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Abstract. The forced vibration problems of the hydro-elastic systems consisting of the plate, compress-
ible viscous fluid and rigid wall are solved analytical-numerical methods, according to which the fi-
nal results are obtained by employing PC programs with the use of a certain algorithm for calculation.
Namely, under this calculation procedure, it is necessary to establish convergence of the used calculation
algorithm and PC programs. In this sense in the present paper it is made the attempt to examine the
convergence of the mentioned calculation algorithm used in the case wherein the foregoing hydro-elastic
system the plate material is anisotropic (orthotropic) one. Under this examination the motion of the plate
is described with the exact equations of elastodynamics for anisotropic bodies, however, the flow of the
fluid is described with the linearized Navier-Stokes equations. For the solution to the problem the Fourier
integral transformation with respect to the coordinate which is on the coordinate axis which is directed
along the plate length, is employed. Numerical results on the convergence of the calculation of the inverse
Fourier transform the expressions of which are obtained in the solution procedure of the corresponding
boundary value problems, are presented and discussed.

Keywords. Convergence numerical results · hydro-elastic system · anisotropic material · compressible
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1 Introduction.

The theoretical investigations of the problems related to the dynamics of hydro-elastic sys-
tems involves solutions to various type system of partial differential equations of continuum
mechanics related to the motion of the deformable bodies which are in contact with various
type fluids (i.e. viscous, inviscid, compressible incompressible and etc.) the flow of which
is also described with the system of Navier-Stokes partial differential equations. Note that
under solution procedure to these equations for obtaining final numerical results, accord-
ing to which it is made the corresponding engineering recommendation, is based on the
numerical calculation algorithm and PC programs. Consequently, the authenticity of the
algorithm used under obtaining these result requires to establish of the convergence do-
main this algorithm. In connection with this, in the present paper it is made the attempt to
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consider and analyze the convergence of the algorithm used under obtaining numerical re-
sults related to the forced vibration of the hydro-elastic system consisting of the anisotropic
(orthotropic) plate, compressible viscous fluid and rigid wall. Note that the similar consid-
eration and analyses for the case where the material of the mentioned hydro-elastic system
is an isotropic one, was made in the works by Akbarov and Ismailov (2014, 2017, 2016,
2018) and others the review of which is made in the paper by Akbarov (2018) and in the
monograph by Akbarov (2015).

2 Mathematical formulation of the problem

Assume that the hydro-elastic system consists of the orthotropic plate, compressible vis-
cous fluid and rigid wall as shown in Fig. 2 and this hydro-elastic system occupies the
region {−∞ < x1 < +∞; −h − hd < x2 < 0; −∞ < x3 < +∞} in the Cartesian
coordinate system Ox1x2x3 which is associated with the upper face plane of the plate. The
part {−∞ < x1 < +∞; −h < x2 < 0; −∞ < x3 < +∞}of this region is occupied
by the plate and the remain part {−∞ < x1 < +∞; −h − hd < x2 < −h; −∞ < x3
< +∞}of that is filled with the fluid and the plane x2 = −h− hdis taken as the rigid wall.

Fig. 1. The sketch of the hydro-elastic system consisting of orthotropic elastic plate,
compressible viscous fluid and rigid wall

It is assumed that the coordinate axis Ox3 is perpendicular to the plane of the Fig.
1 and therefore this axis is not shown in this figure. At the same time, we suppose that
along to this line, i.e. on the line −∞ < x3 < +∞, x1 = 0 and x2 = 0 the uniformly
distributed time-harmonic forces with intensity P0 act and consequently we can reduce
this three-dimensional problem to the corresponding two dimensional one, according to
which, all the sought values will depend on the space coordinates x1 and x2 but not on the
coordinate x3. Finally, we assume that the material of the plate is the orthotropic one the
elastic symmetry axes of which coincide with the coordinate axes Ox1, Ox2 and Ox3, and
this assumption is the main one, according to which, the investigations on the convergens
of the numerical calculation algorithm differs from corresponding ones carried out in the
papers by Akbarov and Ismailov (2014, 2017, 2016, 2018).

Thus, within the framework of the foregoing assumptions, we write the governing field
equations and relations.

