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Abstract. The method of solving multidimensional problems of mathematical physics allowing over-
coming the difficulties connected with the splitting of the equations of boundary conditions containing
derivatives of unknown unknown functions is proposed in the article. As an example, we consider the
nonstationary problem of elastodynamics.

A method is proposed for solving linear, multidimensional partial differential equations in integral
form with a kernel satisfying a wave equation that remains unchanged (up to a complex variable and a
multiplier) after Laplace-Fourier transforms, which has interchangeable derivatives with respect to all
variables, and thus allows us to reduce the number of independent variables in the auxiliary equation.
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1 Introduction

Linear dynamic equilibrium equations using stress-strain relationships

σi,j = λδijθ + µ (ui,j + uj,i) , (1.1)

where λ, µ- elastic medium constants, δij- Kronecker symbol, θ- volume expansion

θ = div u =
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

expressed through displacement

µ∆u1 + (λ+ µ) ∂θ
∂x1

= ρ∂
2u1
∂t2

µ∆u2 + (λ+ µ) ∂θ
∂x2

= ρ∂
2u2
∂t2

µ∆u3 + (λ+ µ) ∂θ
∂x3

= ρ∂
2u3
∂t2

, (1.2)
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where u1, u2, u3- displacement vector projection, ρ- density, ω1, ω2, ω3- rotation vector
projection

ω̄ =
1

2
rot u

will be

ω1 =
1

2

(
∂u3
∂x2
− ∂u2
∂x3

)
, ω2 =

1

2

(
∂u1
∂x3
− ∂u3
∂x1

)
, ω3 =

1

2

(
∂u2
∂x1
− ∂u1
∂x2

)
differentiating θ by x1, x2, x3 obtained three equations

∆u1 =
∂θ

∂x1
− 2

∂ω3

∂x2
+ 2

∂ω2

∂x3

∆u2 =
∂θ

∂x2
− 2

∂ω1

∂x3
+ 2

∂ω3

∂x1
(1.3)

∆u3 =
∂θ

∂x3
− 2

∂ω2

∂x1
+ 2

∂ω1

∂x2

Substituting (1.3) in (1.2), we obtain

∂2u1
∂t2

= c21
∂θ

∂x1
− 2c22

∂ω3

∂x2
+ 2c22

∂ω2

∂x3

∂2u2
∂t2

= c21
∂θ

∂x2
− 2c22

∂ω1

∂x3
+ 2c22

∂ω3

∂x1
(1.4)

∂2u3
∂t2

= c21
∂θ

∂x3
− 2c22

∂ω2

∂x1
+ 2c22

∂ω1

∂x2
,

c21 =
λ+ 2µ

ρ
, c22 =

µ

ρ
.

Introducing the antisymmetric tensor

ωij =
1

2
(ui,j − uj,i) i, j = 1, 2, 3 .

And knowing the relation
ω1 = ω32 = −ω23

ω2 = ω13 = −ω31

ω3 = ω21 = −ω12

we rewrite expressions (1.4) in the form

ui,tt = c21θ,i +2c22ωij,j (1.4 a)

Acting on (1.3) and (1.4) operators ∂2

∂t2
and ∆, subtracting, we see that θ and ωi satisfy

the wave equations

Li = ∆− 1

c2i

∂2

∂t2
; Liu = 0. (1.5)

Using (1.4 a) in (1.1) we obtain a relation for the normal and shear stresses

σii,tt = λθ,tt +2µc21θ,ii +4µc22ωij,ij + 4µc22ωik,ik
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(do not summarize)

σij,tt = 2µc21θ,ij −2µωij,tt + 4µc22ωij,jj + 4µc22ωik,jk i 6= j 6= k, (1.6)

where it is considered: div ω̄ = 0 , and (1.5)
The further course of the solution involves [4] difficulty splitting the equations (1.6).

This requires a special form of representation of solutions (1.5).
In this paper, we will use (see the appendix) the following representation of solutions (1.5)

Fi
± (x, y, z, t) =

t∫
0

√
τ22 ci−z2∫
r

ciF
±
0i (ci(t− τ2))H (τ2ci −R)√

c2i τ
2
2 − z2 − τ21

√
τ21 − x2 − y2

dτ1dτ2, i = 1, 2, (1.7)

where R =
(
x2 + y2 + z2

) 1
2 ; r =

(
x2 + y2

) 1
2 H (τ2ci −R) Heaviside function having

the following expressions for derivatives

∂nFi
±

∂xn
= c−ni

(
F±oi,tt

(
i shp±chqi

)n)
∂nFi

±

∂yn
= c−ni

(
F±oi,tt

(
shp±shqi

)n) (1.8)

∂nFi
±

∂zn
= c−ni

(
F±oi,tt (−chqi)n

)
,

where the notation is introduced

c−ni

(
F±oi,tt

(
i shp±chq i

)n)
=

= c̄ni

t∫
o

√
τ22 ci−z2∫
r

∂nF±0i
∂tn

ci (i shp± chqi)
n√

c2i τ
2
2 − z2 − τ21

√
τ21 − x2 − y1

dτ1dτ2

p± = ln
x± iy

τ1 −
√
τ21 − x2 − y2

;

qi = ln
z + iτ1

ciτ2 −
√
c2i τ

2
2 − z2 − τ21

; i = 1, 2 .

