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ANISOTROPIC MAXIMAL AND SINGULAR
INTEGRAL OPERATORS IN ANISOTROPIC

GENERALIZED MORREY SPACES

Abstract

In this paper we give the conditions on the pair (φ1, φ2) which ensures the
boundedness of the anisotropic maximal operator and anisotropic singular in-
tegral operators from one generalized Morrey space Mp,φ1

to another Mp,φ2
,

1 < p < ∞, and from the space M1,φ1
to the weak space WM1,φ2

.

1. Introduction and main results
The theory of boundedness of classical operators of real analysis, such as maximal

operator and singular integral operators etc, from one weighted Lebesgue space to
another one is well studied by now. These results have good applications in the
theory of partial differential equations. However, in the theory of partial differential
equations, along with weighted Lebesgue spaces, general Morrey-type spaces also
play an important role.

Let P be a real n×n matrix, all of whose eigenvalues have positive real part. Let
At = tP (t > 0), and set γ = trP . Then, there exists a quasi-distance ρ associated
with P such that

(a) ρ
(
Atx

)
= tρ(x), t > 0, for every x ∈ Rn;

(b) ρ(0) = 0, ρ(x− y) = ρ(y − x) ≥ 0

and ρ(x− y) ≤ k(ρ(x− z) + ρ(y − z));

(c) dx = ργ−1dσ(w)dρ, where ρ = ρ(x), w = Aρ−1x

and dσ(w) is a C∞ measure on the ellipsoid Sρ = {w : ρ(w) = 1}.

Then, {Rn, ρ, dx} becomes a space of homogeneous type in the sense of Coifman-
Weiss. Moreover, we always assume the following properties on ρ:

(d) For every x,

c1|x|α1 ≤ ρ(x) ≤ c2|x|α2 if ρ(x) ≥ 1

c3|x|α3 ≤ ρ(x) ≤ c4|x|α4 if ρ(x) ≤ 1

and

ρ(θx) ≤ ρ(x) for 0 < θ < 1.

Here αi and ci (i = 1, . . . , 4) are some positive constants. Similar properties
hold for ρ∗ which is associated with the matrix P ∗.

There are some important examples for the above spaces:
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1. Let (Px, x) ≥ (x, x) (x ∈ Rn). In this case, ρ(x) is defined by the unique
solution of |At−1x| = 1, and k = 1. This space is just the one studied by Calderon
and Torchinsky in [7].

2. Let P be a diagonal matrix with positive diagonal entries, and let ρ(x) be the
unique solution of |At−1x| = 1.

2a) If all diagonal entries are greater than or equal to 1, this space was studied
by E.B. Fabes and N.M. Riviere [11]. More precisely they studied the weak (1, 1)
and Lp estimates of the singular integral operators on this space in 1966.

2b) If there are diagonal entries smaller than 1, then ρ satisfies the above (a)−(d)
with k ≥ 1.

Let f ∈ Lloc
1 (Rn). The anisotropic maximal function Mf is defined by

Mf(x) = sup
t>0

1

|EP (x, t)|

∫
EP (x,t)

|f(y)|dy,

where |EP (x, t)| is the Lebesgue measure of the ellipsoid EP (x, t) centered at x.
The boundedness of the maximal operator M in Morrey spaces Mp,λ was proven

in [10] (isotropic case) and in generalized Morrey spaces Mp,φ, p ∈ (1,∞) with a

function φ(x, r) satisfying suitable doubling and integral conditions Z̃p,γ (see section
2) in [22]. In more general substations, namely in local and global Morrey type
spaces, the boundedness of the maximal operator M has been investigated in [3]-[6],
[14]-[16].