The equations of motion for the plate:
∂σ11
∂x1

+
∂σ12
∂x2

= ρ
∂2u1
∂t2

,
∂σ12
∂x1

+
∂σ22
∂x2

= ρ
∂2u2
∂t2

. (2.1)

The elasticity relation

σ11 = a11ε11 + a12ε22, σ22 = a12ε11 + a22ε22, σ12 = 2G12ε12, (2.2)
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where

a 11 =
A22

A11A22 −A2
12

, a 12 =
A12

A11A22 −A2
12

, a 22 =
A11

A11A22 −A2
12

,

A11 =
1− ν13ν31

E1
, A12 = −ν12 + ν13ν32

E1
, A22 =

1− ν23ν32
E1

,

ν13E1 = ν31E3, ν21E2 = ν12E1, ν32E3 = ν23E2. (2.3)

In (2.3) the following notation is used: E1, E2 and E3 are the modulus of elasticity of the
plate material in the directions of the Ox 1, Ox2 and Ox3 axes, respectively, G12 is the
shear modulus in the Ox 1x2 plane, νij (i; j = 1, 2, 3) is the Poisson’s coefficient charac-
terizing the shorting (the lengthening) of the material fibers in the Oxi axis direction under
stretching (under compressing) in the Oxj axis direction; σij and εij (ij = 11; 22; 12) are
the components of the stress and strain tensor, respectively; u1 and u2 are the components
of the displacement vector in the Ox 1 and Ox2 axes directions, respectively .

The strain-displacement relations:

ε11 =
∂u1
∂x1

, ε22 =
∂u2
∂x2

, ε12 =
1

2

(
∂u1
∂x2

+
∂u2
∂x1

)
. (2.4)

The equations and relations which given in (2.1) – (2.4) are the closed system of the
field equations related to the motion of the orthotropic plate.

Also, consider the mathematical modelling of the fluid flow which, according to the
monograph by Guz (2009), can be described with the linearized Navier-Stokes equations
given below.

ρ
(1)
0

∂vi
∂t
− µ(1) ∂vi

∂xj∂xj
+
∂p(1)

∂xi
− (λ(1) + µ(1))

∂2vj
∂xj∂xi

= 0,
∂ρ(1)

∂t
+ ρ

(1)
0

∂vj
∂xj

= 0,

Tij =
(
−p(1) + λ(1)θ

)
δij + 2µ(1)eij , θ =

∂v1
∂x1

+
∂v2
∂x2

,

eij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
.a20 =

∂p(1)

∂ρ(1)
, i : j = 1, 2. (2.5)

where ρ(2.1)
0 is the fluid density before perturbation, ρ(2.1) is the perturbation of the fluid

density, p(2.1) is the perturbation of the hydrostatic pressure, v1 and v2 are the components
of the fluid flow velocity vector in the directions of the Ox1 and Ox2axes, respectively, Tij
and eij are the components of the stress and strain velocity tensors in the fluid, a0 is the
sound velocity in the fluid, λ(2.1) and µ(2.1) are the coefficients of the fluid viscosity. In (2.5)
it is made summation with respect to the by repeating indices.

In the monograph the monograph by Guz (2009) it was established that the solution to
the equations in (2.5) can be represented as follows

v1 =
∂ϕ

∂x1
+
∂ψ

∂x2
, v2 =

∂ϕ

∂x2
− ∂ψ

∂x1
, p(1) = ρ

(1)
0

(
λ(1) + 2µ(1)

ρ
(1)
0

∆− ∂

∂t

)
ϕ, (2.6)

where the potentials ϕ and ψ satisfy the following equations.[(
1 +

λ(1) + 2µ(1)

a20ρ
(1)
0

∂

∂t

)
∆− 1

a20

∂2

∂t

]
ϕ = 0,

(
ν(1)∆− ∂

∂t

)
ψ = 0, ∆ =

∂2

∂x21
+

∂2

∂x22
. (2.7)
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Here ν2.1is the kinematic viscosity, i.e. ν2.1 = µ2.1µ2.1ρ2.10 ρ2.10 and λ2.1 = −2
3µ

2.1 which
follows from the assumption p2.1 = −(T11 + T22 + T33)/3.
We write also the following boundary, compatibility and impermeability conditions.

