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ANISOTROPIC MAXIMAL AND SINGULAR
INTEGRAL OPERATORS IN ANISOTROPIC
GENERALIZED MORREY SPACES

Abstract

In this paper we give the conditions on the pair (p;,ps) which ensures the
boundedness of the anisotropic maximal operator and anisotropic singular in-
tegral operators from one generalized Morrey space M, , to another M, .,
1 < p < oo, and from the space My, to the weak space WMy .

1. Introduction and main results

The theory of boundedness of classical operators of real analysis, such as maximal
operator and singular integral operators etc, from one weighted Lebesgue space to
another one is well studied by now. These results have good applications in the
theory of partial differential equations. However, in the theory of partial differential
equations, along with weighted Lebesgue spaces, general Morrey-type spaces also
play an important role.

Let P be a real n x n matrix, all of whose eigenvalues have positive real part. Let
Ay =1tP (t > 0), and set v = trP. Then, there exists a quasi-distance p associated
with P such that

(a) p(Awx) =tp(z), t>0, forevery z € R";
(6) p(0)=0, p(z—y)=p(y—2)=0
and p(z —y) < k(p(z —2) + p(y — 2));
(¢) dx = p" tdo(w)dp, where p=p(z), w= A,z
and do(w) is a C* measure on the ellipsoid S, = {w : p(w) = 1}.

Then, {R", p,dx} becomes a space of homogeneous type in the sense of Coifman-
Weiss. Moreover, we always assume the following properties on p:
(d) For every =z,

cilz|*™ < p(z) < eal2]|™ if plz) > 1
cala]® < p(z) < calz|™ if p(x) <1

and
p(0x) < p(x) for 0 <6 < 1.

Here «; and ¢; (i = 1,...,4) are some positive constants. Similar properties
hold for p* which is associated with the matrix P*.
There are some important examples for the above spaces:
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1. Let (Px,z) > (z,z) (z € R™). In this case, p(x) is defined by the unique
solution of |A;-1z| = 1, and k = 1. This space is just the one studied by Calderon
and Torchinsky in [7].

2. Let P be a diagonal matrix with positive diagonal entries, and let p(z) be the
unique solution of [A;—1z| = 1.

2,) If all diagonal entries are greater than or equal to 1, this space was studied
by E.B. Fabes and N.M. Riviere [11]. More precisely they studied the weak (1, 1)
and LP estimates of the singular integral operators on this space in 1966.

2p) If there are diagonal entries smaller than 1, then p satisfies the above (a) — (d)
with £ > 1.

Let f € LP¢(R™). The anisotropic maximal function M f is defined by

1
Mf(x) =sup ——
(@) = S @t Jenony

£ (y)ldy,

where |Ep(z,t)| is the Lebesgue measure of the ellipsoid Ep(z,t) centered at x.

The boundedness of the maximal operator M in Morrey spaces M), y was proven
in [10] (isotropic case) and in generalized Morrey spaces M, ,, p € (1,00) with a
function ¢(x, r) satisfying suitable doubling and integral conditions vaﬁ (see section
2) in [22]. In more general substations, namely in local and global Morrey type
spaces, the boundedness of the maximal operator M has been investigated in [3]-[6],
[14]-[16].

Definition 1.1. The function k(x;&) : R™ x (R™"\{0}) — R is called a variable
Calderon-Zygmund type kernel with mized homogeneity if:

i) For every fized x the function k(x;-) is constant kernel satisfying:

ia) k(x;-) € C(R"\{0});
i) k(x; A§) =t k(x5€), t > 0;

io) /Spk(w;é)da(ﬁ)zo and /Sp|k<x;§>|do<s><oo;

ii) For every multiindex (3, the inequality supgcgn—1 \D?k(w,fﬂ < C(p) is satis-
fied independently of x.

Note that in the isotropic case P = I, and thus v = n, Definition 1.1 gives rise to
the classical Calderén-Zygmund kernels (see, for example, [8] and [26]). One more
example is when P = diag{aq,...,an—1,aQn}, @1 = =ap_1 =1, ap,=a>1. In
this case we obtain the parabolic kernels studied by Jones in [17] and discussed in
[11].

