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Studying elastic equilibrium of a small thickness isotropic cylinder with
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Abstract. Based on asymptotic integration of elasticity theory equations, we study axially-symmetric
problem of elasticity theory for a radially-inhomogeneous cylinder of small thickness. We consider a case
when the elasticity modulus changes in radius by the linear law. It is assumed that the lateral part of the
cylinder is fixed, and on the ends of the cylinder the stresses leaving the cylinder in equilibrium, are given.

Asymptotical formulas for displacements and stresses are written. It is shown that the stress-strain
state was made up only from the solution of a boundary layer character and equivalent to the Sanit-
Venanat edge effect of theory of inhomogeneous plates.
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1 Introduction

Study of inhomogeneous shells occupies one of the special places in shell theory. Analysis
of inhomogeneous shells on the basis of three-dimensional equations of elasticity theory is
a very difficult problem.

Therefore, it is necessary to use different approximate methods allowing to simplify cal-
culation of shells. Complex nature of phenomena arising in deformation of inhomogeneous
shells, reduced to formation of a lot of applied theories each of which was constructed on
the basis of definite system of assumptions. In modern engineering there arise such new
shell constructions whose calculation within the existing applied theories, is impossible.

To establish applicability fields of the existing applied theories of inhomogeneous shells
and to create new, more specified applied theories, it is required to analyse the stress-strain
state of inhomogeneous shells from the position of three-dimensional equations of elasticity
theory.

The asymptotic method [11-14] plays an important role in solving three-dimensional
problems of elasticity theory. Frist in the paper [4], spartial problem of elasticity theory was
studied for an isotropic, small thickness cylinder and asymptotic solutions were compared
with the solutions obtained by applied theories. In [12] three-dimensional asymptotic theory
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of a small-thickness transversally-isotropic cylinder was developed. An axially-symmetric
problem of elasticity theory for a radially-laminated cylinder with alternating rigid and soft
layers, was studied in [1]. In [5] an axially-symmetric problem of elasticity theory is ana-
lyzed for a radially-inhomogeneous, small thickness hollow cylinder, when the lateral sur-
face of the cylinder is free from stressess . In [10] a semi-analytical method is offered for
solving the Almanci-Mitchell problem for an inhomogeneous anisotropic cylinder. The in-
ghunce of inhomogeneity of the material on the stress-strain state of a cylinder was studied
in [7,8].

2 Statement of boundary-value problems for a radially- inhomogeneous cylinder

We consider an axially-symmetric problem of elasticity theory for an inhomogeneous, isotropic,
hollow, small thickness cylinder. In the cylindrical system of coordinates, we denote the do-
main occupied with the cylinder, by

Γ = {r ∈ [r1; r2], ϕ ∈ [0, 2π], z ∈ [−L;L]} .

Assume that alternation of the elasticity modules in radius ucurs by the linear law

G(r) = G∗r, λ(r) = λ∗r,

where G∗, λ∗ are constant variables.
The equilibrium equations in displacements have the form:

(L0 + ∂1L1 + ∂21L2)ū = 0̄. (2.1)

Here ū = ū(ρ, ξ) = (uρ(ρ, ξ), uξ(ρ, ξ))
T , Lk are matrix differential operators of the

form:

L0 =

∥∥∥∥ (2G0 + λ0)(∂
2 + ε∂)− 2G0ε

2 0
0 G0(∂

2 + ε∂)

∥∥∥∥ ,
L0 =

∥∥∥∥ 0 eερ
[
ε(G0 + λ0)∂ + ε2λ0)

]
eερ
[
ε2(2G0 + λ0)ε(G0 + λ0)∂

]
0

∥∥∥∥ ,
L2 =

∥∥∥∥ε2G0e
ερ 0

0 (2G0 + λ0)ε
2eερ

∥∥∥∥ ,
∂1 = ∂

∂ξ ; ∂21 = ∂2

∂ξ2
; ∂ = ∂

∂ρ ; ρ = 1
ε ln

(
r
r0

)
, ξ = z

r0
are new pure variables; ε =

1
2 ln

(
r2
r1

)
is a small parameter characterizing the thickness of the cylinder; r0 =

√
r1r2, ξ ∈

[−l; l], ρ ∈ [−1; 1], l = L
r0

;λ0 = λ∗r0
G1

, G0 = G∗r0
G1

are pure variables and G1 is a charac-
teristic parameter having dimension of shear modulus. Suppose that the lateral side of the
cylinder is rigidly fixed:

ū(ρ, ξ) = 0̄ for ρ = ±1. (2.2)

Assume that on the ends of the cylinder the following boundary conditions are given

σρξ|ξ=±l = f1s(ρ), σξξ|ξ=±l = f2s(ρ). (2.3)

Here f1s(ρ), f2s(ρ)(s = 1, 2) are rather smooth functions satisfying the equilibrium condi-
tions.
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3 Constructing homogeneous solutions for a radially- inhomogeneous, small
thickness cylinder

We look for the solution of (2.1), (2.2) in the form:

ū(ρ, ξ) = ā(ρ)eαξ, (3.1)

where
ā(ρ) = (u(ρ), w(ρ))T .