The boundary conditions on the upper face plane of the plate:

σ21|x2=0 = 0, σ22|x2=0 = −P0e
iωt. (2.8)

The compatibility conditions on the interface plane between the fluid and plate:

∂u1
∂t

∣∣∣∣
x2=−h

= v1|x2=−h ,
∂u2
∂t

∣∣∣∣
x2=−h

= v2|x2=−h ,

σ21|x2=−h = T21|x2=−h , σ22|x2=−h = T22|x2=−h . (2.9)

The impermeability conditions on the rigid wall:

v1|x2=−h−hd = 0, v2|x2=−h−hd = 0. (2.10)

This completes the mathematic formulation of the problem.

3 Employing the Fourier transform to solution of the field equations and
determination of the expressions of these transforms

Taking the boundary conditions in (2.8) into consideration the sought values are presented
as g(x1, x2, t) = ḡ(x1, x2)e

iωt, according to which, the derivatives ∂(·)/∂t and ∂2(·)
/
∂t2 in

the foregoing equations are replaced with the with iω(̄·) and−ω2(̄·), respectively. After this
replacing, we obtain corresponding equations and relations for the amplitudes of the sought

values for determination of which the Fourier transform fF (s, x2) =
+∞∫
−∞

f(x1, x2)e
−isx1dx1

is employed with respect to the coordinate x1 (see, for instance, the monograph by Sneddon
(1995)) . Thus, taking the problem symmetry with respect to the x1 = 0 plane the sought
quantities can be presented as follows.

u1 =
1

π

∫ ∞
0

u1F (s, x2) sin(sx1)ds, u2 =
1

π

∫ ∞
0

u2F (s, x2) cos(sx1)ds,

σ11 =
1

π

∫ ∞
0

σ11F (s, y2) cos(sy1)ds,

σ22 =
1

π

∫ ∞
0

σ22F (s, x2) cos(sx1)ds, σ12 =
1

π

∫ ∞
0

σ12F (s, x2) sin(sx1)ds,

ϕ =
1

π

∫ ∞
0

ϕF (s, x2) cos(sx1)ds, ψ =
1

π

∫ ∞
0

ψF (s, x2) sin(sx1)ds,

v1 =
1

π

∫ ∞
0

v1F (s, x2) sin(sx1)ds, v2 =
1

π

∫ ∞
0

v2F (s, x2) cos(sx1)ds,

T11 =
1

π

∫ ∞
0

T11F (s, x2) cos(sx1)ds,

T22 =
1

π

∫ ∞
0

T22F (s, x2) cos(sx1)ds, T12 =
1

π

∫ ∞
0

T12F (s, x2) sin(sx1)ds. (3.1)
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Substituting the expressions in (3.1) into the field equations detailed above we obtain the
equations and relations satisfied by the Fourier transforms of the unknown functions. Do-
ing some mathematical manipulations the following equations are obtained for the Fourier
transforms related to the plate, i.e. with respect to the u1F and u2F .

Au1F −B
du2F
dx2

+
d2u1F
dx22

= 0, Du2F +B
du1F
dx2

+G
d2u2F
dx22

= 0, (3.2)

where

A = X2 − s2a11/G12, B = sa12/G12 + s,D = X2 − s2, G = a22/G12,

X2 = ω2h2
/
c22, c2 =

√
G12/ρ. (3.3)

As in the paper by Akbarov and Ismailov (2017), introducing the notation

A0 =
AG+B2 +D

G
,B0 =

BD

G
, k1 =

√
−A0

2
+

√
A2

0

4
−B0,

k2 =

√
−A0

2
−
√
A2

0

4
−B0, (3.4)

we can write the solution of the equation (3.2) as follows:

u2F = Z1e
k1x2 + Z2e

−k1x2 + Z3e
k2x2 + Z4e

−k2x2 ,

u1F = Z1a1e
k1x2 + Z2a2e

−k1x2 + Z3a3e
k2x2 + Z4a4e

−k2x2 , (3.5)

where

a1 =
−D −Gk21

Bk21
, a2 = −a1, a3 =

−D −Gk22
Bk22

, a4 = −a3. (3.6)

According to equations (3.5) and (2.2) – (2.4), we obtain also the following expressions for
the Fourier transforms of the quantities related to the stresses related to the plate.

