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Abstract. A model of the process of unsteady motion of fluid in the coupled ”deformable reservoir-
pipeline” system is structured and connected equations are solved. An analytic expression admitting to
determine the influence of pressure change law on the bottomhole, harnesses to it and deformation of
the reservoir on the dynamics of pressure at the outlet of the main pipeline, was obtained. Numerical
calculations were carried out for various values of the system’s parameters.
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1 Introduction

Oil production process consists of three interconnected motion of fluid: in a stratum, in
lifting pipes and in the main pipeline. Any change that happens in one of them, is reflected
in other flows. This, in the initial period leads the violation of the steady state of wells.
Further, after some time, the wells switch to a different steady state, but with a different
return.
Determination of the influence of this transition process on the existing mode of wells is
of important applied and scientific value. Therefore, when modelling the oil production
process, it is necessary to consider the “reservoir-well” and main line as a single system.
Furthermore, in addition other factors, deformation of the formation matrix also may have
essential influence on the fluid flow hydrodynamics. In spite of significant number of hy-
drodynamic studies of oil production process [1-9], the issue of hydrodynamics of flow in
the coupled system of “reservoir-pipeline” was not given due attention.

Therefore, simulation and study of hydrodynamics process in a “reservoir-pipeline” sys-
tem allowing for deformation of the formation matrix is of scientific and applicational sig-
nificance.
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2 Statement and solution of the problem

Let us consider the process of homogeneous fluid filtration in a uniform annular deformable
reservoir (Fig. 1). In the first approximation we accept that permeability of reservoir due to
its deformation depending on the pressure change linearly [5].

k(P ) = k0 −
k0 − kc

Pk − Pc(0)
(Pk − P ), (2.1)

where k0 and kc are initial permeabilities on the contour and pore channel wall.

Fig. 1. Calculation scheme

Within the accepted assumptions, the differential equation of flat-radial filtration of fluid
will have the form [3]

∂∆P

∂t
=

1

r

∂

∂ r

[
χ(P )r

∂∆P

∂ r

]
, (2.2)

where

∆P = P − Pk , χ(P ) =
k(P )

µβ∗
. (2.3)

The initial and boundary conditions

∆P | t=0 =
Pk − Pc(0)

ln
(
Rk
rc

) ln

(
Rk
r

)
, rc≤r ≤ Rk , (2.4)

∆P |r=Rk
= 0 , t > 0 , (2.5)
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∆P|r=rc = Pk − Pc(t) , t > 0. (2.6)

We solve the equation (2.2) approximately. For that accepting that pressure change per unit
time weakly depends on the coordinate, we average the right-hand side of the equation (2.2)
with respect to r [10]

ϕ (t) =
2

R2
k − r2c

∫ Rr

rc

∂∆P

∂t
rdr (2.7)

Substituting expressions (2.1) and (2.7) in equation (2.2), allowing for boundary conditions
(2.5) and (2.6) we get

a1∆P + b1P∆P =
r2

4
ϕ (t) + c1 ln(r) + c2 (2.8)

where c1 and c2 are integration constants, a1 = 1
µβ∗

(
k0 − k0−kc

Pk−Pc(0)
Pk

)
,

b1 = 1
µβ∗

(
k0−kc

Pk−Pc(0)

)
.

Following Leibenzon, in the first approximation we accept [8]

P 2 =
P

2
(Pk + Pc(0)) (2.9)

Then from the expression (2.8) allowing for (2.3) and (2.9) we get

P =
1

A1

[
r2 −R2

k

4
ϕ(t) + ln

(
r

Rk

)
[A2(Pc(t)− Pk)−A3ϕ(t)] +A1Pk

]
(2.10)

where
A1 = a1 + 0.5b1Pc(0)− 0.5b1Pk,

A2 =
A1

ln
(
Rk
rc

) , A3 =
R2
k − r2c

4 ln
(
Rk
rc

) (2.11)

Substituting expression (2.10) in formula (2.7) and integrating, we get

2

R2
k − r2c

•
ϕ(t)

[
A4

4A1
− A3A5

A1

]
− ϕ(t) +

2

R2
k − r2c

A2A5

A1

.
P c(t) = 0 (2.12)

where

A4 =
R4
k − r4c

4
−
R2
k(R

2
k − r2c )
2

,

A5 =
r2c
2

ln

(
Rk
rc

)
−

(R2
k − r2c )

4
(2.13)

Applying the Laplace transform, convolution and inversion theorems, from equation (2.12)
we get:

