(x,?)) we shall denote by U((2), where v(x) is some function of one
of above spaces, and w(x) is a function from the definite Sobolev space. Note that the
boundary value of functions from above determined spaces we shall understand as well

as in papers [4,5].
Lemma 1. Let u, 20, p, 2v, 21 be some numbers. Then there exists a number

4 20 such, that if p>maxiu, +vy + f, Py +y,} Jor py>vy or p2n for p,=v,,
then for some y: py < 4 < iy + py, satisfying the inequality:

np(py o). p= v, m{(m vl s + Po)} a6
(”fP)Po p =V, n— Py
it is valid implication: from the inclusion

vx)e S, o QNS QNW)(Q), wx)e W} (Q) and ulx)=v(x)-w(x)

. ) 0
it follows that u(x) is contained in the space S\, (Q)NW LO(Q).

Proof. In Lemma conditions we have: #(x)e Z;(Q). By using the Minkowskian
inequality, for p, > v, we receive the validity of the following inequality:

{!M‘"“ Do e = erv ~ (D, - w)  dx s c{ (_!M‘“‘D,-v,v“ dx + Ij)H"pM“ a‘x} '
+ c{ :JJW{F |D" e + J\wl”ll),wr“ dx} < c{ rJ:p;|"‘|p,vf"' dx + AM%;} +
+ c{ ‘ﬂpiq”" dx + ;!M“ dx + “!’Djwi‘"dx} _

Ho SpSmin{

here the numbers are determined by the expressions: p = PE s o= Pt
PV Py =V,

From the Lemma conditions it follows that the right hand side of this inequality
is bounded, consequently, and the left hand side of the inequality is bounded. The
remaining inequalities necessary for the proof are proved in exactly the same way. By the
same the lemma is proved.

Corollary 1. In conditions of Lemma 1, if p,=v, and pzn, then the statement
of lemma 1 remains valid for p satisfying the inequality
nlu + 11 + VOX_P - o)

Mo S us
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Remark 2. It is easy to see that by choosing g4 20 sufficiently great, we may
increase the number .
Lemma 2. Let 1,20, py2vy, 21, p, 21 are some numbers. Then there exists

i 20 such that;'fpamax{po+p],pu+vo+y,,pl+ﬂl}ﬁ;r Po>ve and p2n for
Do =Vy, then from the inclusion

1) Ly, 0,758 00, @I Ly 0,758 40000, @OIN

NL,., 075, ,@NL, br:w.@nror L, @Nror;L,., @)
wx,t)e Wi Q) ulx,t)=v(x1)-wlx0), o = -] =0

. 0
follows that  u(x,t) is contained in the class L., [O,T;S,_ﬂ‘%(n)]ﬂ

NL, [O,T; HU/PG(Q))HL”(O,T; Lﬂ(ﬂ)) for  some pimaxfp, p < p<

<min{,uo + 5,0y + 1}, if 1 satisfy the condition (15) of lemma 1.
Proof. Since the remaining inclusions are obvious, show the inclusion

o .
u(x,f)e L, [O,T; Sy y%(ﬂ)], and for this, it is sufficient to prove the validity of the

corresponding inequality exactly the same as at the proof of lemma 1.
Thus, using lemma 1, we have

g]u,”lD,.uv"dxdtsC?{ [ e+ Jﬁv]p + D" b + Jﬁw +|D,wlp}ix}dt. 17

Hence, since the boundedness of the first summand at the right hand side is
obvious, it remains to show the boundedness of other summands. By virtue of lemma 1
we received that for this purpose it is sufficient to estimate the second summand from the
second integral of the right hand side. And we use the following obvious multiplicative

ncqulty b,y SIS, whore d0> 9>, 02252, 2050 e some

numbers, Choosing here g, =7, ¢, S p, + 4, so that Gp < p, we obtain:

Lp (Q)C ‘Lpn (O’T; W;n (‘Q))n Lpo+yl+v° (O’T; S],y‘,ﬂ:l,vo (Q))n L7 (D’T; Sp,+,u, ('Q))
It is easy to see that for each given 1,20 one can choose such a number:
=0,
Note that in the case when p < p, + 4, the boundedness of the right hand side of

the inequality (17) directly follows from the conditions of lemma.

Thus, in the case m=1 all necessary inequalities have been obtained. Now
consider the case m>1, in anisotropic case, for whose study the anisotropic Sobolev
spaces will be used (see {101).