We consider the following anisotropic singular integral

n

Tf(x) = pv. / Kz — y)f(y)dy 1)

with a variable Calderén-Zygmund type kernel k(z,§), © € R", £ € R™ \ {0}, sat-
isfying a mixed homogeneity condition 7). The boundedeness of the operator T
in L,(R™), p € (1,00) was proven in [1], [11] and in Morrey spaces M, y in [12]
(isotropic case). The boundedness of the operator 1" in generalized Morrey spaces
My, p € (1,00) with a function ¢(x,r) satisfying suitable doubling and integral
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conditions Z?m7 in [25] (isotropic case in [22]). The boundedness of the operator T'
from My, to My, 1 < p < oo satisfying integral conditions (¢q, ) € Z,. was
proven in [14, 15]. Our goal is to extend results in [14, 15, 16] with a pair (¢, ¢3)
satisfying more large integral conditions Z, . In [3]-[6], [14] and [15] the bounded-
ness of the singular integral operators in local and global Morrey-type spaces has
been investigated. Note that the global Morrey-type space is a more general space
than generalized Morrey space.

By A < B we mean that A < C'B with some positive constant C' independent of
appropriate quantities. If A < B and B < A, we write A & B and say that A and
B are equivalent.

2. Generalized Morrey spaces and Preliminary Results
Morrey spaces M,,  were introduced by C. Morrey in 1938 [21] and defined as
follows: for0<A<n,1<p<oo, feMp\iffe L;)OC(R”) and

A
||f||/v1N = Hf||Mp7A(Rn) = xeu?},%o?" P HfHLp(B(:c,r)) < o0,
where B(xz,r) is the open ball centered at x of radius 7. Note that M,y = L,(R")
and My, = Loo(R™). If A <0 or A > n, then M, , = O, where © is the set of all
functions equivalent to 0 on R™.

These spaces appeared to be quite useful in the study of the local behaviour of
solutions to partial differential equations, apriori estimates and other topics in the
theory of partial differential equations.

We also denote by W .M,,  the weak Morrey space of all functions f € WL}DOC(R”)
for which

_2
HfHWMpA = HfHWMp’)\(]Rn) = xeﬂg}}fiwr AW ey (B < 00,

where WL, denotes the weak L,-space.
If in place of the power function 7* in the definition of M, » we consider any pos-
itive measurable function ¢(z, ), then it becomes generalized Morrey space M, .
Definition 2.1. Let ¢(x,r) be a positive measurable function on R™ x (0, 00)
and 1 < p < oco. We denote by M, the generalized Morrey space, the space of all
functions [ € Lﬁ,"c(R”) with finite quasinorm

_1
1y = Ay oy = sup (@) ? (| fl| L, (BGt)-

z€R™,r>0
We also denote by WM, , the weak generalized Morrey space of all functions
fe WL;JOC(]R") for which

_1
Hf”vw\/tW = ||f”WMp,<P(Rn) = sup o(z,r) p”fHWLp(B(w,r)) < 0.
z€R™, r>0

Definition 2.2. Let ¢(x,r), @o(z,7) be two positive measurable functions on
R™ x (0,00). We say that (¢, p,) belongs to the class Zp, ., p € [0,00), m > 0, if
there is a constant C' such that, for any x € R"™ and for any t > 0

. 1 p
I (Siii%ﬁ e 3>> Car| e
t

rm r - tm

,if pe€(0,00) (2)
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and

essinf ¢, (z, s)
r<s<oo ’ @Q(xa t) : _
<O i p=0, (3)

Tm

ess sup
t<r<oo

Definition 2.3. Let ¢y(x,7), wo(x,7) be two positive measurable functions on
R™ x (0,00). We say that (¢, ps) belongs to the class Zpm,, p € [0,00), m > 0 if
there is a constant C' such that, for any x € R™ and for any t > 0,

(Zm<@ligr));f>pscw’ if p € (0,00) (4)

and

t
ess sup 901(37: r) < C¢2£i’ ), if p=0. (5)

t<r<oo r

Note that Z, ., C Zpm for p € [0,00), m > 0.
The following property for the class Z, ,, p € [0,00), m > 0 is valid.
Lemma 2.4.([16]) For m > 0 the following equality