ϕ(t) = ϕ0 exp

(
1

A6
t

)
+
A7

A6
Pc(0) exp

(
1

A6
t

)
−

−A7

A6
Pc(t)−

A7

A2
6

∫ t

0
Pc(τ) exp

(
t− τ
A6

)
dτ (2.14)
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where

A6 =
2

R2
k − r2c

(
A4

4A1
− A3A5

A1

)
A7 =

2

R2
k − r2c

A2A5

A1
(2.15)

Substituting expression (2.14) in formula (2.10), we get

P =

(
ϕ0 exp

(
1

A6
t

)
+
A7

A6
Pc(0) exp

(
1

A6
t

)
−

−A7

A6
Pc(t)−

A7

A2
6

∫ t

0
Pc(τ) exp

(
t− τ
A6

)
dτ

)
×

×
[

1

4A1
(r2 −R2

k) +
A3

A1
ln

(
Rk
r

)]
−
[
A2

A1
(Pc(t)− Pk)

(
ln

(
Rk
r

))]
(2.16)

ϕ0 is determined from the expression (2.16) allowing for the initial condition (2.4)

ϕ0 =
1

1
4A1

(r2c −R2
k) + A3

A1
ln
(
Rk
rc

)×
×
[
2Pk + Pc(0) +

A2

A1
(Pc(0)− Pk) ln

(
Rk
rc

)]
. (2.17)

The flow rate at the moment t through the lateral surface of the well of radius rc is
determined by the formula

Q|r=rc = −2πrch
k

µ

∂∆P

∂r

∣∣∣∣
r=rc

. (2.18)

Having substituted expression (2.16) in formula (2.18), we get

Q|r=rc = −2πrch
k(P )

µ

{
A8

(
ϕ0 exp

(
1

A6
t

)
+
A7

A6
Pc(0) exp

(
1

A6
t

)
−

−A7

A6
Pc(t)−

A7

A2
6

∫ t

0
Pc(τ) exp

(
t− τ
A6

)
dτ

)
+A9 (Pc (t)− Pk))} (2.19)

where

A8 = − rc
2A1

− A3

A1rc
, A9 =

A2

A1rc
(2.20)

k(P )|r=rc = a2 + b2Pc(t) (2.21)

a2 = k0 − k0−kc
Pk−Pc(0)

Pk

b2 = k0−kc
Pk−Pc(0)

(2.22)

Now in the first approximation we accept that the bottomhole pressure in the course of time
drops linearly

Pc(t) = Pc(0)− Pc(0)− PcT
T

t (2.23)
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where Pc(0) and PcT are bottomhole pressures at the beginning and at the end of well
operation.
Then, substituting expression (2.17) and (2.23) in formula (2.19), we get

Q|r=rc = −2πrch
(a2 + b2(Pc(0)−A10t))

µ

(
A11 exp

(
1

A6
t

)
−A12t−A13

)
(2.24)

where,

A10 =
Pc(0)− PcT

T

A11 = A7A8A10 −
A7A8

A6
Pc(0) +A8ϕ0

A12 = A9A10

A13 = A7A8A10 −A9Pc(0) (2.25)

3 Fluid flow in the tubing

Now we consider fluid flow in a tubing. Taking the fluid as dropping, compressible, homo-
geneous, for the equation of its flow in the pipe and continuity equation we have [9-12]

−∂P
∂x

=
∂Q1

∂t
+ 2aQ1,

− 1

c2
∂P

∂t
=
∂Q1

∂x
, (3.1)

where c2 = ∂P
∂ρ ; c is the sound speed in fluid, Q1 = ρu is the mass flow rate in the unit

area of flow section of the pipe ρ is fluid density, u is fluid flow speed averaged along cross
section of the pipe, a is a resistance factor.

Differentiating both hand sides of the first equation with respect to x, the second equa-
tion with respect to t of the expression (3.1) and subtracting them term by term, we get:

∂2P

∂t2
= c2

∂2P

∂x2
− 2a

∂P

∂t
. (3.2)

The initial and boundary conditions

P (x, 0)|t=0 = Pc(0)− 2aQ10x, 0 ≤ x ≤ l, (3.3)

∂P

∂t

∣∣∣∣
t=0

= 0, 0 ≤ x ≤ l, (3.4)

P |x=l = Py(t), t > 0, (3.5)

P |x=0 = Pc(t), t > 0. (3.6)