Lemma 3. Let the numbers p21, g 20, ps >v} 21 be such that the condition
pemaxiyl +vi,pllo<||<m, 1<i<n}, and m=12,3,4 is fulfilled Then from the

inclusion ve S, ;(QNW (€2, weWr(Q) it follows that for u(x)=v{x)-wlx) from

LY
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0
the class U(Q) it is valid the inclusion: ueS ,,,,E;(Q)OW;,: (Q), if Bo. M,V satisfy the

il £
Jollowing inequalities: ‘? ok < py, ‘?f;. < ps, where the vectors p,, p, are such

Py =V
that Lw-l-]:m
P2 -

%)
—_——Im
Py P

Proof. Since from u(x)eU(Q) and the lemma conditions it follows directly that

<1, <1

]
ulx)e €Ly {Q)N 44 (©) we are to show the inclusion: xS, 7 {(Q2). For this, as in

m v
the proof of lemma 1, it is sufficient to prove the validity of some integral inequalities. In
assumption that #(x)e U(Q), cite the basic ones,

A]ur" D d s { A]v]*“’ o e+ I!M" ID'w|” d + A]wr" o’ dx} "
¥ A}w}*‘“ lD’wr dx < c{ AM" ‘D"vr’ dx+ (JIM”Z + ‘va}"s }J’x} + (18)

+Cj(yw|"' +}D‘v}‘°)dx+c, , 0<fl<m,C>0, C,20-const.
4

Hence, in conditions of lemma we get that the right hand side is bounded, and

consequently the left hand side of this inequality is also bounded. This proves the validity
of the lemma.

Remark 3. It is clear that such type lemma is valid and in the case when the
spaces are isotropic and p, < v, . Note also that by choosing p=1 sufficiently large we

can always achieve the validity of the inequality (18), those contracts the class of
functions for which these lemmas are valid, and we are to establish the greatest class of
such functions.

We are to note that as it is seen from the proof for the validity of this lemma, the
condition that S,,,J—,_F(Q) is the pn- space is not essential.

Lemma 4. Let the numbers m,u,,v,,p',ps, i P, satisfy the conditions of
lemma 3 and  the  following inequalities: H>m-1; v, 21;
PPy Py Pi 2L, Pyzu+v, pZmax ;,pg,pft}; m=1234, i=l..n. Then for
ulx,t)e U(Q) from inclusion we W " (Q} and
vx0)e L, 0.7:5, - @)N L, 07wz @)n (0,72, ()
it yields the validity of the inclusion

1]
u(x,t)e L, [O,T; Sm v (Q)J NL, (0, W, (Q)}ﬂ L (U,T;Lﬁn (Q)) Pispi>1.

The proof is carried out analogous to the proof of lemma 3, apply this lemma, i.e.
for the proof it is necessary to show the validity of corresponding integral inequalities.

Now cite some results on renormalization in pn - spaces. Consider two definition
types reduced in papers [4, 5, 6], where in an isotropic case some sufficient condition
were obtained for the equivalence of pn- spaces, determined by these two ways. These
definitions are the following:
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1

I R S [ L

le=mla
! (1%
+ 2 (ﬂ“lﬂélpau%dx)%% <o},
Blem-1\ 02
: 1
S @)= jue L(QYu)s = 3 [ﬂu\"" D“"{"”dr)y'+v" R
akm\a

(20

o 1

+HEn-2) ¥ [ D2l dx]* + 3 (o e P <o
|Bm-2\ 0 irlsm-2

Thus, we have: since the p - norms of these spaces under some correspondences

between the degrees are equivalent (see [4, 5, 6]), and consequently these spaces are
equivalent, and since we shall consider here only such cases, therefore denote them
equally, Note that for the equivalence of spaces determined in (19) and (20) it is

sufficient to suppose that the equalities: f=a-1, y=a- (m - Iy[),
Hy+V,=pg+vg=p, +v, are fulfilled, and at the second definition v,;=2v,,
v, =(m—‘;}/|-!-l)vﬁl ~1.

Further, it is shown that the constructed spaces S, ,, (Q) are contained in spaces

S iy With &g )=y “%%uu. In the case when the condition u|,, =0 is fulfilled on the

boundary the expression for the p- norm is considerably simplified, since in particular
all boundary integrals in definition (20} are annihilated, for instance in the case of the

1}
space S 5 ,,(Q) (see [11]).

Cite some integral inequalities that are applied also in the proof of equivalence of
p - norm.

Lemma S. Let p, 20, p,20,20,0,22 or p, 20, p, 2 p, 21, Then for any
ulx)e C*(Q)the inequalities

[ 1Dl de< € 2 DR i+, ™ + i Ipal ™
Q 1

aQ
i D e P
¢} [ ¢]

DiDquP’dx +
+C, ﬂ]u|p°+’°‘+p’ + |u|p°+llD,-ulp‘+p‘_l }ix'; i,j= I;:,—, C,C, > 0—const
)

are valid.

For the proof sees {2, 5, 6].

Note that in the last two papers such type inequalities were also proved in the
case when integrand expressions both at the left and at the right hand side of inequalities
contain the derivatives and of the higher order.
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For the completeness of the presentation, and also for the best understanding of
further statements cite some of above inequalitics from papers [9, 11] in the form of
integral inequalities as lemma 3.

pl_, AP
-1 py—p

Lemma 6. Let p,2p +p,22, py22p 20, pOZmax{

A —@j—pz—} Then for any u(x)e C*(Q) the inequalities

P2 P
[ IDfu 20 e < C{ > \D? u,p’ dx + [lu 77 + ID‘uF{P' i) 4
Q a &
+ j haf (lu[’"w’ |Du? " + lDfu Aths )a’:r'} .
a
Jld|D.D, D™ ax < C(e) Jul™*** |0} D, Dyal” i +
1 [ ¢]

+& ﬂu|p orAP: ‘Dfulzp'dx +{ “u['p“w’_pz ID){D,,urp2l dx' + j }u|'q° ? ]D‘g o dx’}
0 a0 x |83

3
D? =DADRDA | |B|=3 B, £>0 is some number,
f=1
are valid.

The proof is carried out by using the integration on parts, the Young inequality,
and known inequalities in exactly the same way as at the proof of lemma 5 (i.¢. as in
papers [2, 5, 6]).

