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Abstract. In this work, we study one inverse boundary value problem for the equations of flexural tor-
sional vibrations of a bar with an additional condition. Using the Fourier method, the problem reduces
to solving a system of integral equations, and using method of contracting mappings, the existence and
uniqueness of a solution to a system of integral equations is proved. The existence and uniqueness of the
classical solution of the original problem are proved.
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1 Introduction.

In modern technology, it is necessary to regulate vibration processes in one-dimensional
distributed systems, and the relevance of these problems is increasing. For shafts, which
are the basic principles of mechanical transmission, dangerous transverse vibrations are
not allowed [1]. In aircraft such elements are constructed simultaneously by bending and
torsional vibrations. One of the objectives of the project is to prevent the use of shaft vibra-
tions with an adjustable speed [2,3]. For such problems, mathematical models of transverse
vibrations of rods are built on the basis of a refined theory [4]. Solutions of unknown pa-
rameters in accordance with the known data of its solutions [5,6]. Such problems are called
inverse problems of mathematical physics, which in many works [6] - [10], [12] , [14],
[15],[17,18] were studied for partial differential equations. In problems associated with ini-
tial and boundary conditions, additional information is required. The necessary additional
information is due to the presence of unknown coefficients or the right-hand sides of the
equations [13].
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2 Problem statement and its reduction to an equivalent task.

Consider the question of the unique solvability of the inverse boundary value problem of
determining a pair of functions {u(x, t), a(t)}, that satisfy in in the domain DT = {(x, t) :
0 ≤ x ≤ 1, 0 ≤ t ≤ T} the equation [13]

utt(x, t) + uxxxx(x, t) = a(t)u(x, t) + f(x, t) (2.1)

with boundary conditions

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x)(0 ≤ x ≤ 1) (2.2)

with periodic conditions

ux(0, t) = 0, ux(1, t) = 0, uxxx(0, t) = 0, uxxx(1, t) = 0, (0 ≤ t ≤ T ) (2.3)

and the additional condition

u(0, t) = h(t)(0 ≤ t ≤ T ) (2.4)

where f(x, t), ϕ(x),ψ(x), h(t) “given functions,u(x, t) and a(t)“ desired functions.

Definition 2.1 The pair {u(x, t), a(t)} of functions u(x, t) ∈ C2,4(DT ) and a(t) ∈ C[0, T ]
satisfying equation (2.1) in DT , condition (2.2) in [0, 1] and conditions (2.3),(2.4) in [0, T ]
,defined as a classical solution of the inverse boundary value problem (2.1)-(2.4).

The following lemma holds:

Lemma 2.1 Let ϕ(x), ψ(x) ∈ C[0, 1], h(t) ∈ C2[0, T ], h(t) 6= 0, (0 ≤ t ≤ T ),
f(x, t) ∈ C(DT ) and the conditions of approval be fulfilled:

ϕ(0) = h(0), ψ(0) = h′(0). (2.5)

Then the problem of finding a classical solution to problem (2.1) - (2.4)is equivalent to the
problem of determining functions u(x, t) and a(t) with properties 1) and 2) the definition
of a solution to problem (2.1) - (2.6), from (2.1) - (2.3),

h′′(t) + uxxxx(0, t) = a(t)h(t) + f(0, t)(0 ≤ t ≤ T ). (2.6)

Proof. Let {u(x, t), a(t)} is a classical solution of problem (2.1)-(2.4). Since h(t) ∈ C2[0, T ],
differentiate (2.4) two times, we obtain:

utt(0, t) = h′′(t), (0 ≤ t ≤ T ). (2.7)

Substituting x = 0 into equation (2.1), we find:

utt(0, t) + uxxxx(x, t) = a(t)u(0, t) + b(t)ut(0, t) + f(0, t), (0 ≤ t ≤ T ). (2.8)

From (2.8), by virtue of (2.4) and (2.7), it follows that (2.6) holds. Now, suppose that u(x, t)
and u(x, t) are a solution to problem (2.1)-(2.3),(2.6). Then from (2.6),(2.8), we have:

d2

dt2
(u(0, t)− h(t))− a(t)(u(0, t)− h(t)) = 0, uxxx(1, t)− uxxx(0, t)) = 0 (2.9)