Definition 1.1. The function k(x; ξ) : Rn × (Rn\{0}) → R is called a variable
Calderón-Zygmund type kernel with mixed homogeneity if:

i) For every fixed x the function k(x; ·) is constant kernel satisfying:

ia) k(x; ·) ∈ C∞(Rn\{0});
ib) k(x;Atξ) = t−γk(x; ξ), t > 0;

ic)

∫
Sρ

k(x; ξ)dσ(ξ) = 0 and

∫
Sρ

|k(x; ξ)|dσ(ξ) < ∞;

ii) For every multiindex β, the inequality supξ∈Sn−1 |Dβ
ξ k(x; ξ)| ≤ C(β) is satis-

fied independently of x.
Note that in the isotropic case P = I, and thus γ = n, Definition 1.1 gives rise to

the classical Calderón-Zygmund kernels (see, for example, [8] and [26]). One more
example is when P = diag{α1, . . . , αn−1, αn}, α1 = · · · = αn−1 = 1, αn = α ≥ 1. In
this case we obtain the parabolic kernels studied by Jones in [17] and discussed in
[11].

We consider the following anisotropic singular integral

Tf(x) = p.v.

∫
Rn

k(x;x− y)f(y)dy (1)

with a variable Calderón-Zygmund type kernel k(x, ξ), x ∈ Rn, ξ ∈ Rn \ {0}, sat-
isfying a mixed homogeneity condition ib). The boundedeness of the operator T
in Lp(Rn), p ∈ (1,∞) was proven in [1], [11] and in Morrey spaces Mp,λ in [12]
(isotropic case). The boundedness of the operator T in generalized Morrey spaces
Mp,φ, p ∈ (1,∞) with a function φ(x, r) satisfying suitable doubling and integral
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conditions Z̃p,γ in [25] (isotropic case in [22]). The boundedness of the operator T

from Mp,φ1
to Mp,φ2

, 1 < p < ∞ satisfying integral conditions (φ1, φ2) ∈ Z̃p,γ was
proven in [14, 15]. Our goal is to extend results in [14, 15, 16] with a pair (φ1, φ2)
satisfying more large integral conditions Zp,γ . In [3]-[6], [14] and [15] the bounded-
ness of the singular integral operators in local and global Morrey-type spaces has
been investigated. Note that the global Morrey-type space is a more general space
than generalized Morrey space.

By A . B we mean that A ≤ CB with some positive constant C independent of
appropriate quantities. If A . B and B . A, we write A ≈ B and say that A and
B are equivalent.

2. Generalized Morrey spaces and Preliminary Results
Morrey spaces Mp,λ were introduced by C. Morrey in 1938 [21] and defined as

follows: for 0 ≤ λ ≤ n, 1 ≤ p ≤ ∞, f ∈ Mp,λ if f ∈ Lloc
p (Rn) and

∥f∥Mp,λ
≡ ∥f∥Mp,λ(Rn) = sup

x∈Rn, r>0
r
−λ

p ∥f∥Lp(B(x,r)) < ∞,

where B(x, r) is the open ball centered at x of radius r. Note that Mp,0 = Lp(Rn)
and Mp,n = L∞(Rn). If λ < 0 or λ > n, then Mp,λ = Θ, where Θ is the set of all
functions equivalent to 0 on Rn.

These spaces appeared to be quite useful in the study of the local behaviour of
solutions to partial differential equations, apriori estimates and other topics in the
theory of partial differential equations.

We also denote byWMp,λ the weak Morrey space of all functions f ∈ WLloc
p (Rn)

for which

∥f∥WMp,λ
≡ ∥f∥WMp,λ(Rn) = sup

x∈Rn, r>0
r
−λ

p ∥f∥WLp(B(x,r)) < ∞,

where WLp denotes the weak Lp-space.
If in place of the power function rλ in the definition of Mp,λ we consider any pos-

itive measurable function φ(x, r), then it becomes generalized Morrey space Mp,φ.
Definition 2.1. Let φ(x, r) be a positive measurable function on Rn × (0,∞)

and 1 ≤ p < ∞. We denote by Mp,φ the generalized Morrey space, the space of all
functions f ∈ Lloc

p (Rn) with finite quasinorm

∥f∥Mp,φ
≡ ∥f∥Mp,φ(Rn) = sup

x∈Rn,r>0
φ(x, r)

− 1
p ∥f∥Lp(B(x,t)).