In papers [9, 11] some equivalence results are proved for the case m=2. To
show the above-equivalence we use the renormalization in Sobolev spaces (see [1, 10]).

As we know [1], it is valid the relation: uvﬂw,{ﬂ) =M, @ > from which
r » f I

Dﬂ’
i
the validity of the following statements yields.
Lemma 7. Let the above mentioned conditions on the parameters puvbe

Jfulfilled. Then if to define g by the expression: g(u) = Mmu , then the spaces determined
in (19) and (20) are equivalent to the following:

5 =fuetloli, b+ 3

£,{0)

Lp+v

Dglu) <!
g, w} @1)
Proof. It is known from the Sobolev’s space theory that the inclusion:
-1) :
wiQ)cwh(ea) p <—2 holds. B this fact and the inequalities fr
Y@ (@) p, P ey olds. By using this fact and the inequalities from
papers [5,6,9,11] of the inequality type of lemmas 5 and 6 we obtain the inequality
among the p -norms to one side, the inequalities from indicated papers and the following
type equality
ﬂulp"lD,-zu
f

0% e = (o, + p, -1) lﬂul’% Diulbfulpzmvzl)fudx -
£ .
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- po " u(Duy D2 e e
1

dc+ Ju™ Dublu|Dlu
[ 8]

admits to show the inequality and to the other side. Hence the validity of lemma 7 yields.
In the anisotropic case the lemmas of lemma 7 type may be formulated in the
form of

Lemma 7%, Let the numbers 1, 20,v, 21 be such that py =y, /v, 20,i=1,...,n.
Then there exists the one-to-one mapping of the space S, ;5 () into the amisotropic

space W-‘ (Q2) moreover, if we denote by g the mapping determined by the expression
glu)= lul u, then the equality S, ;;{Q)=S )’

Further, cite some results related with interpolational properties of knm-spaces
that are also proved by applying Young inequality and known inequalities from papers
[5,6.9,11] of type of inequalities from lemmas 5 and 6.

Theorem 1. Let p, 20, p>y, 21 be some numbers, and 1>=0,v21 are such

that, p2vzy,, #2 p,. Then there exists such p20 that py+p>puzp, and the
inclusions S\, @n Si o0rore @n S10.p @n w, (@cs Lasy @),
L, (O,T 3S% porre (Q)Jn Ly, (Os T38) pyvore (Q)Jﬂ L, (O’T 3505 (Q)Jﬂ
nL,b.rwi @)L, b.7:5,,.@Q)

where p, =P+ ¥ P S Po+ P+ Yo Pi=H+V, py = p+ p arevalid,
Corollary 2. Let py, 20, y,21 are some numbers. Then, there exists p20
suchthat p,+ p> uz p, and the inclusions '

51 oot (Q)ﬂ Sl,po+p,yo (Q)Q Sl.,u.;r° (Q)
L, 0.1:8,,.,,@)NL, 0.7:5,,..,,. @)L, 0.1:5,,, @)

where po=pPo+¥0:Por = Po+ P+ Yo, P = 1+ yg are valid.
It is easy to see that these results remain valid and in the anisotropic case, i.e.
when p,, 4, p, p.V,¥, are vectors and satisfy some conditions as in lemma 7° for brev1ty

we shall not cite this case separately.
Introduce the denotations:

P ps0ps (@)= L, (O*T T (Q))ﬂ L, (0, T8\ 5ups (Q))n
. N {x(x rj M"" uE Wl (() T'B)} L-(Q)g B

Pias,5/0)=L (OTSI,”(Q)JDL [OTSIW‘,(Q] {‘(x, |u|'“°ueW.(OTB)}

holds, where it and v are vectors

0
where 7,v,p,7 are n-dimensional vectors, p2fi+V, po=p+7, p=p+p, and
2, 2, 2 0 are some numbers g, ='%, i=ln.

{
Theorem 2. Let p,p,p0,290, vy, 2L, 1, o, St + py, i=ln are some
numbers. Then there exist numbers p,n, 20, A, 21 such that

P2 prs Plu+h<piry, <o+l +m S p+ o p =1 +v,
and it is valid the implication (for B= L, Q)
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u(x,1)€ Py z5 55 Q)= [ ue L0.T:8, - @INWOT;L; (). (22
Moreover, if there additionally exist numbers 1,20,0,:v, 20, >1 such that
%
imbedding.' PLF;‘_’-PQ».E:?(Q)C LP] (Q),p] = p, (p + 1), i= 1,_; .

