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Functionally invariant method in solving three-dimensional problems of
elastodynamics
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Abstract. The method of solving multidimensional problems of mathematical physics allowing over-
coming the difficulties connected with the splitting of the equations of boundary conditions containing
derivatives of unknown unknown functions is proposed in the article. As an example, we consider the
nonstationary problem of elastodynamics.

A method is proposed for solving linear, multidimensional partial differential equations in integral
form with a kernel satisfying a wave equation that remains unchanged (up to a complex variable and a
multiplier) after Laplace-Fourier transforms, which has interchangeable derivatives with respect to all
variables, and thus allows us to reduce the number of independent variables in the auxiliary equation.
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1 Introduction

Linear dynamic equilibrium equations using stress-strain relationships
Oij = )\5U9 +u (ui,j + ’LLj,i) s (1.1
where A, y- elastic medium constants, d;;- Kronecker symbol, 6- volume expansion

. . 8U1 aUQ 8’&3
0 =divu = 0y Oy + s

expressed through displacement

2
pAuy + (A + p) 2 = pZi
2
MAuQ+(A+M)8%"2 =pZie, (1.2)
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pAug + (N + p) 2 = p%h
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where u1, ug, us- displacement vector projection, p- density, w1, wa, ws- rotation vector
projection

w = —=rotu
2

will be
oy = L (s Quz) 10w Ouy o1 (Ous Ow
179 Ors  Ox3 2T Ors Oz 3T Ox1  Oza

differentiating 6 by x1, x2, x3 obtained three equations

00 Ows Owsy
Ay = — —2—2+2—=
“ 81’1 8x2 + 6x3

00 8&)1 6(,4.13
Aug = — —2— 42— 1.
2 6.%2 (9563 + 8951 ( 3)
80 3w2 8(4]1
Aug = — — 2= 42—
s 0x3 ox1 + 0xo

Substituting (1.3) in (1.2), we obtain
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Introducing the antisymmetric tensor
1 .
wij = 5 (Uij —ug)  ,5=1,2,3.
And knowing the relation
W1 = W32 = —wa3
W2 = W13 = —Ws1
W3 = W21 = —wW12
we rewrite expressions (1.4) in the form
Us tt = C%g,i +20§wi]’7]’ (14 a)

Acting on (1.3) and (1.4) operators g—; and A, subtracting, we see that 6 and w; satisfy
the wave equations

167

c? ot

Using (1.4 a) in (1.1) we obtain a relation for the normal and shear stresses

Li=A Liu = 0. (1.5)

Gii gt = Nyup +20Ch 0.4 +Aucawijij + Apuciwin ik
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(do not summarize)

Oijit = 211055 —2uwij + 4uciwij jj + Aucawik jk
where it is considered: div o = 0, and (1.5)

i#j#k (16
The further course of the solution involves [4] difficulty splitting the equations (1.6)
This requires a special form of representation of solutions (1.5)

In this paper, we will use (see the appendix) the following representation of solutions (1.5)

2
T3 01722

t
H (12¢;
Bt (2,y.2.1) = / — 1)) H (172¢; — R)
0

/ oi (cilt — dridry, i=1,2, (1.7)
] \/CT —z2—7'1\/7' — 2 — g2
1

1
where R = (22 + y? + 22)2; r = (22 +y?)2 H (T2¢; — R) Heaviside function having
the following expressions for derivatives

omEE , n

B c; " <Fitt (z shpichqz-) )
omFE n

By " (F;tt (shpishqi) ) (1.8)
" Fi*

9z " <F(§Ii:,tt (_Ch%')n) )

where the notation is introduced
— + . + AT
c " (Fm.’tt (’L shp™chq 7,) ) =

2

¢ T2cl z2 N N
(9"F ¢; (i shp™ chqg;)"
/ / ’L( p Qz) dTldTQ
2rd— 22— 13\t —a?—y!
Tt
=l y
T —/TE — 2?2 — y?
z+am
¢ =In > . 1=1,2
CiTy — £/ ciTs — 22 — 7]

Formulas (1.8) make it possible to get rid of the derivatives with respect to ¢ by integrating

(1.6); however, reducing them to algebraic ones requires the representation of the functions
given on the boundary similarly to (1.7)

t \/T3-22
Oij (Ly,z,t) = f f (J‘% (t — 7-2) (T2 2 2
0 r

2 < TN
x (¢

N |=

) #x (1.9)
1

- xQ - y2)7§ dTldTQ.

If this succeeds, then to find unknowns fand w;, we obtain the algebraic equation

o= DF, (1.10)
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T _ _ _\T
_ o o o _ + + +
where o = (ayy, T ayz) , F= (00 05 wos, Woss Wops W(n)
+ - 4+ - o+ -
a1y, Gq1, Qpo, Qg Qq3, Gq3
D = |ay, ay, a5, Gy, g3, ag3

gy, A3y, O3, Agg, 33, G33
aicl =+ QNC%ShQPiShZ(h alig =4pu (chpishpishqg)
ali3 = 4ui (sthisthcth) ag; = 2ui (Sh2pishqlchq1)
a%é = 4ui (shpichpichqg) a%tg =24 (1 + 2sh2pich2q2)

ail = —2ui (shpTchpshq)
aiQ =2u (1 — 20h2pi)
azz = —4ui (shpchptchgs) .

