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Surface energy dissipation of an AC electric field in a semi-infinite
electron plasma with mirror and diffuse boundary conditions
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Abstract. The response of an electron plasma with an arbitrary degree of degeneracy to an alternat-
ing electric field with mirror and diffuse boundary conditions is considered. The value of the surface
absorption of the electric field energy is calculated.
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1 Introduction

The character of electric field screening near the surface of a conductor is critically im-
portant for different problems of surface physics [2], [3], [9], in particular, the problem of
propagation of plasma oscillations [1], [6].

Here, we have obtained an analytical solution to the problem on the behavior of a semi-
infinite plasma with an arbitrary degree of electron gas degeneracy in an external ac electric
field perpendicular to the plasma surface. Such a situation takes place, e.g., when analyzing
a solid-state semiconductor plasma. We use the Vlasov–Boltzmann kinetic equation with
the Bhatnagar–Gross–Krook (BGK) collision integral for the electron distribution function
and Poisson equation for the electric field.

It makes it possible to separate energy absorption into the volume and surface compo-
nents. Surface absorption is analyzed in detail. A nontrivial character of the dependence of
surface absorption on the ratio between the volumetric electron collision frequency and the
frequency of the external electric field is demonstrated.

2 Formulation of the Problem and Basic Equations

The general statement of the problem is given in [4], [7], [8]. We will use the τ–model
Vlasov–Boltzmann equation
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The behavior of the electric field in plasma is described by Poisson equation

divE = 4πρ, ρ = e

∫
(f − f0)dΩF , dΩF =

(2s+ 1)d3p

(2π~)3
. (2.2)

Here, f is the electron distribution function; feq is the locally equilibrium Fermi–Dirac

distribution function, feq(r, v, t) =
{
1 + expE−µ(r,t)kT

}−1
, f0 = fFD is the unperturbed

Fermi–Dirac distribution function, f0(v, µ0) = fFD(v, µ0) =
{
1 + expE−µ0kT

}−1
, p=mv

is the electron momentum; E=mv2/2 is the electron kinetic energy; µ0 = const and µ(r, t)
are the unperturbed and perturbed chemical potentials, respectively; e and m are the charge
and effective mass of an electron, respectively; ρ is the charge density; ~ is Planck’s con-
stant; ν is the electron scattering frequency; s is the particle spin (s = 1/2 for electrons); k
is the Boltzmann constant; T is the plasma temperature, which is assumed to be constant;
and E(r, t) is the electric field in plasma.

Let us consider the condition of mirror reflection of electrons from the boundary of a
semi-infinite plasma: f(x = 0, vx, vy, vz, t) = feq(x = 0,−vx, vy, vz, t), and the con-
dition of diffusive reflection of electrons from the boundary of a semi-infinite plasma:
f(x = 0,v, t) = feq(x = 0,v, t) at vx > 0, e(0) = 1, e(+∞) < +∞. The external
electric field on the plasma surface is perpendicular to the plasma boundary and varies in
time as Eext(t) = E0e

−iωt(1, 0, 0).
The corresponding self-consistent electric field in plasma has the form E(x, t) =

= E(x)e−iωt(1, 0, 0).
We assume that the external field is sufficiently weak, so that the linear approximation is

applicable.Equations (1) and (2) can be linearized with respect to the absolute Fermi-Dirac
distribution function f0: feq(x, P, t) = f0(P, α) + g(P, α)δα(x)e−iωt, where f0(P, α) =
fFD(P, α) = (1 + eP

2−α)−1, g(P, α) = eP
2−α/(1 + eP

2−α)2, P = p/pT = v/vT .
Here vT is the electron thermal velocity given by vT =

√
2kT/m and α = µ/kT is

the reduced chemical potential. The change of the chemical potential is considered to be a
small parameter so that representation α(x, t) = α + δα(x)e−iωt is possible. We linearize
the electron distribution function f(x, P, Px, t) = f0(P, α) + g(P, α)h(x, Px)e

−iωt, where
h(x, Px) is a new unknown function and h(x, Px) ∼ E.

As a result, we get a system containing new unknown functions and dimensionless vari-
ables. The detailed solution is given in [7]. The solution is based on the method of separation
of variables, is reduced to obtaining the dispersion function and search eigenfunctions by
which we can decompose the resulting analytical solution. Dispersion function determines
the range of solutions to the problem

Λ(z) = 1− 1

w0
− z2 − η21

w0η21
λ0(z, α),

λ0(z, α) = 1 + z

∫ +∞

−∞

k(µ, α)dµ

µ− z
.

Constants w0, η21 and function k(η, α) have forms

f0(η, α) = (1 + exp(η2 − α))−1, k(η, α) =
f0(η, α)

2s0(α)

s0(α) =

∫ +∞

0
f0(t, α)dt, s2(α) =

∫ +∞

0
t2f0(t, α)dt
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w0 = 1− iω
ν
, η21 = w0

ν2

ω2
p

s2(α)

s0(α)
.