Proof. The right hand side of the statement follows from the following

arguments. We have from the anisotropic variable of theorem 1 that .
L0.7:8,7;@)IN L, (0.738, ., @) L, 0.T35, 0 (Q)), where pf = psl +v,, 47 :

4, % p < u, + p, are some numbers, We have also
L,0.7:8,:@)N L, 0,78, 7,,- )< L, 0.7:5, ;) p, =5+ 7. 7, <v,.

Now the validity of the inclusion (22) follows from the conditions of the theorem
by virtue of the known inequalities of papers [5,6].

Thus, to obtain the last statement it is sufficient to use the imbedding
compactness theorem from papers [6,9,10,12] only by applying the imbedding
compactness theorem for anisotropy Sobolev’s spaces.

Now cite some results belonging to spaces of type determined in (13).

Theorem 3. Let numbers 1, 20, v, 21,i=12,...,n be such, that there exist

numbers p, 20, q, > 1, satisfying the relations y, +v, 2 g, (pg + 1), 002 "% .
i
Then, the imbedding S,

1; v
<71, +1)sn +v,k =
ST 9 o + 1)<, +, “tor1)

(-L—l}d, then it is compact the
o, K

75(Q)e L,(Q) is compact, where

s<(}"“—-—-—— 1fq<n,—1—-—-z—' w>s21-V,ifgon but u= S(Pn"‘l)
n-g g N4,

By virtue of known results from [6,7,9] and above reduced theorem from [12],
the proof follows from

Lemma 8. Let numbers ,u,ZO v, 21 be such, that m_pazo, i=1n. Then
Vi

there exists the one-to-one mapping of the space S, ;;(Q) into the anisotropic Sobolev
space W;(SY), moreover, using the space W;(82) and the mapping g g{u)=|u" u, the
space S, ;5(Q) may be defined (by general definition of pn-spaces from [6,9]) in the
Jorm of SgW,»,'(ﬂ} , exactly,

8,75 (Q)= {“(x) €L, (Q)Ig(“) W (Q)} =S i)
Proof. In conditions of the lemma it is casy to see that from u(x) €S, 55(€), it
follows |u”™ u € W3 {Q) and conversely, from v W} (Q) it follows that
£7()=hlasiv eSi55(0).
Now show the equality of spaces §,;;(€Q) and S gy 20d for this it is

sufficient to consider the p -norms determined in these spaces. We have:
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e =5 A& 1M,

and

o, =l =( 05 0] b,

and hence the last statement of the lemma follows.
The proof of theorem 3. We have from the imbedding compactness theorem for

anisotropic Sobolev space ([10]) and Troisi theorem ([12]) that W;(Q)c L,(Q) is

for ¥ <n where —l--az:— etc. (In

compact, if v 1 satisfy the inequality v, <
v niq Vi

particular, this case holds in the case v, =v,, i= 1,). Then by using the homomorphism
of the mapping determined by the expression g:g{u)=|1” and by virtue of known
results from [7,9], that the inclusion S, ,,(Q) < 5, 75(€?) is valid, we get the validity of

the statement of theorem 3. By the same theorem 3 is proved.

The validity of the following statement follows from lemma 8.

Corollary 3. In conditions of lemma 1, the space S, ; ;(Q) is weak complete.
Analogously, using lemma 1 it is proved the following more general

Theorem 3°, Let numbers 1, 20,v, 21, i=12,...,n be such that, there exist

numbers p,290,q,21, satisfying the relations pu +v,2q, (po + I), 2o el Jor
Yy

n = M the ;neqmﬁty (Z(.i. — —L]] <1 isﬁdﬁﬂed
Lo +1 =tNgi Tk

Then the imbedding 5, , ,(Q)c L,
Theorem 4. Let numbers 4, 20, v, 2V, 21, p, 20 be such that

(€2) is compact.

<1, —E‘-——m,p gtv,i =Ln
Po+l

| - : af1
%‘5»00: H Ty, 2“'i(»oo + 1)) i=1m g;,(“;:”?]
Then for py =v{p, +1) the inclusion
P, [o,r;fé (o)X (Q)J < L, (0,73 L, (Q)) is compact.

Proof. It follows from the conditions of the theorem that numbers 4, 20, ¥, 21
may be chosen so that for some numbers p, 20, 7, 21 be fulfilled the relations
Bo=pgveop =iy +v, =91, (py +1). Then if follows from theorem 3 that
8, 75(Q) < Lz,5(Q) is compact, and since 5, ,,(Q) < S, ;5(€2) we received that the
imbedding §, ,, (@) < L,.,(Q) is also compact.

Further, by definition of the space B, ¢, (0,7:5,,,,, (Q2), %, (€)) we have:

B, (0.7:5,,.(Q 7 (@) = L,, (0,735, (@) (0, 7.7 ().
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Then, using the compactness result (see [1,5,9]) we get the validity of the
statement of theorem 4, i.e. the imbedding

P, (0, 738, (). 7, (Q)) ci, (0, hL, (Q)) is compact.