2 Solution

As an example, consider the three-dimensional Lamb problem. Let the normal stress be
given on the boundary of half-space y = 0

oyy (2,0,2,t) =08 (2) 6 (2) 6 () 5 Oyw = 0y =0, (2.1)

where § (z) , §(z), d(t) functions of Darak.
Let us prove that the function

toVTE 2R 0% (t — 1) shpsh
oyy (,y,2,t) = / / \/7_2 ( 2) shp shq 2al7'1 dro, (2.2)
o I8 2

— 22— 7/l —x2—y
where ¢ = In % on the border yy = 0 coincides with (2.1).
TS\ To—2°—T
Indeed, applying first to (2.2) the Laplace transforms in ¢ and Fourier transforms in z,
we obtain

00
—ishpd
6?4?,/ (3?, kz; Y, 3) = UO e‘”WM (23)

/2 2 2’

Applying the Fourier transform with respect to (2.3), we obtain (see appendices)

T

Oyy (kz,y, k2, 8) = 0%V s?Hk2+kZ 2.4)

Hence it is seen that for y = 0 (2.4) coincides with the correspondingly transformed

2.1).
Considering (2.2) in (1.10) and bearing in mind 0, = wy; = wy; = 0, we can define

wiz andwg, F = D7 lo.
Knowing 0, w; and w3, you can determine the displacement and stress.
Appendix
Applying the Laplace transform by ¢ to the left, and the inverse Fourier transform by x
to the right side of the equality

9+

0

k(thyQ) k(thyz)

0/ Jo <\/k2t2 —(r+ yk)2> f(r)dr = 0/ Jo <a (k—b)% — 02> f(7)dr,
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Where J - Bessel function, k- parameter Fourier transform, a = /t2 — y2; b=

C =

yr .
t2—y2 9
We get [1] a relation equivalent to the expression,

r7 —st+ikx F(C) dtd e siHk (7) [A 1]
Je Ny m '

proving the immutability (to a complex variable) of a function

tT
+2 _y2 .

[e.o]

F%O::/?‘“fCﬂdT

0

. tA/t2 —y2 g2
after Laplace-Fourier transforms; where ( = Yooty L =1/ Zi +1

T 22
s- Laplace transform parameter.
his result is consistent with the previously known methods [3], [2], but indicates a way to
obtain simpler formulas for differentiation. Indeed, knowing that differentiation [A.1] with
respect to 1 and 2 can be reduced only to multiplication of the left-hand side

—’l/k = —% = —SShﬁ,

o

2
—V82+k%2=+ \/%——i—szshp, (= > —i—l—thp

then, considering the properties of the Laplace transform, zero initial conditions, and the
invariability of function F' () gives the right to assert

e = f ((—chp)" )
L A 147

where
B F () ot —a? -yt iy
Y= ﬂ—xQ—ﬁC_ " = thp [A.3]
_ 1 (2,2 s ar A L SN
chp = 1_<2—(£U —|—y) (t:v+zy t-—z y)—2 = .
B ¢ B 3 1/ 2 R™
shp === = (4 ) HaVB oo i) =5 (=t

1
zln%; z=x+1y; R*:t—\/t2—|z]2, |z]:(x2+y2)2

If 2 < 22 + y? hyperbolic functions are replaced with the corresponding trigonometric

ones.
Properties [A.2] can be used to solve partial differential equations.
Consider the integral

o0

u (2, 2) = / wo (1, 2) % (p (2,9, 7)) dr (A4

0
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where 1)- arbitrary function [A. 3] selected in such a way as to satisfy the condition

1,2 [A.5]

g ooy

87’” } ’

aug (z,7) is an unknown function to be determined.
Substituting [A.4] in the three-dimensional biharmonic equation

AAuy =0
considering expression [A.2] and integrating by parts, we obtain.
4
/ <U0§4 (1/1(ch4p —2ch?p - sh®p + sh4p)) +
-
0*Uy 0° 2 2 90Uy
022 02 (w (ch p — sh p)) + 97 4w) dr =

oty _9%*Uy 821/1 (94U0
/ (UO ort 2 Oxs? 012 34 w)

0ty 01Uy 84U0
B / ( ort +287'28a:3 O3 >¢d

+2

Now consider the function
U($1,962,903,$4)://U0($4,T2)'¢2(p2($3771,T2))'¢1(p1(061,962771))6171(172 [A.6]

where Up(x4, 72)- unknown, to be determined, function, 1) and - v9-arbitrary, also deter-
mined from expression [A.3] corresponding to the change of variables. Substitute [A.6] into
the wave equation.

1 0%°U
LU=AU - ———==0
c2 Oz 42
get

2 2
i (Uowga I () — 5 U‘;wm) drydr, =

-/ (anf;z o)

0? 1 02U,
+U03T22 (¥2 (ch®p2)) W1 — 3#}2%) dradr =

0? 1 a2U
= // <an 1/;21#1 292 §¢2¢1> dradr) =

9?’Uy 1 0°U,
// (87220 T 29 3) Yorprdradry =0

Substituting expression [A.6] into the equation
AL, L., U =0

0*Uy 11 0*Uy 118
// (872 ( * c%) 01920142 T2 2 2 Oxyt > VYrrdradr = 0.

As can be seen from the solutions in all cases, multidimensional problems of mathematical
physics are reduced to one-dimensional.

get
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3 Conclusion

A general solution of spatial non-stationary problems of elasticity theory is constructed
using analytical functions that remain unchanged (up to a complex variable) after Laplace-
Fourier transformations and, as a consequence, acquired the property of images, which
allows splitting partial differential equations. As an example, the solution of the three-
dimensional Lamb problem is given.
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