σ21F
G12

= Z1 (k1a1 − s) ek1x2 + Z2 (−k1a2 − s) e−k1x2+

+Z3 (k2a3 − s) ek2x2 + Z4 (−k2a3 − s) e−k2x2 ,
σ22F
G12

= Z1

(
s
a12
G12

a1 + k1
a22
G12

)
ek1x2 + Z2

(
s
a12
G12

a2 − k1
a22
G12

)
e−k1x2+

Z3

(
s
a12
G12

a3 + k2
a22
G12

)
ek2x2 + Z2

(
s
a12
G12

a4 − k2
a22
G12

)
e−k2x2 . (3.7)

Using the approach developed in the papers by Akbarov and Ismailov (2017), Akbarov
and Huseynova (2019) and others listed therein, for determination of the expressions of
the Fourier transforms for quantities related to the fluid motion, we use the representations
ϕF = ωh2ϕ̃F and ψF = ωh2ψ̃F , after which it is obtained the following equations for the
functions ϕ̃F and ψ̃F .

d2ϕ̃F
dx22

+

(
Ω2

1

1 + i4Ω2
1

/
(3N2

w)
− s2

)
ϕ̃F = 0,

d2ψ̃F
dx22

−
(
s2 + iN2

w

)
ψ̃F = 0, (3.8)

where Ω 1 = ωh/a0 , N2
w = ω h2

/
ν(2.1).
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Thus, the solution to the equations in (3.8) we determine as follows.

ϕ̃F = Z5e
δ1x2 + Z7e

−δ1x2 , ψ̃F = Z6e
γ1x2 + Z8e

−γ1x2 , (3.9)

where δ1 =
√
s2 −Ω2

1

/
(1 + i4Ω2

1

/
(3N2

w)) and γ1 =
√
s2 + iN2

w.
Using the expressions (3.9), (2.6) and (2.5) we obtain:

v1F = ω h
[
−Z5se

δ1x2 − Z7se
−δ1x2 + Z6e

γ1x2 + Z8e
−γ1x2

]
,

v2F = ω h
[
Z5δ1e

δ1x2 − Z7δ1e
−δ1x2 − Z6se

γ1x2 − Z8se
−γ1x2

]
,

T22F = µ(1)ω

[
Z5

(
4

3
δ21 +

2

3
s2 −R0

)
eδ1x2 + Z7

(
4

3
δ21 +

2

3
s2 −R0

)
e−δ1x2+

Z6

(
−sγ1 −

2

3
sγ1

)
eγ1x2 + Z8

(
sγ1 +

2

3
sγ1

)
e−γ1x2

]
,

T21F = −µ(1)ω
[
2sδ1Z5e

δ1x2 − 2sδ1Z7e
−δ1x2 + (s2 + γ21)Z6e

γ1x2 + (s2 + γ21)Z8e
−γ1x2

]
,

p
(1)
F = µ(1)ωR0

(
Z5e

δ1x2 + Z7e
−δ1x2

)
, (3.10)

where R0 = −4Ω2
1

/
(3(1 + i4Ω2

1

/
(3N2

w)))− iN2
w.

Substituting the expressions (3.5), (3.7) and (3.10) into the conditions (2.8) – (2.10) we
obtain the following system of algebraic equations for the unknown constants Z1, Z2,. . . ,Z8

which enter the expressions of the Fourier transforms of the sought values.

(σ21F /G12)|x2=0 = Z1α11 + Z2α12 + Z3α13 + Z4α14 = 0,

(σ22F /G12)|x2=0 = Z1α21 + Z2α22 + Z3α23 + Z4α24 = −P0/G12,

∂u1F
∂t

∣∣∣∣
x2=−h

− v1F |x2=−h = iω(Z1α31 + Z2α32 + Z3α33 + Z4α34)−

ωh(Z5α35 + Z6α36 + Z7α37 + Z8α38) = 0,

∂u2F
∂t

∣∣∣∣
x2=−h

− v2F |x2=−h = iω(Z1α41 + Z2α42 + Z3α43 + Z4α44)−

ωh(Z5α45 + Z6α46 + Z7α47 + Z8α48) = 0,

(σ21/G12)|x2=−h − (T21/G12)|x2=−h = Z1α51 + Z2α52 + Z3α53 + Z4α54−

M(Z5α55 + Z6α56 + Z7α57 + Z8α58) = 0,

(σ22/G12)|x2=−h − (T22/G12)|x2=−h = Z1α61 + Z2α62 + Z3α63 + Z4α64−

M(Z5α65 + Z6α66 + Z7α67 + Z8α68) = 0,

v1F |x2=−h−hd = ωh(Z5α75 + Z6α76 + Z7α77 + Z8α78) = 0,

v2F |x2=−h−hd = ωh(Z5α85 + Z6α86 + Z7α87 + Z8α88) = 0, (3.11)