Substituting (3.1) in (2.1), (2.2), we have:{
(L0 + αL1 + α2L2)ā = 0̄,
ā|ρ=±1 = 0̄.

(3.2)

For solving (3.2) as ε→ 0 we use the asymptotic method [2,3,6 ], based on two iterative
processes.

Trivial solutions correspond to the first iterative process . There are no solutions with
edge effect character, corresponding to the second iterative process for a radially-inhomogeneous
cylinder with a fixed lateral surface.

According to the third iteative process , we have

a) αk = ε−1 (β0k + εβ1k + ...) .

u(1)ρ = ε

∞∑
k=1

Tk

[(
β0k sinβ0k −

3G0 + λ0
G0 + λ0

cosβ0k

)
sin(β0kρ)+

+β0kρ cosβ0k cos(β0kρ) +O(ε)] exp

(
1

ε
(β0k + εβ1k + ...)ξ

)
, (3.3)

u
(1)
ξ = ε

∞∑
k=1

Tkβ0k [ρ cosβ0k sin(β0kρ)− sin β0k cos(β0kρ)+

+ O(ε)] exp

(
1

ε
(β0k + εβ1k + ...) ξ

)
.

Here β0k is the solution of the equation

sin 2β0k −
2(G0 + λ0)

3G0 + λ0
β0k = O. (3.4)

The stresses corresponding to the solutions (3.3) are of the form:

u(1)ρ = ε
∞∑
k=1

Tkβ0k

[
(2G0 + λ0)

(
β0k sinβ0k −

2G0

G0 + λ0
cosβ0k

)
cos(β0kρ)−

−2G0β0kρ · cosβ0k sin(β0kρ)− λ0β0k sin β0k cos(β0kρ) +O(ε)]×

× exp

(
1

ε
(β0k + εβ1k + ...) ξ

)
,

σ
(1)
ρξ = G0

∞∑
k=1

Tkβ0k [cosβ0k(sin (β0kρ) + 2β0kρ · cos(β0kρ))+

+

(
2β0k sinβ0k −

3G0 + λ0
G0 + λ0

cosβ0k

)
sin(β0kρ)+
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+ O(ε)] exp

(
1

ε
(β0k + εβ1k + ...) ξ

)
, (3.5)

σ
(1)
ξξ =

∞∑
k=1

Tkβ0k [2G0β0kρ cosβ0k sin (β0kρ)− (2G0β0k sinβ0k+

+
2G0λ0
G0 + λ0

cosβ0k

)
cos(β0kρ) + O(ε)]×

× exp

(
1

ε
(β0k + εβ1k + ...) ξ

)
,

σ(1)ϕϕ =
∞∑
k=1

Tkβ0k

[
− 2G0λ0
G0 + λ0

cosβ0k cos(β0kρ) +O(ε)

]
×

× exp

(
1

ε
(β0k + εβ1k + ...) ξ

)
.

b) αk = ε−1 (β0k + εβ1k + ...) .

u(2)ρ = −ε
∞∑
k=1

Fk

[(
3G0 + λ0
G0 + λ0

sinβ0k + β0k cosβ0k

)
cos(β0kρ)+

+β0kρ sinβ0k sin(β0kρ) +O(ε)] exp

(
1

ε
(β0k + εβ1k + ...)ξ

)
, (3.6)

u
(2)
ξ = ε

∞∑
k=1

Fkβ0k [− cosβ0k sin(β0kρ) + ρ cos( β0kρ) sinβ0k+

+ O(ε)] exp

(
1

ε
(β0k + εβ1k + ...) ξ

)
,

Here β0k is the solution of the equation

sin 2β0k +
2(G0 + λ0)

3G0 + λ0
β0k = 0. (3.7)

The stresses corresponding to the solutions (3.6) have the form:

u(2)ρ =
∞∑
k=1

Fkβ0k

[
(2G0 + λ0)

(
β0k cosβ0k +

2G0

G0 + λ0
sinβ0k

)
sin(β0kρ)−

−2G0β0kρ sinβ0k cos(β0kρ)− λ0β0k cosβ0k sin(β0kρ) +O(ε)
]
×

× exp

(
1

ε
(β0k + εβ1k + ...)ξ

)
,

σ
(2)
ρξ = G0

∞∑
k=1

Fkβ0k [sinβ0k(cos (β0kρ)− 2β0kρ · sin(β0kρ))−

− cos(β0kρ)

(
2β0k cosβ0k +

3G0 + λ0
G0 + λ0

sinβ0k

)
+
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+ O(ε)] exp

(
1

ε
(β0k + εβ1k + ...) ξ

)
, (3.8)

σ(2)ϕϕ =

∞∑
k=1

Fkβ0k

[
2G0λ0
G0 + λ0

sinβ0k sin(β0kρ) +O(ε)

]
×

× exp

(
1

ε
(β0k + εβ1k + ...) ξ

)
,

σ
(2)
ξξ =

∞∑
k=1

Fkβ0k [2G0β0kρ sin β0k cos(β0kρ)+

+

(
2G0λ0
G0 + λ0

sinβ0k − 2G0β0k cosβ0k

)
sin(β0kρ)+

+ O(ε)] exp

(
1

ε
(β0k + εβ1k + ...) ξ

)
.