ZO,m = U Z ,m

0<p<oo
s valid.
Proof. Assume that (pq,y) € Z,,, for some p € (0,00). Then for any s €
(t,00)
inf 1 p
po(x,t) o /Oo rer Lo Pr(z,m)\ P dr
LR rm r
- 1 p
SN AN ar
I rm r
©  r p
> i -
% essinf oy (z, 7) </ r'S*l)
_sinbae)
~ o
Thus
essinf ¢, (z, )
SOQ(xv > ess sup s<T <00
rm t<s<oo s

This proves that
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Now assume that (¢, ps) € 2o . It means that the condition (3) holds. Since

. . 1 p
B I (S’Eii%ﬁ A 8>)p dr
t

ess sup — = lim
r

t<r<oo r p—0 rm
then the remain part of the proof follows from the definition of limit.

In [25] Softova proved the following statement, containing in the isotropic case
Nakai’s result in [22].

Theorem 2.5.Let 1 < p < oco. Moreover, let o(t), t > 0 be a positive measurable
function satisfying the following conditions: there exists ¢ > 0 such that

0<r<t<2r=clp(r) <o) <cp(r) (6)

and (p, @) € Z1 .

Then for 1 < p < oo the operators M and T' are bounded from M, , to M, ,
and for p =1 the operators M and T are bounded from My, to WMy ,.

The following statement, containing Softova results in [25] was proved by Guliyev
in [14] for singular integrals defined on homogeneous Folland-Stein groups [13] (see
also [15]). N

Theorem 2.6. Let 1 < p < oo and (¢1,9s) € Z,~(R™). Then for 1 < p < oo
the operators M and T are bounded from My, ,. to My, . and for p =1 the operators
M and T are bounded from My, to WMy, .

Sufficient conditions on ¢ for the boundedness of the maximal operator and sin-
gular integral operators in generalized Morrey spaces My, ,(R™) have been obtained
in [3]-[6], [14]-[16], [18]-][20], [22]-[25].

Let 9M(0,00) be the set of all Lebesgue-measurable functions on (0,00) and
INT(0,00) its subset consisting of all nonnegative functions on (0,00). We denote
by Mt (0,00;1) the cone of all functions in 9T (0, c0) which are non-decreasing on
(0,00) and

A= {gp € M (0,005 1) : tl_i}r&cp(t) = 0} .

Let u be a continuous and non-negative function on (0, 00). We define the supremal
operator Sy, on g € M(0, 00) by

(gug)(t) = HUQHLoo(t,oo)a te (0,00).
The following theorem was proved in [6].

Theorem 2.7. Let vy, vy be non-negative measurable functions satisfying 0 <
V11| Los (t,00) < 00 for any t > 0 and u be a continuous non-negative function on
(0, 00)

Then the operator S, is bounded from Log 4, (0,00) t0 Log 4, (0,00) on the cone
A if and only if

H'I}qu (Hvl”zolo(.’oo)) HLoo(O,oo) < o0. (7)

We are going to use the following statement on the boundedness of the Hardy
operator

t
(Hg)(t) := 1/0 g(r)dr, 0 <t < .
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Theorem 2.8. ([9]) The inequality

esssupw(t)Hg(t) < cesssupv(t)g(t) (8)
t>0 t>0

holds for all non-negative and non-increasing g on (0,00) if and only if

6 [t d
A :=sup w(®) / i < 00, 9)
>0t Jo esssupv(y)
0<y<s

and c =~ A.

3. The anisotropic maximal operator in generalized Morrey spaces

We need the following two lemmas.

Lemma 3.1. Let 1 < p < oco. Then for any ellipsoid Ep = Ep(x,r) in R™ the
mequality

X _
IMFll,ep@r)) S Nl Ep@en) 77 f;gpt N Ly Ep ) (10)

holds for all f € L}DOC(]R”).
Moreover, the inequality

IM fllw i, epry) S WfllLiEp@em) +77 Sup NN o ep @) (11)

holds for all f € LI°¢(R™).
Proof. Let 1 < p < co. It is obvious that for any ellipsoid Ep = Ep(x,r) the
following inequality holds

IMfllL,ep) < IM(fX@ep) L, Ep) + M (xR 260 | L)