where M = µ1ω/G12.
The explicite expressions of the coefficients αnm(n;m = 1, 2, ..., 8) in the equations in
(3.11) can be easily determined from the Eqs. (3.5), (3.7) and (3.10), and the unknowns
Z1, Z2, ..., Z8 in can be determined via the formula Zk = det

∥∥βknm∥∥ / det ‖αnm‖, where
the matrix (βknm) is obtained from the matrix (αnm) by replacing the k − th column of the
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latter with the column (0,−P0/G12, 0, 0, 0, 0, 0, 0)T . Consequently, according to this state-
ment, integrated expressions in (3.1) may have singular points with respect to the Fourier
transform parameter s, according to which, det ‖αnm‖ = 0, n;m = 1, 2, ..., 8. Note that
the equation det ‖αnm‖ = 0 coincides with the dispertion equation of the waves with the
velocity ω/s propagated in the hydro-elastic system under considerationin in the Ox1 axis
direction. As a result of the viscosity of the fluid this dispersion equation has not real roots
and therefore the mentioned singular points do not appear in the integrated function in the
integrals in (3.1). Thus, using the representation g(x1, x2, t) = ḡ(x1, x2)e

iωt, the sought
values are determined through the following two types of relations:

{σ22, σ11, u2, T22, T11, v2} =

=
1

π
Re

{
eiωt

∫ ∞
0

[σ22F , σ11F , u2F , T22F , T11F , v2F ] cos(sx1)ds

}
{σ21, σ12, u1, T21, v1} =

=
1

π
Re

{
eiωt

∫ ∞
0

[σ21, σ12F , u1F , T21F , v1F ] sin(sx1)ds

}
. (3.12)

Note that under calculation procedures, the improper integrals
∞∫
0

f(s) cos(sx1)ds and

∞∫
0

f(s) sin((s)x1)ds1 in (3.12) are replaced by the corresponding definite integrals

S∗
1∫

0

f(s) cos(sx1)ds and
S∗
1∫

0

f(s) sin((s)x1)ds , respectively. The values of S∗1 are determined

from the convergence requirement of the numerical results.
In this way, we determine completely the Fourier transforms of the sought values, after

which it is requiret to calculate the integrals
S∗
1∫

0

f(s) cos(sx1)ds and
S∗
1∫

0

f(s) sin((s)x1)ds

for which it is required to develope the converging algorithm and PC programs for the prob-
lem under consideration. Namely, this development is considered in the following section.

4 The algorithm for calculation of the integrals in (1) and its convergence

In the calculation procedure the integration interval [0, S∗1 ] is divided into N number subin-

tervals [0, S∗1,1], [S∗1,1, S
∗
1,2], ..., [S∗1,N−1, S

∗
1,N ], where

N⋃
k=1

[S∗1,k−1, S
∗
1,k] = [0, S∗1 ] and S∗1,0 =

0, S∗1,N = S∗1 . After this dividing in each integration interval [S∗1,k−1, S
∗
1,k] the integrals