Lemma 9. Let numbers 4, 20,v,21 be such that Hig Pos D =

¢
—— +1
= +v; =1 (py +1). Then for p0=min{p,|i=1,n}, Do <—’4€°i-—)— is valid the
2

inclusion
L, (0, 7S ,’p_,,(g)) NIe(0,1:L(Q)c L, (0, T;L, (Q)) :
Proof. By virtue of lemma 8 in conditions of lemma 9 it is valid the inclusion
glwlv(ﬂ)g.g,‘w(ﬂ), 159, €v,, I =p,¥,. Then for g(u)=f "« we have:

L] /]
uel,, (Q)=> g(u) e ;(Q).
Now, using the imbedding theorem for anisotropic Sobolev spaces ([10]) we get

-

choosing 45 =wirl[i=1r] we gt that ueL*(OTLE@)NL,0.T:L,, @)
Consequently, # € L, (O, T;L, (Q)) ,QE.D.

The validity of the next statement directly follows from lemma 9,
Corollary 4. Let the conditions of lemma 9 be fulfilled and v, = min{vi |i = f,;} .

that [ uely(Q) B 2521 for =1. Hence, in particular, by

Then for vy = 1+ I max{2,3 - —3:-} it is valid the inclusion

o n

L,[0.1:3,,@) )N 011, @) < 1, @)

~ 2
P =Vo(Po +1)sPa 20,p, = Pu[3 + J .
n‘-vn

The analogous theorem of theorem 4 type for the anisotropic case has the
following form

Theorem 4°. Let numbers p, 20, v, 21, p, 20 be such that

&Sposﬁf*'vf?i’-i(pu"'l)’ 71,"=1'211_'s < m...’ pi2Li=1n.
Vi TV onGv, pp+l n-v '

Inpavticular, itholds p, =y, +v,,i= Ln.
Then for p, =7(p, + 1) the inclusion

0
Ppo_.,.[o, T3 81,00 (Q) W5 (Q)] cL, 0,75L,()) is compact.
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1t follows from theorem 4’, theorem from [12], and lemma 9, that it holds
Corollary 5. Let numbers p, 20, v, > 1 be such that

f—‘spus.Pr = +v, =V,(p +1), p, 20.

i

Then for

Py = min{pili =1_s;}, P’ s__”(ﬁo i

it is valid the inclusion
L, (0, T8 W(n)) NL(0.7;L,{Q) = L, (0, T;L,. (n)).
Remark 4. Such type theorems are also valid for the spaces

Snis(Q) Pugipsi(@) for m=234, and the remaining parameters satisfy the

conditions, analogous to the conditions of theorem 2 and above mentioned conditions for
the equivalence of definitions of pn-spaces with corresponding alternations, depending

on m. We shall not cite these theorems here,

2. Solvability theorem of the problem (1)-(3).

Consider the problem (1)-(3) and assume that Q< R"(n21) is a bounded
domain with sufficiently smooth boundary &2, 0=Qx(0,7),T>0 and p20 are some
numbers. Assume that B, (x, t,g') =0,i= f;: . Let the following conditions be fulfilled:

1) the functions A (x,t,£,(), i=Ln are Karatheodory functions and there exist
functions g, (x,2,¢), b,(x,#,£,¢) such that the representations
A(x 080 =a (2680 +b,{x.0,E4), V(x.46()eOx R™
2) there exist constants a,,b,, By, 4y.¢y,¢; 20, 1,0, 20 such that
aol‘ftIH sa(xh,£)< A{)"?gl}mi »8y >0, i =1,n,

;l:bf(x,f,?,?k; Zbo(zlllé'fla‘+2 -lgir;+2)_ By, 0<by, 0<aj<ay;
>, i=l

|q(x,t,§,¢15coﬁ ,-]“'” +l§,|°§+l)+c,, 0<c,, 0SS0l <0, i=Ln
3) the functions b,(x,#,£,¢) are such that for any ¢,¢" €R” and (x,f)&Q, £eR' the

inequality

3oy (t8.0) - b, (0,00 - 1) 20,

1=l
As is shown in papers [6,8], the summand with &, (x, t,&4 ) in conditions 1-3
generates a pseudo monotone operator (more exactly, a variational calculation operator),

acting from LPI(O,T;PUVL‘(Q)) in L, (o,T;W;,(Q)), where p| =0, +2,g, = p| (more

exactly for almost all ¢ from W (@) in w Q) and the summand with q, (x,,£) in
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these conditions generates a weak compact operator from
0 .

P (o, T;S17a0 Q) H,, (Q)], Po=m+2 g =pp in L, (0., ().