We also denote by WMp,φ the weak generalized Morrey space of all functions
f ∈ WLloc

p (Rn) for which

∥f∥WMp,φ
≡ ∥f∥WMp,φ(Rn) = sup

x∈Rn, r>0
φ(x, r)

− 1
p ∥f∥WLp(B(x,r)) < ∞.

Definition 2.2. Let φ1(x, r), φ2(x, r) be two positive measurable functions on
Rn × (0,∞). We say that (φ1, φ2) belongs to the class Zp,m, p ∈ [0,∞), m > 0, if
there is a constant C such that, for any x ∈ Rn and for any t > 0∫ ∞

t

(
ess inf
r<s<∞

φ1(x, s)

rm

) 1
p
dr

r


p

≤ C
φ2(x, t)

tm
, if p ∈ (0,∞) (2)
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and

ess sup
t<r<∞

ess inf
r<s<∞

φ1(x, s)

rm
≤ C

φ2(x, t)

tm
, if p = 0. (3)

Definition 2.3. Let φ1(x, r), φ2(x, r) be two positive measurable functions on
Rn × (0,∞). We say that (φ1, φ2) belongs to the class Z̃p,m, p ∈ [0,∞), m > 0 if
there is a constant C such that, for any x ∈ Rn and for any t > 0,(∫ ∞

t

(
φ1(x, r)

rm

) 1
p dr

r

)p

≤ C
φ2(x, t)

tm
, if p ∈ (0,∞) (4)

and

ess sup
t<r<∞

φ1(x, r)

rm
≤ C

φ2(x, t)

tm
, if p = 0. (5)

Note that Z̃p,m ⊂ Zp,m for p ∈ [0,∞), m > 0.

The following property for the class Zp,m, p ∈ [0,∞), m > 0 is valid.

Lemma 2.4.([16]) For m > 0 the following equality

Z0,m =
∪

0<p<∞
Zp,m

is valid.

Proof. Assume that (φ1, φ2) ∈ Zp,m for some p ∈ (0,∞). Then for any s ∈
(t,∞)

φ2(x, t)

tm
&

∫ ∞

t

(
ess inf
r<τ<∞

φ1(x, τ)

rm

) 1
p
dr

r


p

&

∫ ∞

s

(
ess inf
r<τ<∞

φ1(x, τ)

rm

) 1
p
dr

r


p

& ess inf
s<τ<∞

φ1(x, τ)

(∫ ∞

s

dr

r
m
p
+1

)p

≈
ess inf
s<τ<∞

φ1(x, τ)

sm
.

Thus

φ2(x, t)

tm
& ess sup

t<s<∞

ess inf
s<τ<∞

φ1(x, τ)

sm
.

This proves that ∪
0<p<∞

Zp,m ⊂ Z0,m.
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Now assume that (φ1, φ2) ∈ Z0,m. It means that the condition (3) holds. Since

ess sup
t<r<∞

ess inf
r<s<∞

φ1(x, s)

rm
= lim

p→0

∫ ∞

t

(
ess inf
r<s<∞

φ1(x, s)

rm

) 1
p
dr

r


p

,

then the remain part of the proof follows from the definition of limit.
In [25] Softova proved the following statement, containing in the isotropic case

Nakai’s result in [22].
Theorem 2.5.Let 1 ≤ p < ∞. Moreover, let φ(t), t > 0 be a positive measurable

function satisfying the following conditions: there exists c > 0 such that

0 < r ≤ t ≤ 2r ⇒ c−1φ(r) ≤ φ(t) ≤ cφ(r) (6)

and (φ,φ) ∈ Z̃1,γ.
Then for 1 < p < ∞ the operators M and T are bounded from Mp,φ to Mp,φ

and for p = 1 the operators M and T are bounded from M1,φ to WM1,φ.
The following statement, containing Softova results in [25] was proved by Guliyev

in [14] for singular integrals defined on homogeneous Folland-Stein groups [13] (see
also [15]).