By continuity of the operator M : L,(R™) — L,(R"), 1 < p < oo we have

M (fxeepnyEr) S W1z, ep)-

Let y be an arbitrary point from Ep. If Ep(y, t)N{R™\(2Ep)} # 0, then ¢ > r. Indeed,
if z€ Ep(y,t) N{R™"\(2Ep)}, then t > p(z,y) > p(z,z) — p(x,y) > 2r —r =1

On the other hand Ep(y,t) N {R™"\(2Ep)} C Ep(z,2t). Indeed, z € Ep(y,t) N
{R™\(2p)}, then we get p(z,x) < p(z,y) + p(y,x) < t+1r < 2t. Hence

Moo )0 = 0P e [ Sl
=2 o 1Ep(2,20)] Jep(w,20) 17 (w)ldy
= R w0l ey T
Therefore, for all y € Ep we have
M(fxrn\(26p)) (y) < 27 sup |f(y)]dy. (12)

t>2r [EP(@, )| Jep(a)
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Thus

1
M < 5 -
H fHLp(gp) ~ HfHLp(ng) =+ ‘gp‘p (tS;lQI?" |EP(1',t)| Ep(at)

f (y)dy>

Let p = 1. It is obvious that for any ellipsoid Ep = Ep(z,r) the following
inequality holds

M fllwryer) < IMFxeep)weep) + 1M (fXre\26p) WL (£p)-

By continuity of the operator M : L;(R") — W L;{(R"™) we have

IM (X lweep) S NIl ep)-

Then by (12), we get the inequality (11).
Lemma 3.2.Let 1 < p < oco. Then for any ellipsoid Ep = Ep(x,r) in R", the
inequality

ol _
M fllL,ep@ry STP tS;l%)t P fll Ly ep () (13)

holds for all f € Li*“(R™).

Moreover, the inequality

IM fllwi, (Ep@r) ST7 Sup NN L ep @) (14)

holds for all f € LY¢(R™).
Proof. Let 1 < p < co. Denote by

1 1
My :=|Ep|P | sup ————
1=l (»%i Er@ D] Jerion

Mo o= || fllL, 2ep)-

Applying Holder’s inequality, we get

!f(y)!dy> ,

1

1 1 ’
t>2r |8P($,t)’:0 Ep(z,t)
On the other hand,
1
1 1 ’
|5P|” sup —— / |f(y)\pdy
t>2r |Ep(z,t)|P Ep(z,t)
1 1
2 |Ep|P | sup 1 Hf”Lp(Z&D) ~ M.

Since by Lemma, 3.1
IM fllL,ep) < M1+ M,

we arrive at (13).
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Let p = 1. The inequality (14) directly follows from (11).

Theorem 3.3.Let p € [1,00) and (¢1,99) € Z0,(R™). Then for p > 1 the
operator M is bounded from My, to My, and for p = 1 the operator M is
bounded from My, to WMy, .

Proof. By Lemma 3.2 and Theorem 2.7 we get

_1 _
M fllmyp,@®e) S SUp @o(x, 1) Pre <SUP75 prHLp(Sp(m,t)))
zeR™,r>0 t>r

1
Sosup o oi(@r) P fll @) = 1My e, @)
z€R™ r>0

if p € (1,00) and

1M flwans @ S sup o)~ (supt—vnﬂul(gp(w,t)))
z€R™ r>0 t>r

S s oy (@) T L@y = 1 I, @),
z€R™,r>0

if p=1.

4.The anisotropic singular operator in generalized Morrey spaces

The following Lemma has been proved in [14] (see also [5, 15]). For the sake of
completeness we give the proof.

Lemma 4.1. Letp € [1,00), f € L;,OC(]R”) and for any o € R"

o0 _
/1 P N (e (o) dE < 000

Then T'f ezists for a.e. x € R™ and for any x¢9 € R™, r > 0 and p € (1, 00)

ol o0 _
1T fNlz,(Ep (o)) SCTP/ P I L e (o) A (15)

2r

where constant C > 0 does not depend on xqo, r and f.
Moreover, for any xog € R™ and r >0

[e.e]

| T fllw L, (ep(@on)) < C'T’Y/Q TN 2 e (0.0 B (16)

where constant C' > 0 does not depend on g, r and f.