4) the function (x,t,f) is a Karatheodory function, and there exists a constant @ >0

and functions foeL“’(Q),j; eLq(Q),;;-—-min{p,po,p,}, gZ}), msjz\r-l such that

the inequalities |f(x,t,§]5f0(x,1)[§]°’ + filx.7), or f(x,r,é)fz—ﬂ](x,r)g“’“ _
— fi(x,1)are valid.
It is clear that in condition 3 the function f (x,t,é’) generates a subordinate

operator (if the problem (1)«(3) is not degenerated to the Cauchy problem for the
ordinary equation with parameter x that is not possible under posed conditions).
Introduce the following denotation (here p2 0 is some number):

Po(Q) =Pz 052 (Q)ﬂ{u(x,tﬂu‘}r =0, r=auaxo, T)} ’
Definition 2. The function  @(x,8)=u(x,1)+ w(x,7),u(x,?) ePy(Q),
w(x,t) EW; (Q) is called the solution of the problem (1)-(3), if it satisfies the equation
(1) in the sense of the space Lq (0, T; W;l (Q)), ie. for any

4] —
v(x,2) € LP[O, T; WL(Q)J, rz max{p{},p,‘ P+ 2|r = l,n}
it is fulfilled the equality:

oy - n
Iduja u velxdt +2 IA;(x,l‘,ﬁ,Dﬁ‘)D,vdde + If(x,t,i'{)vdxdr =0 (23)

o =10 o )
here W(x,0)= un(x)’ erom ¢(x',t), V(x',t) el E[O’ T) x ).

Thus, if we assume that ( u, (x), gp(x',t)) el (Q) , i.e. the known function w(;r, 1)
satisfies the corresponding conditions, then we can write the problem (1)-(3) in the form

A 7
A )3 b [afstrw Das )]+ f(uturn)=0, @)
t=1

u(x0)=0, x e, vl =0, and w(x,r) satisfies the conditions (2)-(3), (2%

So, the problem (1°)-(2°) is homogeneous as the problems considered in papers
[5-7], and we can expect that to it we shall apply the method used in indicated problems.
Really, the problem will be studied by the indicated method, but now only by applying
here the obtained results on imbedding.

Namely, for the problem (1)+(3) it is valid the following

Theorem S, Let conditions I-4 be fulfilled and pz 0 is some number, satisfying

the conditions of theorem 2 with parameters from conditions 1-4.
Then for any pair (uq(x),¢{x" 1)) U(Q) the problem (1)-(3) is solvable in the

space Bz, .52 (Nt ” (0, ;W) (Q))
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At first we shall study the following auxiliary problem with parameter £> 0, i.e.
to study the considered problem we shall use the known elliptic regularization methed
(18D :

S|, du|™w,
o —-ED[A xru,,Du)]+f X4H,)=0,  (24)

u,(x,0)=0, %(x,T):O, xeQ, ulr=0,Ty amx[o,r], He=u, +w,, (25)

where (x,,‘) eQP=Qx (0, T), {w;?(x,t)!vg E(U,Eu], %—L=r= 0, g > U}CW: (Q)s

w,(x,£)=> w(x,?) in W,(Q) for -0,
and w(x,?) is the function determined in theorem 5,
Definition 3. The function & (x,1)=u(x,t)+w(x,?), u(x.f)e f(Q),

w(x,t) eWa(Q) (with B=W;'(Q)) is called the solution of the problem (24)-(25), if it
satisfies the equation (24) in the sense of the space Wq,'l (Q) , Le. for any

v(x,) € Lp[o,r;ﬁf ;,(n)) Nw,(0,7; Lp(n))n{vi v(x,ffr=0, T =QUax {0, T}
it is fulfilled the equality:

gjéj" " }—clxdt»i-j‘

i‘i[if

—-vdxdt+z_[A (x.t.%,, D%, )Dvdxds ++
=19 (26)
+ [ £ (et bt = 0

e

Sb

here w(x.,0) = uy(x), er =g(x',1), Y(x',t) eT, =[0,T)x A

For the problem (24)-(25) it is valid the following

Lemma 10. In conditions of theorem 5 the problem (24)-(25) is solvable in the
sense of definition 3.

Proof. We shall use the Galerkin method, and the approximate solutions of
u,,(x,t) we shall seck in the form of the solution of the equation

_ [)ﬁm (x,r)lp + N}Jm (x,r)-—» Zcmvk (x,t);ﬁm (x,t)'=‘ U g (x,r) +W,, (x,r)

here c,, .k =i,_nt are unknown coefficients subjected to definition, {vk (x, t)} :_l is a
complete system of function in #;(Q)N L™(Q),and ¥, >0 are some numbers,

Further, acting in standard way and denoting the left hand side of the equation
(24) by ‘P(u), taking into account conditions 1-4, we get the following sequence of

inequalities:
(‘P(u u |’° +N )J >

—J A, [p"u 50 lp'l'N)l (9,“ 'p"~ Qﬁslp*’N}"s dt +
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+ Sl )0 + wh o+ I [on g+ Whdr=
= o(py +1)] e+ g + i “](j:)zdxdr-p
S (SR + 2t
a0 (G () 2o 3, B e -
(iml” + N)wdxd+] [7(ra Yl + N, v +
D[4, ., 0, (o + 1.7 + Wi -

—

(S
Al

G L=l

¢
- _[ #,|” Dw+ oA iTED,i}'gw):A, (x, 7,5, D% Jixdr >

age=l

2e(p, +1)(p+1) ”| |p°+‘°( ) dxdr +pl?:;i2 [ics ]p°+p+2dx|

[4

+z—,(p0+l)N”]" |‘°°( ded +:)70+ & P”dx[

- &{py + I)I N, [,o|u - i;;]“’ + NU# + Mﬂ =

¥ f :{ZI[A (x. 7., i, )]{(p+ " + N]DI. 7 dedr -

ddt +

- [ Mtz D) + ot i i e+
* ]ff (o, Y| + N )(@, - wdsaz >
el + Yo O] () e a0 (2 -
- elpu + Y- {3 + ooy ) & )M,.._
oo+ l)gfg(mm N;z,;p)[