Theorem 2.6. Let 1 ≤ p < ∞ and (φ1, φ2) ∈ Z̃p,γ(Rn). Then for 1 < p < ∞
the operators M and T are bounded from Mp,φ1

to Mp,φ2
and for p = 1 the operators

M and T are bounded from M1,φ1
to WM1,φ2

.
Sufficient conditions on φ for the boundedness of the maximal operator and sin-

gular integral operators in generalized Morrey spaces Mp,φ(Rn) have been obtained
in [3]-[6], [14]-[16], [18]-[20], [22]-[25].

Let M(0,∞) be the set of all Lebesgue-measurable functions on (0,∞) and
M+(0,∞) its subset consisting of all nonnegative functions on (0,∞). We denote
by M+(0,∞; ↑) the cone of all functions in M+(0,∞) which are non-decreasing on
(0,∞) and

A =

{
φ ∈ M+(0,∞; ↑) : lim

t→0+
φ(t) = 0

}
.

Let u be a continuous and non-negative function on (0,∞). We define the supremal
operator Su on g ∈ M(0,∞) by

(Sug)(t) := ∥u g∥L∞(t,∞), t ∈ (0,∞).

The following theorem was proved in [6].
Theorem 2.7. Let v1, v2 be non-negative measurable functions satisfying 0 <

∥v1∥L∞(t,∞) < ∞ for any t > 0 and u be a continuous non-negative function on
(0,∞)

Then the operator Su is bounded from L∞,v1(0,∞) to L∞,v2(0,∞) on the cone
A if and only if ∥∥∥v2Su

(
∥v1∥−1

L∞(·,∞)

)∥∥∥
L∞(0,∞)

< ∞. (7)

We are going to use the following statement on the boundedness of the Hardy
operator

(Hg)(t) :=
1

t

∫ t

0
g(r)dr, 0 < t < ∞.
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Theorem 2.8. ([9])The inequality

ess sup
t>0

w(t)Hg(t) ≤ c ess sup
t>0

v(t)g(t) (8)

holds for all non-negative and non-increasing g on (0,∞) if and only if

A := sup
t>0

w(t)

t

∫ t

0

ds

ess sup
0<y<s

v(y)
< ∞, (9)

and c ≈ A.

3. The anisotropic maximal operator in generalized Morrey spaces
We need the following two lemmas.
Lemma 3.1. Let 1 < p < ∞. Then for any ellipsoid EP = EP (x, r) in Rn the

inequality

∥Mf∥Lp(EP (x,r)) . ∥f∥Lp(EP (x,2r)) + r
γ
p sup
t>2r

t−γ∥f∥L1(EP (x,t)) (10)

holds for all f ∈ Lloc
p (Rn).

Moreover, the inequality

∥Mf∥WL1(EP (x,r)) . ∥f∥L1(EP (x,2r)) + rγ sup
t>2r

t−γ∥f∥L1(EP (x,t)) (11)

holds for all f ∈ Lloc
1 (Rn).

Proof. Let 1 < p < ∞. It is obvious that for any ellipsoid EP = EP (x, r) the
following inequality holds

∥Mf∥Lp(EP ) ≤ ∥M(fχ(2EP ))∥Lp(EP ) + ∥M(fχRn\(2EP ))∥Lp(EP ).

By continuity of the operator M : Lp(Rn) → Lp(Rn), 1 < p < ∞ we have

∥M(fχ(2EP ))∥Lp(EP ) . ∥f∥Lp(2EP ).