By (2.2) and the compatibility condition (2.5), we get: Assuming that

u(0, 0)− h(0) = ϕ(0)− h(0) = 0, ut(0, 0)− h′(0) =

= ψ(0)− h′(0) = 0(0 ≤ t ≤ T ). (2.10)

From (2.9) and (2.10), due to Lemma 2.1,we conclude that the condition (2.4) is satis-
fied. The Lemma is proved.
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3 Solvability of the inverse boundary value problem

The first komponent u(x, t) of the solution {u(x, t), a(t)} of the problem (2.1)-(2.3),(2.6)
will be sought in the form:

u(x, t) =

∞∑
k=0

uk(t) cosλkx(λk = πk) (3.1)

where

uk(t) = mk

1∫
0

u(x, t) cosλkxdx(k = 0, 1, 2, ...),

mk =

{
1, k = 0,
0, k = 1, 2, ...

Then applying the formal scheme of the Fourier method, from (2.1) and (2.2) we obtained:

u′′k(t) + λ4kuk(t) = Fk(t;u, a)(0 ≤ t ≤ T ; k = 1, 2, . . .), (3.2)

uk(0) = ϕk, u
′
k(0) = ψk (3.3)

where
Fk(t;u, a) = fk(t) + a(t)uk(t)(k = 0, 1, ...)

fk(t) = mk

1∫
0

f(x, t) cosλkxdx,

ϕk = mk

1∫
0

ϕ(x) cosλkxdx, ψk = mk

1∫
0

ψ(x) cosλkxdx, (k = 0, 1, . . .),

Further, from (3.2),(3.3) we find:

u0(t) = ϕ0 + ψ0t+

t∫
0

(t− τ)F0(τ ;u, a)dτ (3.4)

uk(t) = ϕk cosλ
2
kt+

1

λ2k
ψk sinλ

2
kt+

+
1

λ2k

t∫
0

Fk(τ ;u, a) sinλ
2
k(t− τ)dτ, (k = 1, 2, ...). (3.5)

After expression substitution uk(t)(k = 0, 1, ...) to determine the components of the
solution to problem (2.1) - (2.3), (2.6) we obtain:

u(x, t) = ϕ0 + tψ0 +

t∫
0

(t− τ)F0(τ ;u)dτ +

∞∑
k=1

{
ϕk cosλ

2
kt+ (3.6)

1

λ2k
ψk sinλ

2
kt+

1

λ2k

t∫
0

Fk(τ ;u) sinλ
2
k(t− τ)dτ

 cosλkx, (k = 1, 2, ...)
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Now, from (2.6), considering (3.1), we have:

a(t) = [h(t)]−1
{
h′′(t)− f(0, t)+

+
∞∑
k=1

λ4kuk(t)

}
. (3.7)

Substitute the expression (3.4) in (3.7):

a(t) = [h(t)]−1

{
h′′(t)− f(0, t) +

∞∑
k=1

λ4k

[
ϕk cosλ

2
kt+

1

λ2k
ψk sinλ

2
kt+

+
1

λ2k

t∫
0

Fk(τ ;u, a) sinλ
2
k(t− τ)dτ

 . (3.8)

Thus, the solution of the problem (2.1)-(2.3),(2.6) was reduced to the solution of the
problem (3.6),(3.8)for the unknown functions u(x, t) and a(t).

Lemma 3.1 If {u(x, t), a(t)} any classical solution of the problem (2.1)-(2.3),(2.6) then

functions uk(t) = mk

1∫
0

u(x, t) cosλkxdx, (k = 0, 1, 2, . . .) satisfy the system (3.4), (3.5).

Remark 3.1 From Lemma 3.1 it follows that to prove the uniqueness of the solution of
the problem (2.1)-(2.3),(2.6) enough to prove the uniqueness of the solution of the problem
(3.6), (3.8).