As a result of the solution, the induced electromagnetic field is represented as the sum
of three terms corresponding to the expansion in the spectrum of the dispersion function.
In [4], the electric field inside the plasma was obtained as expansions in the eigensolutions
of the original system of equations in the case of diffuse boundary conditions. And, in
[8], the electric field inside the plasma was obtained as expansions in the eigensolutions of
the original system of equations in the case of mirror boundary conditions. In general, the
structure of an electric field arising in a plasma can be represented as e(x) = ev + es(x). In
the case of mirror boundary conditions, the electric field can be represented in the form

ev = E∞,

es(x) =
2Λ1η0

Λ′(η0, α)(η21 − η20)

(
−w0x

η

)
+

+
Λ1

w0η21s0(α)

∫ ∞
0

η2f0(η, α)

Λ+(η, α)Λ−(η, α)
exp

(
−w0x

η

)
dη.

In the case of diffuse boundary conditions, the electric field can be represented in the form

ev = E∞,

es(x) = Edexp

(
−w0x

η0

)
+

∞∫
0

1

2πi(η2 − η21)
∗

∗
(
C0 +

C−1
η − η0

)(
1

X+(η)
− 1

X−(η)

)
exp

(
−w0x

η

)
dη,

where

E∞ = C0 =
Λ1

Λ∞
, Ed =

C0(η1/(η
2
0 − η21) + α−)

X(η0)(η1α+ − η0α−)
,

C−1 = −
C0[η1 + α−(η20 − η21)]

(η1α+ − η0α−)
, α± =

X(η1)±X(−η1)
2

,

X(z) =
1

z
expV (z), V (z) =

1

π

∞∫
0

ζ(τ)dτ

τ − z

ζ(τ) =
1

2i
lnG(τ)− π.

The detailed description of the function G(τ) is given in [4], [7].
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3 Energy Absorption

Let us consider the electron response in a metal layer to an external ac electric field. We
will calculate the electric field energy absorbed in a cylindrical area with the base area S
and thickness a. The external ac electric field E0 exp(−iωt) is applied perpendicular to the
layer surface.

Absorption in a cylindrical volume with the base area S and thickness a is given by a
well-known expression [8]

Q =
S

2
Re

a∫
0

j(x)E∗(x)dx.

Here, j(x) is the current density and the asterisk denotes a complex conjugate.
Since we are considering a one-dimensional problem, the equation for the electric field

has the form dE
dx = 4πq where q is the charge density. All quantities are assumed to depend

on time as exp(−iωt), i.e., E = E(x) exp(−iωt). The continuity equation for the one-
dimensional charge–current system is given by dj(x)

dx − iωq(x) = 0.
In [7], the value of the absorption of the electric field energy in a plasma with an arbitrary

degree of degeneracy with diffuse boundary conditions was calculated. Energy absorption
can be separated into volumetric and surface components. Volume absorptions in the case
of diffuse and mirror boundary conditions are equal. It is of interest to compare the surface
absorption of electric field energy in plasma in the case of diffuse and mirror boundary
conditions.

With the help of some calculations, we obtain [7] that in the case of mirror boundary
conditions the quantity Qs is

Qs =
vTSE

2
0

8π
qs,

where

qs =

√
s2(α)

s0(α)
Im

{
Ω
√
ε√

ε2 +Ω2

√
ε+ iΩ

}
.

In the case of diffuse boundary conditions, the quantity Qs is

Qs =
vTSE

2
0

8π
qs,

where

qs =
Ω

ε
Im

{
1

w0
·
[
C0V1 + α+(η20 − η21)−

C−1
C0

(C0 + η0α
+ − η1α−)

]}
.

The quantityQs corresponds to surface absorption. For a sufficiently broad plasma layer
(with a width exceeding the electron mean free path),Qs independent of the layer thickness.
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Fig. 1 Surface absorption at ε = 0.0001 and α = −1 in the case of mirror boundary
conditions (1) and in the case of diffuse boundary conditions (2)

Fig. 2 Surface absorption at ε = 0.0001 and α = 0 in the case of mirror boundary
conditions (1) and in the case of diffuse boundary conditions (2)
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Fig. 3 Surface absorption at ε = 0.0001 and α = 1 in the case of mirror boundary
conditions (1) and in the case of diffuse boundary conditions (2)

Fig. 1 shows the plots of the surface absorption qs in the case of ε = 0.0001 and α = −1,
graphs 1, 2 correspond to the values, respectively, in the case of mirror boundary conditions
and in the case of diffuse boundary conditions.

Fig. 2 shows the plots of the surface absorption qs in the case of ε = 0.0001 and α = 0,
graphs 1, 2 correspond to the values, respectively, in the case of mirror boundary conditions
and in the case of diffuse boundary conditions.

Fig. 3 shows the plots of the surface absorption qs in the case of ε = 0.0001 and α = 1,
graphs 1, 2 correspond to the values, respectively, in the case of mirror boundary conditions
and in the case of diffuse boundary conditions.

Fig. 1 - 3 shows that for ε = 0.0001 and α = −1, 0, 1 the values of surface absorption
in the case of mirror boundary conditions are greater than the values of surface absorption
in the case of diffuse boundary conditions. The graphs show that as the chemical potential
of the growth surface absorption increases.
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