Let y be an arbitrary point from EP . If EP (y, t)∩{Rn\(2EP )} ̸= ∅, then t > r. Indeed,
if z ∈ EP (y, t) ∩ {Rn\(2EP )}, then t > ρ(z, y) ≥ ρ(z, x)− ρ(x, y) > 2r − r = r.

On the other hand EP (y, t) ∩ {Rn\(2EP )} ⊂ EP (x, 2t). Indeed, z ∈ EP (y, t) ∩
{Rn\(2EP )}, then we get ρ(z, x) ≤ ρ(z, y) + ρ(y, x) < t+ r < 2t. Hence

M(fχRn\(2EP ))(y) = sup
t>0

1

|EP (y, t)|

∫
EP (y,t)∩{Rn\(2EP )}

|f(y)|dy

≤ 2γ sup
t>r

1

|EP (x, 2t)|

∫
EP (x,2t)

|f(y)|dy

= 2γ sup
t>2r

1

|EP (x, t)|

∫
EP (x,t)

|f(y)|dy.

Therefore, for all y ∈ EP we have

M(fχRn\(2EP ))(y) ≤ 2γ sup
t>2r

1

|EP (x, t)|

∫
EP (x,t)

|f(y)|dy. (12)
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Thus

∥Mf∥Lp(EP ) . ∥f∥Lp(2EP ) + |EP |
1
p

(
sup
t>2r

1

|EP (x, t)|

∫
EP (x,t)

f(y)dy

)

Let p = 1. It is obvious that for any ellipsoid EP = EP (x, r) the following
inequality holds

∥Mf∥WL1(EP ) ≤ ∥M(fχ(2EP ))∥WL1(EP ) + ∥M(fχRn\(2EP ))∥WL1(EP ).

By continuity of the operator M : L1(Rn) → WL1(Rn) we have

∥M(fχ(2EP ))∥WL1(EP ) . ∥f∥L1(2EP ).

Then by (12), we get the inequality (11).
Lemma 3.2.Let 1 < p < ∞. Then for any ellipsoid EP = EP (x, r) in Rn, the

inequality

∥Mf∥Lp(EP (x,r)) . r
γ
p sup

t>2r
t
− γ

p ∥f∥Lp(EP (x,t)) (13)

holds for all f ∈ Lloc
p (Rn).

Moreover, the inequality

∥Mf∥WL1(EP (x,r)) . rγ sup
t>2r

t−γ∥f∥L1(EP (x,t)) (14)

holds for all f ∈ Lloc
1 (Rn).

Proof. Let 1 < p < ∞. Denote by

M1 : = |EP |
1
p

(
sup
t>2r

1

|EP (x, t)|

∫
EP (x,t)

|f(y)|dy

)
,

M2 : = ∥f∥Lp(2EP ).

Applying Hölder’s inequality, we get

M1 . |EP |
1
p

sup
t>2r

1

|EP (x, t)|
1
p

(∫
EP (x,t)

|f(y)|pdy

) 1
p

 .

On the other hand,

|EP |
1
p

sup
t>2r

1

|EP (x, t)|
1
p

(∫
EP (x,t)

|f(y)|pdy

) 1
p


& |EP |

1
p

(
sup
t>2r

1

|EP (x, t)|
1
p

)
∥f∥Lp(2EP ) ≈ M2.

Since by Lemma 3.1
∥Mf∥Lp(EP ) ≤ M1 +M2,

we arrive at (13).
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Let p = 1. The inequality (14) directly follows from (11).

Theorem 3.3.Let p ∈ [1,∞) and (φ1, φ2) ∈ Z0,γ(Rn). Then for p > 1 the
operator M is bounded from Mp,φ1

to Mp,φ2
, and for p = 1 the operator M is

bounded from M1,φ1
to WM1,φ2

.