We shall look for the solution of the equation (3.2) allowing for conditions (3.5) and (3.6)
in the form:

P = Pc(t)−
Pc(t)− Py(t)

l
x+

n∑
i=1

ϕi (t) sin

(
iπx

l

)
, (3.7)
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where ϕi (t) is an unknown function dependent on time t;l is the pipe length. Substitut-
ing expression (3.7) in the equation (3.2), multiplying the both hand sides of the obtained
expression by sin

(
iπx
l

)
and integrating it from 0 to l, we get the equation:

l

2
ϕ̈i (t) + alϕ̇i (t) +

c2π2i2

2l
ϕi (t) +

l

πi
P̈c (t)− (−1)i

l

πi
P̈y (t) +

+
2al

πi
Ṗc (t)− (−1)i

2al

πi
Ṗy (t) = 0. (3.8)

Applying the Laplace transform, convolution and inversion theorems, allowing for initial
conditions (3.3) and (3.4) from the equation (3.8) we get:

ϕi =
ϕ0

ξ1 − ξ2
(exp(ξ1t)(2a+ ξ1)− exp(ξ2t)(2a+ ξ2)) + ϕ̇0

exp(ξ1t)− exp(ξ2t)

ξ1 − ξ2
−

− 2

πi

(
Pc(t) +

ξ1(2a+ ξ1)
∫ t
0 Pc(τ) exp(ξ1(t− τ))dτ

ξ1 − ξ2
−

−
ξ2(2a+ ξ2)

∫ t
0 Pc(τ) exp(ξ2(t− τ))dτ

ξ1 − ξ2

)
−

− 2

πi

(
Py(t) +

ξ1(2a+ ξ1)
∫ t
0 Py(τ) exp(ξ1(t− τ))dτ

ξ1 − ξ2
−

−
ξ2(2a+ ξ2)

∫ t
0 Py(τ) exp(ξ2(t− τ))dτ

ξ1 − ξ2

)
+

+
2(Pc(0) + Py(0))

πi(ξ1 − ξ2)
(exp(ξ1t)(2a+ ξ1)− exp(ξ2t)(2a+ ξ2))+

+
2(Ṗc(0) + Ṗy(0))

πi(ξ1 − ξ2)
(exp(ξ1t)− exp(ξ2t)), (3.9)

where ξ1 and ξ2 are the roots of the equation

s2 + 2as+
c2π2i2

l2
= 0. (3.10)

Substituting expression (3.10) in formula (3.7) allowing for initial conditions (3.3) and
(3.4) we have ϕ0 = 0, ϕ̇0 = 0.

Differentiating formula (3.7) with respect to x and then substituting to the first equation
in (3.1), we get

Pc(t)

l
− Py(t)

l
+

n∑
i=1

ϕi (t)
πi

l
cos

(
iπx

l

)
= −∂Q1

∂t
− 2aQ1. (3.11)

Applying the Laplace transform, and then convolution and inversion theorems, from equa-
tion (3.11) we get

Q̄1 =
Q1(0)

s+ 2a
+

P̄c
l(s+ 2a)

− P̄y
l(s+ 2a)

−
n∑
i=1

ϕ̄i
πi

l(s+ 2a)
cos

(
iπx

l

)
,
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Q1 = Q1(0) exp(−2at)− 1

l

∫ t

0
Py (τ) exp [−2a (t− τ)] dτ+

+
1

l

∫ t

0
Pc (τ) exp [−2a (t− τ)] dτ−

−
n∑
i=1

(
iπ

l
cos

iπx

l

)(∫ t

0
ϕi (τ) exp [−2a (t− τ)] dτ

)
. (3.12)

The continuity condition

Q|r=rc =
f

ρ
Q1

∣∣∣∣
x=0

. (3.13)

Substituting expressions (2.19) and (3.12) in formula (3.13) allowing only for one term of
the series, in the first approximation we get the

−2πrch
k(P )

µ

{
A8

(
ϕ0 exp

(
1

A6
t

)
+
A7

A6
Pc(0) exp

(
1

A6
t

)
−

−A7

A6
Pc(t)−

A7

A2
6

∫ t

0
Pc(τ) exp

(
t− τ
A6

)
dτ

)
+A9 (Pc (t)− Pk))} =

=
f

ρ

(
Q1(0) exp(−2at)− 1

l

∫ t

0
Py (τ) exp [−2a (t− τ)] dτ+

+
1

l

∫ t

0
Pc (τ) exp [−2a (t− τ)] dτ−

−
n∑
i=1

(
iπ

l

)(∫ t

0
ϕi (τ) exp [−2a (t− τ)] dτ

))
. (3.14)