Now, we consider the following spaces:

1 We denote by Bα
2,T [16] ,a consisting of all functions u(x, t) of the form

u(x, t) =
∞∑
k=0

uk(t) cosλkxdx (λk = πk),

considered in DT , where each of the functions form uk(t)(k = 0, 1, ...) is continuous
on [0, T ] and

J(u) ≡ ‖u0(t)‖C[0,T ] +

( ∞∑
k=1

(λαk ‖uk(t)‖C[0,T ])
2

) 1
2

< +∞.

The norm in this set is defined as follows:

‖u(x, t)‖Bα2,T = J(u)

2 The spaces EαT denote the space consisting of a topological product

Bα
2,T × C[0, T ].

The norm of element z(x, t) = {u, a} is determined by the formula

‖z‖EαT = ‖u(x, t)‖Bα2,T + ‖a(t)‖C[0,T ] .

It is obvious that Bα
2,T and EαT are Banach spaces.
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Now in the space EαT consider the operator

Φ(u, a) = {Φ1(u, a), Φ2(u, a)}

where

Φ1(u, a) = ũ(x, t) ≡
∞∑
k=0

ũk(t) cosλkx,

Φ2(u, a) = ã(t),

where ũ0(t), ũk(t)(k = 1, 2, ...) and ã(t) are equal to the right hand sides of (3.4), (3.5).
Now with the help of easy transformations we find:

‖ũ0(t)‖C[0,T ] ≤ |ϕ0|+ T |ψ0|+

+T
√
T

 T∫
0

|f0(τ)|2dτ


1
2

+ T 2‖a(t)‖C[0,T ]‖u0(t)‖C[0,T ], (3.9)

( ∞∑
k=1

(
λ5k ‖ũk(t)‖C[0,T ]

)2) 1
2

≤ 2

( ∞∑
k=1

(
λ5k |ϕk|

)2) 1
2

+

+2

( ∞∑
k=1

(
λ3k |ψk|

)2) 1
2

+ 2
√
T

 T∫
0

∞∑
k=1

(
λ3k |fk(τ)|

)2
1
2

+

+2T ‖a(t)‖C[0,T ]

( ∞∑
k=1

(
λ5k ‖uk(t)‖C[0,T ]

)2) 1
2

, (3.10)

‖ã(t)‖C[0,T ] ≤
∥∥∥[h(t)]−1∥∥∥

C[0,T ]

{∥∥h′′(t)− f(0, t)∥∥
C[0,T ]

+

( ∞∑
k=1

λ−2k

) 1
2

×

( ∞∑
k=1

(λ5k |ϕk|)2
) 1

2

+

( ∞∑
k=1

(λ3k |ψk|)2
) 1

2

+
√
T

 T∫
0

∞∑
k=1

(λ3k |fk(τ)|)2dτ


1
2

+

+ T ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ5k ‖uk(t)‖C[0,T ])
2

) 1
2

 . (3.11)

Suppose that the data of the problem (2.1)-(2.3), (2.6), satisfy the following conditions:

1 ϕ(x) ∈ C4[0, 1], ϕ(5)(x) ∈ L2(0, 1), ϕ
′(0) = ϕ′(1) = ϕ′′′(0) = ϕ′′′(1) = 0;

2 ψ(x) ∈ C2[0, 1], ψ(3)(x) ∈ L2(0, 1), ψ
′(0) = ψ′(1) = 0;

3 f(x, t), fx(x, t), fxx(x, t) ∈ C(DT ), fxxx(x, t) ∈ L2(DT ), fx(0, t) = fx(1, t) =
0(0 ≤ t ≤ T );

4 h(t) ∈ C2[0, T ], h(t) 6= 0(0 ≤ t ≤ T ).
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Further, from (3.9)-(3.11) we have:

‖ũ(x, t)‖B5
2,T
≤ A1(T ) +B1(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B5

2,T
(3.12)

‖ã(t)‖C[0,T ] ≤ A2(T ) +B2(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B5
2,T