Proof. By Lemma 3.2 and Theorem 2.7 we get

∥Mf∥Mp,φ2 (Rn) . sup
x∈Rn,r>0

φ2(x, r)
− 1

p r
γ
p

(
sup
t>r

t
− γ

p ∥f∥Lp(EP (x,t))

)
. sup

x∈Rn,r>0
φ1(x, r)

− 1
p ∥f∥Lp(EP (x,t)) = ∥f∥Mp,φ1 (Rn),

if p ∈ (1,∞) and

∥Mf∥WM1,φ2 (Rn) . sup
x∈Rn,r>0

φ2(x, r)
−1rγ

(
sup
t>r

t−γ∥f∥L1(EP (x,t))

)
. sup

x∈Rn,r>0
φ1(x, r)

−1∥f∥L1(EP (x,t)) = ∥f∥M1,φ1 (Rn),

if p = 1.

4.The anisotropic singular operator in generalized Morrey spaces
The following Lemma has been proved in [14] (see also [5, 15]). For the sake of

completeness we give the proof.

Lemma 4.1. Let p ∈ [1,∞), f ∈ Lloc
p (Rn) and for any x0 ∈ Rn

∫ ∞

1
t
− γ

p
+1∥f∥Lp(EP (x0,t))dt < ∞.

Then Tf exists for a.e. x ∈ Rn and for any x0 ∈ Rn, r > 0 and p ∈ (1,∞)

∥Tf∥Lp(EP (x0,r)) ≤ C r
γ
p

∫ ∞

2r
t
− γ

p
+1∥f∥Lp(EP (x0,t))dt, (15)

where constant C > 0 does not depend on x0, r and f .

Moreover, for any x0 ∈ Rn and r > 0

∥Tf∥WL1(EP (x0,r)) ≤ C rγ
∫ ∞

2r
t−γ+1∥f∥L1(EP (x0,t))dt, (16)

where constant C > 0 does not depend on x0, r and f .

Proof. Let p ∈ (1,∞). For arbitrary x0 ∈ Rn, set EP = EP (x0, r) for the
ellipsoid centered at x0 and of radius r. Write f = f1 + f2 with f1 = fχ2EP and
f2 = fχRn\(2EP ). Since f1 ∈ Lp(Rn), Tf1(x) exists for a.e. x ∈ Rn and from the
boundedness of T in Lp(Rn) (see [12]) it follows that

∥Tf1∥Lp(EP ) ≤ ∥Tf1∥Lp(Rn) ≤ C∥f1∥Lp(Rn) = C∥f∥Lp(2EP ),

where the constant C > 0 is independent of f.

Now we prove that the non-singular integral Tf2(x) exists for all x ∈ EP .



Transactions of NAS of Azerbaijan
[Anisotropic maximal and singular integral...]

81

It is clear that x ∈ EP , y ∈ Rn\(2EP ) implies ρ(x− y) ∼ ρ(x0 − y) and we get

|Tf2(x)| .
∫
Rn\(2EP )

|f(y)|
ρ(x0 − y)γ

dy.

By Fubini’s theorem we have∫
Rn\(2EP )

|f(y)|
ρ(x0 − y)γ

dy ≈
∫
Rn\(2EP )

|f(y)|
∫ ∞

ρ(x0−y)

dt

tγ+1
dy

≈
∫ ∞

2r

∫
2r≤ρ(x0−y)<t

|f(y)|dy dt

tγ+1

.
∫ ∞

2r

∫
EP (x0,t)

|f(y)|dy dt

tγ+1
.

Applying Hölder’s inequality, we get∫
Rn\(2EP )

|f(y)|
ρ(x0 − y)γ

dy .
∫ ∞

2r
∥f∥Lp(EP (x0,t))

dt

t
γ
p
+1

.

Therefore Tf2(x) exists for all x ∈ EP . Since Rn =
∪
r>0

EP (x0, r), we get existence of

Tf(x) for a.e. x0 ∈ Rn.