Applying the Laplace transform, from equation (3.14) we get

P y =
ρl(s+ 2a)(s− ξ1)(s− ξ2)

f(s− η1)(s− η2)

[
A14

s3
+

A15(
s− 1

A6

)2 +
A16

s2
−

−
A17
A6

s
(
s− 1

A6

) − fP c
ρl(s+ 2a)

+
fπ

ρl(s+ 2a)
Φ

]
(3.15)

where
−
Φ =

ϕ0(s+ 2a)

(s− ξ1)(s− ξ2)
+

.
ϕ0

(s− ξ1)(s− ξ2)
−

− 2s
−
P c(s+ 2a)

π(s− ξ1)(s− ξ2)
+

2Pc(0)(s+ 2a)

π(s− ξ1)(s− ξ2)
+

+
2
.
P c(0)

π(s− ξ1)(s− ξ2)
+

2Py(0)(s+ 2a)

π(s− ξ1)(s− ξ2)
+

2
.
P y(0)

π(s− ξ1)(s− ξ2)
,

A14 = −4πrchb2A10A12

µ
,A15 =

2πrchb2A10A11

µ
,

A16 =
2πrcha2A12

µ
+

2πrchb2Pc(0)A12

µ
− 2πrchb2A10A13

µ
,
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A17 =
2πrcha2A13

µ
+

2πrchb2Pc(0)A13

µ
(3.16)

η1 and η2 are the roots of the equation

s2 + s(4a+ ξ1 + ξ2)− ξ1ξ2 = 0 (3.17)

4 Fluid flow in the main pipeline

We consider the fluid flow in the main pipeline. We locate the origin of the coordinate axis
x1 at the inlet of the pipeline and direct it in the direction of fluid flow. Assume that at some
time moment oil line with flow rate G is connected to the main pipeline at the distance l2
from the origin of the coordinate axis x.

Then fluid flow in the main pipeline will be of the form

∂2P

∂t2
= c2

∂2P

∂x2
− 2a3

∂P

∂t
− 2a3c

2G

f1
δ(x1 − l2) (4.1)

Initial and boundary conditions:
∂P

∂t

∣∣∣∣
t=0

= −c2G
f1
δ (x1 − l2) (4.2)

P (x, 0)|t=0 = Pyc(0)− 2a3Q20x1 (4.3)

P |x1=0 = Py(t) (4.4)

P |x1=l1 = Poutlet(t) (4.5)

where l2 is the distance from the wellhead to the point of connection to the main pipe.
We will look for the solution of equation (4.1) allowing for boundary conditions (4.4)

and (4.5) in the form:

P = Py(t)−
Py(t)− P2KE(t)

l1
x+

n∑
i=1

ψi (t)

(
sin

iπx1
l1

)
(4.6)

where ψi (t) is an unknown function dependent on time t, l1 is the pipeline length. Having
substitused expression (4.6) in formula (4.1) allowing for initial conditions similar to the
solution of equations (3.2)-(3.12), (4.2),(4.3) and applying the Laplace transform, we get

Q̄2 =
f1Q2(0)

ρ(s+ 2a3)
+

f1
−
P y

ρl1(s+ 2a3)
−

−
f1P outlet

ρl1(s+ 2a3)
−

−
n∑
i=1

f1πi

ρl1(s+ 2a3)
cos

(
iπx1
l1

)−
Ψ −

2s
−
P y(s+ 2a3)

πi(s− ξ3)(s− ξ4)

 (4.7)

where
−
Ψ =

ψ0(s+ 2a3)

(s− ξ3)(s− ξ4)
+

.
ψ0

(s− ξ3)(s− ξ4)
+

+
2Py(0)(s+ 2a3)

π(s− ξ3)(s− ξ4)
+

2
.
P y(0)

π(s− ξ3)(s− ξ4)
− 4a3c

2G

l1f1s(s− ξ3)(s− ξ4)
sin

(
πl2
l1

)
(4.8)
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ξ3 and ξ4 are the roots of the equation s2 + 2a3s + c2π2i2

l21
= 0 while ψ0,

·
ψ0 are found

from the initial conditions (4.2) and (4.3) and equal ψ0 = 0,
·
ψ0 = 0.