Formulas (1.8) make it possible to get rid of the derivatives with respect to t by integrating
(1.6); however, reducing them to algebraic ones requires the representation of the functions
given on the boundary similarly to (1.7)

σij (x, y, z, t) =
t∫
0

√
τ22−z2∫
r

σoij (t− τ2)
(
τ22 − z2 − τ21

)− 1
2 ×

×
(
τ21 − x2 − y2

)− 1
2 dτ1dτ2.

(1.9)

If this succeeds, then to find unknowns θand ωi, we obtain the algebraic equation

σ = DF , (1.10)
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where σ =
(
σoyy, σ

o
yx, σ

o
yz

)T
, F =

(
θ+0 , θ

−
0 , ω

+
03, ω

−
03, ω

+
01, ω

−
01

)T
D =

a+11, a−11, a+12, a−12, a+13, a−13a+21, a
−
21, a

+
22, a

−
22, a

+
23, a

−
23

a+31, a
−
31, a

+
32, a

−
32, a

+
33, a

−
33


a±11 = λ+ 2µc21sh

2p±sh
2
q1 a±12 = 4µ

(
chp±shp±shq2

)
a±13 = 4µi

(
sh2p±shq2chq2

)
a±21 = 2µi

(
sh2p±shq1chq1

)
a±22 = 4µi

(
shp±chp±chq2

)
a±23 = −2µ

(
1 + 2sh2p±ch2q2

)
a±31 = −2µi (shp±chp±shq1)
a±32 = 2µ

(
1− 2ch2p±

)
a±33 = −4µi (shp±chp±chq2) .

2 Solution

As an example, consider the three-dimensional Lamb problem. Let the normal stress be
given on the boundary of half-space y = 0

σyy (x, o, z, t) = σ00δ (x) δ (z) δ (t) ; σyx = σyz = 0 , (2.1)

where δ (x) , δ (z) , δ (t) functions of Darak.
Let us prove that the function

σyy (x, y, z, t) =

∫ t

o

∫ √τ22−z2
r

σoδ (t− τ2) shp shq√
τ22 − z2 − τ21

√
τ21 − x2 − y2

dτ1 dτ2, (2.2)

where q = ln z+iτ1
τ22−
√
τ22−z2−τ21

on the border y = 0 coincides with (2.1).

Indeed, applying first to (2.2) the Laplace transforms in t and Fourier transforms in z,
we obtain

σ̄yy (x, kz, y, s) = σo
∞∫
r

e−τ1
√
s2+k2z

−ish p dτ1√
τ21 − x2 − y2

. (2.3)

Applying the Fourier transform with respect to (2.3), we obtain (see appendices)

σ̄yy (kx, y, kz, s) = σoe−y
√
s2+k2x+k

2
z . (2.4)

Hence it is seen that for y = 0 (2.4) coincides with the correspondingly transformed
(2.1).

Considering (2.2) in (1.10) and bearing in mind θ−o = ω−03 = ω−01 = 0, we can define
θ+o , ω

+
03 and ω+

01, F = D−1σ .
Knowing θ, ω1 and ω3, you can determine the displacement and stress.
Appendix
Applying the Laplace transform by t to the left, and the inverse Fourier transform by x

to the right side of the equality

k(t2−y2)∫
0

J0

(√
k2t2 − (τ + yk)2

)
f (τ) dτ =

k(t2−y2)∫
0

J0

(
α

√
(k − b)2 − c2

)
f (τ) dτ,
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Where J0 - Bessel function, k- parameter Fourier transform, a =
√
t2 − y2; b = yτ

t2−y2 ;

c = tτ
t2−y2 . We get [1] a relation equivalent to the expression,

∞∫
0

∞∫
−∞

e−st+ikx
F (ζ)√

t2 − y2 − x2
dtdx =

e−y
√
s2+k2

√
s2 + k2

F
(
ζ̄
)
, [A.1]

proving the immutability (to a complex variable) of a function

F (ζ) =

∞∫
0

e−τζf (τ) dτ

after Laplace-Fourier transforms; where ζ =
t
√
t2−y2−x2+ixy
t2−y2 ,ζ̄ =

√
s2

k2
+ 1

s- Laplace transform parameter.
his result is consistent with the previously known methods [3], [2], but indicates a way to

obtain simpler formulas for differentiation. Indeed, knowing that differentiation [A.1] with
respect to 1 and 2 can be reduced only to multiplication of the left-hand side