S∗
1,k∫

S∗
1,k−1

f(s) cos(sx1)ds and
S∗
1,k∫

S∗
1,k−1

f(s) sin(sx1)ds, using the transform

s = τk(S
∗
1,k − S∗1,k−1)/2 + (S∗1,k + S∗1,k−1)/2, are reduced to the integrals

+1∫
−1
f(s(τk)) cos(s(τk)x1)dτk and

+1∫
−1
f(s(τk)) sin(s(τk)x1)dτk. For calculation of the latter

ones it is used the Gauss integration technique with ten sample points and for calculation
the values of the integrated function f(s(τk)), which represent one of the functions σ22F ,
σ11F , u2F , T22F , T11F , v2F , σ21, σ12F , u1F ,T21F and v1F , requires to know the values of
the unkown constants Z1, Z2, ..., Z8 at these sample points. The values of these constants
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are calculated from the equations (3.11) and this calculation procedure is made authomat-
ically through the PC program in MATLAB the user manual of which is detailed in many
references (see, for instance, the book by Palm (2019)). In all these calculation procedures
the numberN and the value of S∗1 are selected in advance and final final values of those (de-
note they byN∗ and S∗1∗) are determined from the convergence requirement of the numerical
resluls. The aim of the present numerical investigation is to determine how the anisotropy
properties of the plate material acts on the values of the N∗ and S∗1∗. For this determination
we consider the calculation the values of stress-pressure T22 at point x1/h = 0 acting on
the interface plane between the plate and fluid.

For obtaining concrete numerical results we assume that the material of the fluid is
Glycerin with viscosity coefficient µ2.1 = 1, 393kg/(m · s), density ρ2.10 = 1260kg

/
m3

and sound speed a0 = 1927m/s (Guz ( 2009)) and introduce the notation

ρ/ρ
(1)
0 = k1, c2/a0 = k2, G12 = (c2)

2ρ, (4.1)

through which we determine the density and shear modulus of elasticity in theOx1x2 plane
of the plate material. Consequently, if we know the density of the fluid, then giving the
values for the k1 we determine the density of the plate material, as well as if we know the
sound speed in the fluid, then giving the values for the k2 we determine the values for the
shear modulus G12.

In other words selecting the values for the constants k1 and k2we determine the density
and shear modulus of the plate material through the density and sound speed of the fluid
material, and an increase in the values of the k1(of the k2) means an increase in the values
of the density (of the shear modulus) of the plate material and under fixed value of the fluid
density (under fixed sound speed in the fluid).

Moreover, we introduce the following ratios which characterize the anisotropy of the
plate material.

E1/G12, E1/E2, E2/E3, E1/E3, (4.2)

E3 = E3, ν12 = ν13 = ν23 = 0.3, and the values of the ν21, ν31 and ν32 we determine
through the relations ν21 = ν12E1/E2 , ν31 = ν13E1/E3, ν32 = ν23E2/E3.

In this way, it remains two ratiosE1/G12 andE1/E2 through which we characterize the
influence of the anisotropy of the plate material on the cobergence of the numerical results,
i.e. on the values of the N∗ and S∗1∗.

In the present investigations we will consider the numerical results illustrating the influ-
ence of the k1, k2, and E1/G12 on the frequency response of the interface dimensionless
stress T22h/P0. As the influence of the ratio E1/E2on the convergence of the numerical
results is insignificant, therefore this influence is not considered here.

First, we assume that S∗1 = 5.0, ωτ= 0, E1/E2 = 1.5, h = 0.001m and hd/h = 2,
and consider the convergence of the numerical results with respect to the number N and for
this purpose consider the graphs of the frequency response of the T22h/P0 calculated in the
cases where E1/G12 = 3, 10 and 50 under k1 = k2 = 1and are illustrated in Fig. 2a, 2b
and 2c, respectively.



Tarana V. Huseynova 9

Fig. 2. Convergence of the numerical results with respect to the number N in the cases
where E1/G12 = 3, 10 and 50

It follows from these results that the convergence of the numerical results with respect to
the number N improves with decreasing of the ratio E1/G12 and in all the considered cases
under N ≥ 100 (i.e. N∗ = 100) numerical results obtained for each N coincide with each
other with accuracy 10−6.

Consider also the influence of the coefficients k1 and k2 the convergence of the numerical
result with respect to the number N . Assume that E1/G12 = 50 and analyze the graphs
given in Fig. 3 which are constructed for the pairs {k1 = 1; k2 = 2} (Fig.3a) {k1 = 2; k2 =
2}(Fig. 3b), {k1 = 7; k2 = 2}(Fig. 3c) and {k1 = 1; k2 = 0.1}.
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Fig. 3. Convergence of the numerical results with respect to the number N in the
cases where {k1 = 1; k2 = 2} (Fig.3a) {k1 = 2; k2 = 2}(Fig. 3b), {k1 = 7; k2 = 2}(Fig.