S, %’-{ +C(51)

Po +1 P+l Po+2 ~ [Ap+]
Potp+lg dx+Np0+ fie dx_N‘.!'I’"erlﬁh [wlee -

dr +

+
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f +1 +1 oL el
Jf[pupipﬂl Im Pl NI |Po+1)__'dxd ppip+1ﬂ slﬂbp lwldx+

+ 1S bloal -l )- B+ i o+ + Whieae -

0=l

t

- Jr‘!g [Coqaifslp,-l +|"u'slpi‘1)+ ¢ +Aoliislro~2‘ D:‘TJEESIP + qu wl dr —

, |
~ 113 el il e + Al D Dt e -
on

=1
_ ”Z[ D(fo(x 7\, I+ filx, r))][li‘fgl" +N](iii,‘+|w‘)dxdr.
Qe
Now using conditions 1-4, the conditions on the function w(x,f) and choosing
the number N >0 sufficiently large, form the last inequality we get:

2
o=—atl]j|fzs|""*” ﬁ-‘édxd-r-l-d\'l: 7, %, dxdr+k2ﬂ§z”,{‘°°+‘°+2dx+
Jr o
on iTy!

s = o B R M e - A ) -
- ) - O -l -

._53;"‘{( xl.ah+p+2+Ni %+2)dxd1'—-C(53)"w"p"+2 N ( )“ Ipo*'mz

+}Izu:[bﬂ(lD" !Pl !” Iﬂ) Bo*‘aol“ ‘pﬂ 2|Du | ][(p-i—l)[u | +N]dxdr-— )

00 i=l

YA +[i¢“€|”1+”‘l + le“ie[""lj + BO]DIW!dXd‘[ -

—;[;[ip[%(lal +HDE | }‘”—‘l + Afii,|" D7, l:“u 7| Dy, || eed
st + s ¥) e

Onf._
Taking into account that the constants satisfy the conditions from 2-4, and

continuing the estimate, we get
(ﬁg ]dxd T -
ar

0=>‘{’(u & {’o-l-N}J <2a’c‘”| ip"+p[ }dxdrhsN‘f_ﬂu
~(5,C(8,)+ 5;) j jﬂ&;{"“’”*“ + N, [ )dxdr + [(k2|a; |’°"*“’*_2 +N, {;7,|P°+2)1x -
-C‘o(po,p,N 81,65,8, "w"ﬁ,,m,mesﬂ) “z:(bofu |7 +BOI(p+1)u [ +NLixdr+

o=l
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i n
+ j (bo[Dia;j*"* +a0|a;[’“‘2fpfa‘]21(p+ i) + N]drdr_

;‘m {c @ | |Didi | + 5,¥|D | )+C(¢5‘4,6‘5]D w["']
+ e D |l -
;j g[aﬁ ﬁﬁsl"""ﬂ + Nfi | )D i,|* +C(E ) D +
+ copfi 7|0, s -
- —;I{!ﬁ[molﬁl"““‘”’lﬂﬁsl i+ (oo I+ sl + Wl Loz

2 gk, jj]’" ]"“*P[fr }ﬁdﬁk&NI &, |‘°°( —

+N, 7" de- (e5,0(6,)+ 5,) | jﬂa
0 LiE ]

dr + k& J] |p°+‘°+2dx+

T N[%[”"”}ir .
_é‘o(pg,p,w,sl,az,53,||w|]wm,mesg) v

+;[E(‘EIID,.§,}]PI G, -2[JD"HS|2):(P+11§;|’O +N]cb:a’r-

- ¢
- Cl[p[):psNaplspo:a()’bO’BOs”w"W;nL«n ;meSQJ - II,OCOI?ES,‘”'DIEJP' IWldXdl' -
aQ

!

-] g%lﬁel’”*""lbﬁxlﬂv/{c&dr = ColP0, 212 2029230, b0, N | o ] mes )
y Potp &i A
b d:l HH:. dedr &N
() e on [ fp (5
+ Ny fli | ds - (65,0(5,) + 8,) j j([agr’"*"*’ + N, |P°+2)¢,d, -
r“'ﬂwgnr‘ ,mesQ) +

+[[3(Bipa” AR TAY (PR A N}dsds -

o=l

J didr + %, Ilu ‘A+p+zdt+

- 60(p0!p’N!61 952 :63:

= [I3[(af + o )pi + (g + Yl D s -

00i=l

_63(9099’ Nspl:\p{) 9;10 >b BOsN ﬂf{)“ “.flﬂ “whWIan mesQ) 2

an(kl\u |p°+p +N |“ )Pn[ J axdr + I(k |H Ipo+p+2 +N | |Ph+z)i‘
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—(e5,C(5,)+ 53)] jﬁa;r’“*"*z + N[ | )ixdr +
[1Xy)
H