−ik = − s√
1− ζ̄2

= −s shp̄ ,

−
√
s2 + k2 = +

isζ̄√
1− ζ̄2

= +s ish p̄ , ζ̄ =

√
s2

k2
+ 1 = thp̄.

then, considering the properties of the Laplace transform, zero initial conditions, and the
invariability of function F (ζ) gives the right to assert

∂nψ
∂xn = ∂n

∂tn ((−chp)n ψ)
∂nψ
∂yn = ∂n

∂tn ((ishp)n ψ)
[A.2]

where

ψ =
F (ζ)√

t2 − x2 − y2
ζ =

t
√
t2 − x2 − y2 + ixy

t2 − y2
= thp [A.3]

chp =
1√

1− ζ2
=
(
x2 + y2

)−1 (
tx+ iy

√
t2 − x2 − y2

)
=

1

2

(
z

R−
− R−

z

)

shp =
ζ√

1− ζ2
=
(
x2 + y2

)−1 (
x
√
t2 − x2 − y2 + iyt

)
=

1

2

(
z

R−
+
R−

z

)
p = ln

z

R
; z = x+ iy ; R− = t−

√
t2 − |z|2, |z| =

(
x2 + y2

) 1
2 .

If t2 < x2 + y2 hyperbolic functions are replaced with the corresponding trigonometric
ones.

Properties [A.2] can be used to solve partial differential equations.
Consider the integral

u (x, y, z) =

∞∫
0

u0 (τ, z)ψ (p (x, y, τ)) dτ [A.4]
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where ψ- arbitrary function [A.3], selected in such a way as to satisfy the condition

∂nψ

∂τn
∣∣∞
0

= 0 n = 1, 2, ..., [A.5]

a u0 (z, τ) is an unknown function to be determined.
Substituting [A.4] in the three-dimensional biharmonic equation

∆∆u = 0

considering expression [A.2] and integrating by parts, we obtain.∫ (
U0

∂4

∂τ4
(
ψ(ch4p− 2ch2p · sh2p+ sh4p)

)
+

+2
∂2U0

∂x32
∂2

∂τ2
(
ψ
(
ch2p− sh2p

))
+
∂4U0

∂x34
ψ

)
dτ =

=

∫ (
U0
∂4ψ

∂τ4
+ 2

∂2U0

∂x32
∂2ψ

∂τ2
+
∂4U0

∂x34
ψ

)
dτ =

=

∫ (
∂4U0

∂τ4
+ 2

∂4U0

∂τ2∂x32
+
∂4U0

∂x34

)
ψdτ = 0

Now consider the function

U(x1, x2, x3, x4) =

∞∫
0

∞∫
0

U0(x4, τ2)·ψ2(p2(x3, τ1, τ2))·ψ1(p1(x1, x2, τ1))dτ1dτ2 [A.6]

where U0(x4, τ2)- unknown, to be determined, function, ψ1 and - ψ2-arbitrary, also deter-
mined from expression [A.3] corresponding to the change of variables. Substitute [A.6] into
the wave equation.

LcU = ∆U − 1

c2
∂2U

∂x42
= 0

get ∫∫ (
U0ψ2

∂2ψ1

∂τ12
+ U0

∂2

∂τ22
(ψ2(ch

2p2))ψ1 −
1

c2
∂2U0

∂x42
ψ2ψ1

)
dτ2dτ1 =

=

∫∫ (
U0

∂21
∂τ22

(
ψ2

(
−sh2p2

))
ψ1 +

+U0
∂2

∂τ22
(
ψ2

(
ch2p2

))
ψ1 −

1

c2
∂2U0

∂x42
ψ2ψ1

)
dτ2dτ1 =

=

∫∫ (
U0
∂2ψ2

∂τ22
ψ1 −

1

c2
∂2U0

∂x42
ψ2ψ1

)
dτ2dτ1 =

=

∫∫ (
∂2U0

∂τ22
− 1

c2
∂2U0

∂x42

)
ψ2ψ1dτ2dτ1 = 0

Substituting expression [A.6] into the equation

∆Lc1Lc2U = 0

get ∫∫ (
∂4U0

∂τ24
−
(

1

c21
+

1

c22

)
∂4U0

∂τ22∂x42
+

1

c21

1

c22

∂4U0

∂x44

)
ψ2ψ1dτ2dτ1 = 0.

As can be seen from the solutions in all cases, multidimensional problems of mathematical
physics are reduced to one-dimensional.
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3 Conclusion

A general solution of spatial non-stationary problems of elasticity theory is constructed
using analytical functions that remain unchanged (up to a complex variable) after Laplace-
Fourier transformations and, as a consequence, acquired the property of images, which
allows splitting partial differential equations. As an example, the solution of the three-
dimensional Lamb problem is given.
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