3c) and {k1 = 1; k2 = 0.1} (Fig. 3d)

Thus, it follows from Fig. 3 that an increase in the values of the coefficient k1 causes to
increase the difference between the results obtained in the cases where N = 50 and N =
100. Nevertheless, all the numerical results which are illustrated in Fig. 3 and are obtained
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in the cases where N ≥ 100 coincide with each other. In other words, it is also established
that N∗ = 100for the cases considered in Fig. 3.

Now we consider numerical results shown in Fig. 4 which illustrate the convergence of
these results with respect to the S∗1 in the case where k1 = 7 , k2 = 2, E1/G12 = 50and
N = 200. Thus, it follows from Fig. 4 that for the case under consideration all the numerical
results obtained in the cases where S∗1 ≥ 1.0 coincide with each other with accuracy 10−6,
i.e. i.e. S∗1∗ = 1.0.

Fig. 4. The influence of the S∗1 on the convergence of the numerical results in the case
where k1 = 7 , k2 = 2, E1/G12 = 50 and N = 200

Finally, note that the foregoing convergence requirements are taken into consideration
under obtaining numerical results obtained in the papers by Akbarov and Huseynova (2019)
and Huseynova (2019).

5 Conclusions

Thus, in the present paper it is examined the convergence of the algorithm and PC programs
employed for obtaining numerical results related to the forced vibration of the hydro-elastic
system consisting of the orthotropic plate, compressible viscous fluid and rigid wall. Under
this examination the main attention is focused on the influence of the anisotropy properties
of the plate material on the number of sub-intervals which are introduced under calculation
of the inverse Fourier transforms, according to which, the frequency response of the system
under consideration, is studied. Numerical results illustrated the mentioned convergence
are presented and discussed. As a result of this discussions it is established the validity
and effectiveness of the algorithm and PC programs used in the related investigations. It is
also established the approach for controlling the convergence of the numerical results under
employing the proposed investigation method.



12 Convergence numerical results related to the vibration of the hydro-elastic system ...

References

1. Akbarov,S.D. (2018), “Forced vibration of the hydro-vscoelastc and - elastic systems
consisting of the viscoelastic or elastic plate, compressible viscous fluid and rigid wall:
a review”, Appl. Comput. Math.,17(.3), 221-245

2. Akbarov, S.D. and Ismailov, M.I. (2014), “Forced vibration of a system consisting of
a pre- strained highly elastic plate under compressible viscous fluid loading”, CMES:
Computer Modeling in Engineering & Science 97(2.4), 359 – 390.

3. Akbarov, S.D. and Ismailov, M.I.(2017), “The forced vibration of the system consisting
of an elastic plate, compressible viscous fluid and rigid wall”, Journal Vibration and
Control, 23(3.1), 1809 – 1827.

4. Akbarov S.D. and Ismailov M.I.(2018), “The influence of the rheological parameters
of a hydro-viscoelastic system consisting of a viscoelastic plate, viscous fluid and rigid
wall on the frequency response of this system”, J Vib Control, 24(2.7), 1341 – 1363.

5. Akbarov S.D. and Ismailov M.I. (2016), “Frequency response of a prestressed metal
elastic plate under compressible viscous fluid loading”, Appl. Comput. Math., 15(2.2),
172 – 188.

6. Akbarov, S.D. (2015) Dynamics of pre-strained bi-material systems: linearized three-
dimensional approach. Springer, New York, USA

7. Akbarov, S.D. and Huseynova, T.V. (2019), “Forced vibration of the hydro-elastic
system consisting of the orthotropic plate, compressible viscous fluid and rigid wall.
Coupled Systems Mechanics, An International Journal, Vol. 8, No. 3,199-218. DOI:
https://doi.org/10.12989/csm.2019.8.3.199

8. Huseynova, T.V. (2019), ”Parametric investigation of the forced vibration of a “plate
+compressible viscous fluid + rigid wall” hydroelastic system”, Tran. Natl. Acad. Sci.
Azerb. Ser. Phys.-Tech. Math. Sci.Mechanics, 39 (2.7), 31–37.

9. Guz, A.N. (2009), Dynamics of compressible viscous fluid. Cambridge Scientific Pub-
lishers.

10. Sneddon, I.N. (1995), Fourier transforms, Dover Publications, Inc. New York.
11. Palm W. J. (2019), MATLAB for Engineering Applications, McGraw-Hill.