From the continuity condition on the well, allowing for expressions (3.12) and (4.7), we
get

Q1(0)

s+ 2a
+

−
P c

l(s+ 2a)
−

−
P y

l(s+ 2a)
−

n∑
i=1

−
ϕi

πi

l(s+ 2a)
cos

(
iπx

l

)∣∣∣∣∣∣
x=l1

=

 f1Q2(0)

ρ(s+ 2a3)
+

f1
−
P y

ρl1(s+ 2a3)
−

−
f1P outlet

ρl1(s+ 2a3)
−

−
n∑
i=1

f1πi

ρl1(s+ 2a3)
cos

(
iπx1
l1

)−
Ψ −

2s
−
P y(s+ 2a3)

πi(s− ξ3)(s− ξ4)

∣∣∣∣∣∣
x1=0

(4.9)

−
P outlet(t) is determined from formula (4.9).

−
P outlet =

−
P y

(
3(fl1 + f1l)(s− j1)(s− j2)s− j3)(s− j4)s− j5)

f1l(s+ 2a)(s− ξ1)(s− ξ2)(s− ξ3)(s− ξ4)

)
−

− l1f
−
P c(s+ 2a3)

lf1(s+ 2a)
− fl1π(s+ 2a3)

lf1(s+ 2a)

−
Φ− π

−
Ψ (4.10)

Taking into attention convolution and inversion theorems, from the expression (4.10) allow-
ing for formulas (2.23) and (3.15) for the following numerical values of the parameters of
the system

c = c1 = 1000m · c−1; µ = 10−3Pa · c; h = 5m; k = 10−13m2; ρ = 860kg ·m−3

l = 2000m, l1 = 20000m; Pc(0) = 24 · 106Pa; P0 = 106Pa; Pwellhead(0) = 3 · 106Pa;
Pk(0) = 27 · 106Pa;Patm = 105Pa; Rk = 100m; π = 3, 14; a = 10−3c−1, a3 = 10−3c−1;
m = 0.2; T = 90days; PcT = 120Pa; d = 6 · 10−2m; d1 = 20 · 10−2m;
rc = 7.5 · 10−2m,

we get

Poutlet = 2.4223·107−28.324 t+9.3361·10−8t2−1977.7852 exp(−0.001 t) sin(0.156987 t)−

−91929.9404 exp(−0.001 t) cos(0.156987 t)+

+91968.52273 exp(−0.001 t) cos(1.81288 t)+

+204.9836 exp(−0.001 t) sin(1.81288 t)−

−9.33599 · 107 exp(−0.001 t) cos(3.1399 t)−

−2.97325 · 105 exp(−0.001 t) sin(3.1399 t) (4.11)

The results of numerical calculations are in Fig. 2 and 3. As can be seen from Fig. 2,
connection of a new line to the main pipeline leads to strong pulse pressure at the outlet
of the main line at the initial stage, then it damps and after certain time stabilizes and
approaches to the initial value.
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Fig. 2. Dynamics of pressure change at the outlet of the pipe, for t=3000 s.

Fig. 3. Dynamics, of pressure change at the outlet of the pipe, for t=700000 s.

5 Conclusion

We constructed a model of unsteady flow of fluid in the coupled system of a “reservoir-
pipeline” allowing for deformation of formation and connections to it. Analytic expression
allowing to determine dynamics of pressure at the outlet of the main pipeline for the given
law of pressure change at the bottomhole and deformation of formation skeleton that is of
important applicational significance.
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6 Denotation

P is pressure at any point of the stratum, MPa;
Pk is pressure on the stratum contour MPa;
Pc is pressure at the well wall, MPa;
k is efficient permeability, m2;
k0 is initial permeability on the contour, m2;
kc is pore channel wall permeability m2;
ρj fluid density, kg/m3;
P0 is initial pressure MPa;

Rc is radius of the stratum contour, m; r is a coordinate, m; rw well’s radius, m;
T period of fluctuations in the stratum, c; τ, t is time,A; β∗ is a compressibility factor,1/Pa;

χ is a piezoconductivity factor, m2/c;
µ fluid’s dynamic viscosity factor, MPa · c; h is stratum’s power, m; a,a3 is a resistance

factor,c−1; ϕi, ϕ1i is a time -dependent unknown function;
f is the flow section of the piping string, m2;
f1 is the area of flow section of a transport pipeline , m2; a1, a2, b1, b2, A1...A17 are

denotations, n = ν = 1, 2, 3, .... are natural numbers. The indices: ∗ is an upper index,
0 is a lower index; k is a contour; c is a well.
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