The general solution (3.2) will be the sum of solutions (3.3), (3.6):

uρ(ρ, ξ) = u(1)ρ + u(2)ρ , uξ(ρ, ξ) = u
(1)
ξ + u

(2)
ξ . (3.9)

For stress tensor components we have:

σρρ = σ
(1)
ρξ + σ(2)ρρ , σρξ = σ

(1)
ρξ + σ

(2)
ρξ , σϕϕ = σ(1)ϕϕ + σ(2)ϕϕ, σξξ = σ

(1)
ξξ + σ

(2)
ξξ . (3.10)

The solutions(3.9) are of boundary layer character and their first term equivalent to the
Saint-Venant edge effect of an inhomogeneous isotropic plate [14]. When deleting from the
ends of the cylinder inside the domain occupied by the cylinder, the solution (3.9) exponen-
tially decreases.

4 Satisfaction of boundary conditions of the cylinder’s ends

To determine the unknown constants Tk, Fk(k = 1, 2, ...) , we use the Lagrange variational
principle [9].Since the solutions satisfy the equilibrium equation and boundary conditions
on the lateral surface, the variational principle has the following form [11,12]:

2∑
s=1

1∫
−1

[(σρξ − f1s) δuρ + (σξξ − f2s) δuξ]

∣∣∣∣∣∣
ξ=±l

e2ερdρ = 0. (4.1)

Substituting (3.9), (3.10) in (4.1) and assuming δTk, δFk as independent variations, from
(4.1) we get the following system of linear algebraic equations:

∞∑
k=1

MjkTk0 = d
′
0j ; (j = 1,∞) (4.2)

∞∑
k=1

QjkFk0 = d
′′
0j ; (j = 1,∞), (4.3)
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where

Mjk = β0k

1∫
−1

〈G0 [cosβ0k(sin(β0kρ) + 2β0kρ cos(β0kρ)) +

+

(
2β0k sinβ0k −

3G0 + λ0
G0 + λ0

cosβ0k

)
sin(β0kρ)

]
×

×
[(
β0j sinβ0j −

3G0 + λ0
G0 + λ0

cosβ0j

)
sin(β0jρ)+

+β0jρ cosβ0j cos(β0jρ)] + β0j [2G0 β0kρ cosβ0k sin(β0kρ)−

−
(

2G0β0k sinβ0k +
2G0λ0
G0 + λ0

cosβ0k

)
cos(β0kρ)

]
×

× [ρ cosβ0j sin(β0jρ)− sinβ0j cos(β0jρ)]〉 dρ×

× exp

(
−(β0j + β0k)l√

ε

)
+ exp

(
(β0j + β0k)l√

ε

)

d
′
0j =

1∫
−1

2∑
s=1

{
f1s(ρ)

[(
β0j sinβ0j −

3G0 + λ0
G0 + λ0

cosβ0j

)
sin(β0jρ)+

+β0jρ cosβ0j cos(β0jρ)] + f2s(ρ)β0j×

× [ρ cosβ0j sin(β0jρ)− sinβ0j cos(β0jρ)]} dρ exp

(
(−1)s

β0jl

ε

)
,

Qjk = β0k

1∫
−1

〈 G0

[(
2β0k cosβ0k +

3G0 + λ0
G0 + λ0

sinβ0k

)
cos(β0kρ)−

− sinβ0k(cos(β0kρ)− 2β0kρ sin(β0kρ))
]
×

×
[(
β0j cosβ0j +

3G0 + λ0
G0 + λ0

sinβ0j

)
cos(β0jρ) + β0jρ sinβ0j sin(β0jρ)

]
+

+

(
2G0β0kρ sinβ0k cos(β0kρ)− (2G0β0k cosβ0k −

2G0λ0
G0 + λ0

sinβ0k

)
×

× sin(β0kρ)]β 0j [ρ sinβ0j cos(β0jρ)− cos β0j sin(β0jρ)]〉 dρ×

×
(

exp

(
−(β0j + β0k)l√

ε

)
+ exp

(
(β0j + β0k)l√

ε

))
,

d
′′
0j = −

1∫
−1

2∑
s=1

{
f1s(ρ)

[(
β0j cosβ0j +

3G0 + λ0
G0 + λ0

sinβ0j

)
cos(β0jρ)−

−β0jρ sinβ0j sin(β0jρ)] + f2s(ρ)β0j [ρ sinβ0j cos(β0jρ)−

− cosβ0j sin(β0jρ)]} dρ exp

(
(−1)s

β0jl

ε

)
.

Definition of the constants Tkp, Fkp(p = 1, 2, ...) is un variably reduced to the systems
whose matrices coincide with the matrices of systems(4.2), (4.3).

The system of infinite linear algebraic equations(4.2), (4.3) is positive definite the energy
space and therefore it is always solvable in physically meaningful conditions imposed on
the right hand side [4]. Solvability and convergence of the reduction method for (4.2), (4.3)
was proved in [13,14].
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