Proof. Let p € (1,00). For arbitrary xyp € R", set Ep = Ep(wg,r) for the
ellipsoid centered at xg and of radius r. Write f = f1 + fo with fi = fxae, and
f2 = [Xxmm\(26p)- Since fi € Lp(R™), Tfi(x) exists for a.e. x € R" and from the
boundedness of T"in L,(R™) (see [12]) it follows that

1T fillL,ep) < NTfillL,®ny < Cllfille,®ny = CllfllL,cep),

where the constant C' > 0 is independent of f.
Now we prove that the non-singular integral T fo(z) exists for all x € Ep.
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It is clear that x € Ep, y € R™\(2Ep) implies p(x — y) ~ p(xg — y) and we get

T o) < / Wl

re\(26p) P(T0 — Y)7

By Fubini’s theorem we have

0 dt
[ g Lo 1) / Ay
’e\(26p) P(T0 = Y) \(26p) p(zo—y) b
~["] F)ldy-L
2r  J2r<p(zo—y)< ot
/ / o)ldy-2- dt
2r JEp(zo, t) L

Applying Hélder’s inequality, we get

()] /oo it
/R”\(zgp) p(zo —y)7 Y 9 1112, ep ¢ o,t))t%+1

Therefore T fa(x) exists for all x € Ep. Since R" = |J Ep(xp, ), we get existence of

r>0
Tf(x) for a.e. g € R™.
Moreover, for all p € [1,00) the inequality
1 [ dt
1T holleyien S73 [ 15ty cotanen 57 an
2r tp
is valid. Thus
y [ dt
ITfllz,er) S WfllL,ep) + 77 , HfHLp(gp(zo,t))tlﬁ-
T p

On the other hand,

s o dt
1 £1l2,26p) %”HfHLp(Qsp)/Q s

T

v [ dt
Sre / Hf”Lp(Sp(mo,t))tlﬁ‘
P

2r
Thus - "
s
ITfll,p) STP /27” ||fHL,,(5P(xo,t))t%ﬁ-

Let p = 1. From the weak (1,1) boundedness of T' (see [2]) it follows that

| T fillweryer) < T fillweyeny < Cllfilly@ny = Cllf L, 2ep)

where the constant C' > 0 is independent of f.

Then by (17) we get the inequality (16).

Theorem 4.2. Letp € [1,00) and (pq,ps) € Zp~. Then the anisotropic singular
integral Tf exists for a.e. x € R™; and for p > 1 the operator T is bounded from
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My (R?) to My, (R™), and for p =1 the operator T is bounded from My , (R™)
to WMy ,,(R™). Moreover, for p > 1

1T f My ey S NF Mg,

and forp=1
”Tf“WM1,¢2 S HfHMI,gal'

Proof. By Lemma 4.1 and Theorem 2.8 we have for p > 1

T < 1y [ dt
| f||Mp,¢2(Rn)Nxeﬂzggww(xﬂ") s HfHLp(gp(a:,t))t%ﬁ

1~ [T
swp (e, r) rd / 171 dt
0

z€R™, >0 Ly(Ep(et™ 7))

SR

Q

z€R™ r>0

<  su T, 5
NEGRH%O%( ) HfHLp(gP(

= [[fll My, &)

and for p=1

dt

o
|!Tf\|WM1,<,,2(Rn)Sxegggwsoz(xﬂ“) r /T HfHLl(gp(x,t))ith

Q

r=
su T, r) T 1 dt
P palz,7) /0 ||f||L1(5p 1

zeR™, >0 (z,r 7))

141 /’“
= Su $’T Y —_ _l dt
xeRngﬁ%( ) ||f||L1(gP(x7t L)

1
su .%'T' v
xeRng>0¢1( N N, ey

AN

= [[fll My, &)

Corollary 4.3. [14] Let p € [1,00) and (¢, p3) € ZN’pﬁ(R”). Then for p > 1 the
operator T' is bounded from M, , (R") to My, (R™) and for p =1 the operator T
is bounded from My , to WMy, .

Note that Theorem 2.6 and Corollary 4.3 coincide.
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