Moreover, for all p ∈ [1,∞) the inequality

∥Tf2∥Lp(EP ) . r
γ
p

∫ ∞

2r
∥f∥Lp(EP (x0,t))

dt

t
γ
p
+1

. (17)

is valid. Thus

∥Tf∥Lp(EP ) . ∥f∥Lp(2EP ) + r
γ
p

∫ ∞

2r
∥f∥Lp(EP (x0,t))

dt

t
γ
p
+1

.

On the other hand,

∥f∥Lp(2EP ) ≈ r
γ
p ∥f∥Lp(2EP )

∫ ∞

2r

dt

t
γ
p
+1

. r
γ
p

∫ ∞

2r
∥f∥Lp(EP (x0,t))

dt

t
γ
p
+1

.

Thus

∥Tf∥Lp(EP ) . r
γ
p

∫ ∞

2r
∥f∥Lp(EP (x0,t))

dt

t
γ
p
+1

.

Let p = 1. From the weak (1,1) boundedness of T (see [2]) it follows that

∥Tf1∥WL1(EP ) ≤ ∥Tf1∥WL1(Rn) ≤ C∥f1∥L1(Rn) = C∥f∥L1(2EP ),

where the constant C > 0 is independent of f.

Then by (17) we get the inequality (16).

Theorem 4.2. Let p ∈ [1,∞) and (φ1, φ2) ∈ Zp,γ. Then the anisotropic singular
integral Tf exists for a.e. x ∈ Rn; and for p > 1 the operator T is bounded from
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Mp,φ1
(Rn) to Mp,φ2

(Rn), and for p = 1 the operator T is bounded from M1,φ1
(Rn)

to WM1,φ2
(Rn). Moreover, for p > 1

∥Tf∥Mp,φ2
. ∥f∥Mp,φ1

,

and for p = 1

∥Tf∥WM1,φ2
. ∥f∥M1,φ1

.

Proof. By Lemma 4.1 and Theorem 2.8 we have for p > 1

∥Tf∥Mp,φ2 (Rn) . sup
x∈Rn, r>0

φ2(x, r)
− 1

p r
γ
p

∫ ∞

r
∥f∥Lp(EP (x,t))

dt

t
γ
p
+1

≈ sup
x∈Rn, r>0

φ2(x, r)
− 1

p r
γ
p

∫ r
− γ

p

0
∥f∥

Lp(EP (x,t
− p

γ ))
dt

= sup
x∈Rn, r>0

φ2(x, r
− p

γ )
− 1

p
1

r

∫ r

0
∥f∥

Lp(EP (x,t
− p

γ ))
dt

. sup
x∈Rn,r>0

φ1(x, r
− p

γ )
− 1

p ∥f∥
Lp(EP (x,r

− p
γ ))

= ∥f∥Mp,φ1 (Rn)

and for p = 1

∥Tf∥WM1,φ2 (Rn) . sup
x∈Rn, r>0

φ2(x, r)
−1rγ

∫ ∞

r
∥f∥L1(EP (x,t))

dt

tn+1

≈ sup
x∈Rn, r>0

φ2(x, r)
−1rγ

∫ r−γ

0
∥f∥

L1(EP (x,r
− 1

γ ))
dt

= sup
x∈Rn, r>0

φ2(x, r
− 1

γ )−1 1

r

∫ r

0
∥f∥

L1(EP (x,t
− 1

γ ))
dt

. sup
x∈Rn,r>0

φ1(x, r
− 1

γ )−1∥f∥
L1(EP (x,r

− 1
γ ))

= ∥f∥M1,φ1 (Rn).

Corollary 4.3. [14] Let p ∈ [1,∞) and (φ1, φ2) ∈ Z̃p,γ(Rn). Then for p > 1 the
operator T is bounded from Mp,φ1

(Rn) to Mp,φ2
(Rn) and for p = 1 the operator T

is bounded from M1,φ1
to WM1,φ2

.

Note that Theorem 2.6 and Corollary 4.3 coincide.
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