+ [ EIDa) + afa D, N+ Dl + Nojsae -

oq=

- 6(100’;01’10! Po> P890y, 84, N, "fo" “ft " ““’{lwpmﬁ ,mesQ)
Hete we have used the properties of given functions, and namely, that
weW Q)N L°(Q), p2 max{py, ), 0 + 2} + o,

Jo€l (Q)’fiELq,(Q)’Qf 2 P pﬂl

and the number N > 0 is chosen sufficiently large.
Thus, we get that the following final inequality hold:

0= <‘P(u6.),“§£|p + N)) > g'j f (kl [, + N[, |, )[%a)sz +

+ Ik,l P dx 4N, ﬂu "2 e 4

+:L_Ii( €|p’ P°“2‘Du | [(p+l)|u !P+N]dzdr— 27

i=t
p+prl

—(65,0(6,)+ &) ! ;j;(lﬁ

- 60(p0 v ’psp’p{}saosbﬂ 1Cos A«o sB() ,N,§1 ,---,59 ’”f()“’“-fl “,"wu,mesQ).
As it is easy to see, hence it follows the validity of the following inequality

k, ] fla e de+ vy [l | dre<
aQy Q

i, "“”)dxdr—

<(a6,C(5;) + é;)i[ { (Iz"z‘g et 4 NI'ifs[p"*z )dm’r + (28)
34

+ C(p() v Py B P P05 2 ’b09cﬂ L] AosBo ’N551 :-"159 ,“fo”,ﬂﬁu,ﬂwu,mesg)-

Applying the Cronwall lemma to the inequality (28) we get the estimate for the
left hand side of the inequality (28), i.e. it is bounded and estimated by the constant that
is independent on £, when it converges to zero. Then, by using this estimate in the
inequality (27) we get from this inequality the validity of the following a priori estimates:

csspl " e [ ] s <o

s”([u 177 +1a, ['o")( dedr<C<+oo | (29)

T

J A(;agr " 1)‘9,545’* dvdt < C < +<o; Zj {{(]srsr +.1] {7 1Dy, | dedr < € <+
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where >0~ const. depending on the norm of functions f,(x,#), £1(x,2), w(x,7) in
corresponding spaces, parameters of the problem and independent on u,(x,?), £>0 for

£d0.

Thus, the obtained a priori estimates (29) are uniform ine for £40. And
consequently, the same estimates are valid and for Galerkin’s approximate solutions
#,,,(%,1) of the problem (25)-(26).

Then, it follows from (29) by virtue of above mentioned statements of p.1 that
the approximate solution of the problem (25)-(26) runs the bounded subset in the space
I(:(Q),when m? w0, £ 0. In the other words, we have:

{“m (x,r)lm Tooksd 0} generates a bounded subset in the space P(Q).

Then, arguing as in papers [6,7,9] we get the solvability of the problem (25)-(26)
in the sense of definition (here the method suggested in papers [10], [7] is used). We are
to note that, as we noted in previous paragraph in the proof of imbedding theorem for
vector- valued functions, here it is used that there exist some number
= p(pop, Py, Py )> 0, such that it is valid the following relation:

ueml"‘um P . I';"(Q) , in particular,

2]
u

on| Ugm €P_ {Q) for some numbers: v20,7,621.
4 1v,n8

Further, o2 0 choose so that one of the following conditions be fulfilled:
D po2pi=2, 02 ~2=2pp~25p)SPpy+p=2, 00 p =25 py £p +p-2;
2) 0 py<py =2, =035, 20, py —22p(po +1)+2p, S pg + p= 23
3) 0 p, < py =2, = p20 -is arbitrary.

Under these conditions we get from a priori estimates (29), that the sequence of
approximate solutions runs an unbounded set in the following space:

0
L, (Q; S {0, T)) N LM(Q; S i {0, T)) NiL, (o, T;51{p-2)2 (Q)) N

0
Lp; (0’ rw Ll (Q)) N LPﬂJ (0’ ;8 L(po+p~2),2 (Q)) N I‘m +p (0’ T Sl,(p),m (Q)]’

Hence, using the corresponding condition (1), (2) or (3), interpolation properties
of pn-spaces and the above-mentioned imbedding theorem we choose the numbers
v20, 7,621. And in exactly the same way as in papers [4]-[7], [9] the solvability of the
problem (24)-(25) is shown, and then it is obtained a priori estimate of the form:
|ﬁm|‘°" E{ﬁm) el (0 w! (Q)) and runs there the bounded set. Conse |
L0, . quently 'we get
approximate solutions generate the bounded set in the obtained domain uniform in
mtw, 10,

Then, using the method of papers [6,7] the proof of the main solvability theorem
is completed (for brevity, we don’t cite the full proof, it will be published at the next
paper).
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Remark. We are to note that this method and obtained here imbedding theorems
for anisotropic spaces admit by the same way to study the problem with such type
equation in the case, when it has different nonlinearities in different directions. Besides,
using this method, the problem with (4) and (5) type equations is studied.

These results will be published in the next paper.
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