(3.13)

where

A1(T ) = ‖ϕ(x)‖L2(0,1) + T‖ψ(x)‖L2(0,1) + T
√
T‖f(x, t)‖L2(DT )+

+2
∥∥∥ϕ(5)(x)

∥∥∥
L2(0,1)

+ 2
∥∥∥ψ(3)(x)

∥∥∥
L2(0,1)

+ 2
√
T ‖fxxx(x, t)‖L2(DT )

,

B1(T ) = T (T + 2),

A2(T ) =
∥∥∥[h(t)]−1∥∥∥

C[0,T ]

{∥∥h′′(t)− f(0, t)∥∥
C[0,T ]

+

( ∞∑
k=1

λ−2k

) 1
2

×

× 2

[∥∥∥ϕ(5)(x)
∥∥∥
L2(0,1)

+
∥∥∥ψ(3)(x)

∥∥∥
L2(0,1)

+
√
T ‖fxxx(x, t)‖L2(DT )

]}
,

B2(T ) =
∥∥∥[h(t)]−1∥∥∥

C[0,T ]

( ∞∑
k=1

λ−2k

) 1
2

T.

From inequalities (3.12),(3.13) we conclude:

‖ũ(x, t)‖B5
2,T

+ ‖ã(t)‖C[0,T ] ≤ A(T ) +B(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B5
2,T
. (3.14)

where
A(T ) = A1(T ) +A2(T ), B(T ) = B1(T ) +B2(T ).

So, we can prove the following theorem:

Theorem 3.1 Let conditions 1-4 be fulfilled and

B(t)(A(T ) + 2)2 < 1 (3.15)

Then the problem (2.1)-(2.3),(2.6) has a unique solution in the sphere K = KR(‖z‖E3
T
≤

R = A(T ) + 2) of the space E5
T .

Proof. In the space E5
T consider the equation

z = Φz, (3.16)

where z = {u, a}, the components Φi(u, a)(i = 1, 2), of the operator Φ(u, a) are deter-
mined by the right hand sides of equations (3.6)-(3.8). Consider the operator Φ(u, a) in the
sphere K = KR from E5

T . Similar to (3.14) we obtained that for any z, z1, z2 ∈ KR the
following estimate are valid:

‖Φz‖E3
T
≤ A(T ) +B(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B5

2,T
≤

≤ A(T ) +B(T ) (A(T ) + 2)2 , (3.17)

‖Φz1 − Φzs‖E5
T
≤

≤ B(T )R(‖a1(t)− a2(t)‖C[0,T ] + ‖u1(x, t)− u2(x, t)‖B5
2,T

(3.18)
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Then from (3.17) and (3.18), with considering (3.15), it follows that operator Φ acts in the
sphere K = KR and it is contraction mapping. Therefore, in the sphere K = KR the oper-
ator Φ has a unique fixed point {u, a}, that is a solution of equation (3.6),(3.8). The function
u(x, t), as the element of the spaceB5

2,T , has continuous derivatives ux(x, t), uxx(x, t), uxxx(x, t),
uxxxx(x, t) in DT .

From (3.15) we get: ( ∞∑
k=1

(
λk
∥∥u′′k(t)∥∥C[0,T ]

)2) 1
2

≤

( ∞∑
k=1

(
λ5k ‖uk(t)‖C[0,T ]

)2) 1
2

+
√
3
∥∥∥‖fx(x, t) + a(t)ux(x, t)‖C[0,T ]

∥∥∥
L2(0,1)

 (i = 1, 2)..

Then it follows that utt(x, t) is continuous in DT . It is easy to verify that (2.1)-(2.3),(2.6)
are satisfied in the ordinary sense. By virtue of the lemma 3.1, it is unique in the sphere
K = KR . Theorem is proved.

Using the Theorem 1 the following Lemma is proved.

Theorem 3.2 Let all the conditions of the theorem 1 be satisfied,

ϕ(0) = h(0), ψ(0) = h′(0).

Then, problem (2.1)-(2.4) has in the sphere K = KR(‖z‖E5
T,T
≤ R = A(T ) + 2) from

E5
T unique classical solution.
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