Transactions of NAS of Azerbaijan, 2014, vol. XXXIV, No 4, pp. 45-52. 45

Besarion DOCHVIRI, Omar GLONTI,
Omar PURTUKHIA, Grigol SOKHADZE

RADON-NIKODYM DERIVATIVE OF SOLUTION
OF NONLINEAR EQUATIONS WITH RANDOM
RIGHT SIDE AND APPLICATIONS

Abstract

In Hilbert space H consider the equation
Ay + B(y) = ¢,

where A is an unbounded linear operator, B is a bounded smooth operator and
§ is a random element in H with smooth distribution measure p, Specifically
we suppose that p, possesses a logarithmical derwative along the directions of
vectors from the dense subspace Hy C H.

We study the problem: when the distribution i, of the solution of the given
equation y possesses a logarithmical derivative , and under what conditions
this measure is equivalent with respect to a simpler measure. In the case of
equivalence we calculate the Radon- Nikodym density. We cite examples when
A is a differential operator.

Before going on to the main problem we cite a theorem on nonlinear transfor-
mation of smooth measure in Banach space from the paper [1], that we’ll need in
future.

Let B be a separable real Banach space; H be Hilbert space compactly imbedded
on B and the imbedding ¢ : H — B be the Hilbert-Schmidt operator. Therewith
i* : B* - H* ~ H and therefore we’ll assume that B* C H C B. Denote by (-,-)
a coupling of elements from B and B*. Let p be a measure ( a real- valued finite
function of the sets) on a Borel o -algebra B, and z(z) : B — B* be a vector field
in B.

It is said that (see [2]) p possesses a logarith mical derivative along the vector
field z of the form p,, (2, z) if for any function ¢ € CL(B) it is valid the equality (the
integration by parts formula)

/ (¢(@), 2(2)) pu(der) = / (@) p, (2 2)ldr).
B

B

We’ll denote by 9t a set of measures possessing a logarithmic derivative along
any constant directions z(x) = h € B* of the form p,(z,7) = (A(z),h), where
A(z) : B — B is a continuous function. In particular, Gauss measures and also their
smooth images belong to 901 .

Theorem 1. [1] Let a nonlinear transformation f : B — B having the inverse
of the form f~':x — y = o + F(x) where F(x) : B — B* is differentiable, act
on B. Then if the operator I + tF'(x) is inversible for each t € [0,1] : then the



46 Transactions of NAS of Azerbaijan
[B.Dochviri,O.Glonti,O.Purtukhia,G.Sokhadze]

measures p € M and p/ = p(f~1) are equivalent and we can represent the Radon
-Nikodym derivative in the form:

4!

1
0 (x) = ‘det (I+ F'(m))|exp <[)\(:£ + tF(x)dt,F(x)> (1)

Remark. Consider the expression
B(t, F.z) = Nz + tF(z), F(x)) + trF'(z).

As it is shown in [2] it has sense also when: F' : B — H, and therefore we can
strengthen the theorem, and require this condition on the function F' instead of
F(x): B — B* . Therewith (1) takes the form

a

1
dp () = |det (I+ F’(x))‘expzﬁ(t,F,:z:)dt

In a separable real Hilbert space H consider the equation

An+g(n) =&, (2)

for which the following conditions are fulfilled:

a) A is a linear unbounded operator with domain of definition ID(A) densely
imbedded in H Suppose that there exists a bounded inverse A~! being the Hilbert
Schimdt operator. In the domain ID(A) introduce a scalar derivative by the formula
(z,y)p = (Az, Ay) . We get an equipped Hilbert space X1 C X C X_,where
Xy =D(A), X = H;

b) g is a differentiable nonlinear mapping, and the operator I + tA=1¢/(x) is
inversible for all ¢ € [0, 1];

c) the random element § in X_ has the distribution x, € M, i.e..

E(¢'(€),h)r = Ep(§)(A\(€), h)u, ¢ € Cy(X-).

In addition to (2) consider the linear equation
Ag =&, (3)

Let p,, and p be measures corresponding to random elements 7 and < .
Theorem 2. Let conditions a) b) c¢) be fulfilled for equations (2) and (3) .Then

Py ~ e and

ity

1
. (v) = ’det([ + A_lg'(v))’ exp {ﬁ(t,A_l,g,v)dt, (4)

if ¢'(v) is a Hilbert-Schmidt operator, then (4) takes the form

1

(v) = ‘det([ + A_lg’(v))‘ exp /)\(AU + tg(v))dt, g(v)
0 H

]
dpu
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Let A be an open, bounded domain in finite -dimensional Euclidean space R™.
Denote the boundary A by 0A Everywhere we suppose that 9A is a smooth surface.
Under this we understand the following one: to each point x € 0A we can assign n-
dimensional ball I'(z) centered at the point = such that the part A contained in
I'(x) admits the representation with respect to some system of coordinates (1, .., t,)
with origin at the point z, of the form

tn, = (t1, ., tn), (5)

where the function v is determined in some domain, where it belongs to the class
Cland ¢(z) = % =0, i = 1,...n. Therewith at each point x € A there exists a
definite tangential hyper plane T, given by the equation t,. Say that the domain
A U dA belongs to the class A®) if the function 1 contained in (5) belongs to the
class C¥.

For the derivatives (ordinary or generalized) we apply the following denotation:

0

D; = —
J 81']"

j=1,...,n, D*=D".. Dy, a=(a1,...0n), o] =01+ ...+ ay.

The linear differential expression of order r is written as follows:

Lu= Z ao(z)Du,

laf<r
where a,(x) are real coefficients that are smooth. Under this we mean
ao(z) € Cll (A UBA).

Denote the conjugation to L by L*.Thus,
Lu= Y (- 1) D*(a =) ba(
| <r o] <r

Denote by L2(G) a space of real valued functions that are integrable together with
own sguare with respect to Lebesgue measure and with a scalar product

(U, 0) £o(a) = / u(x)v(x)dz, u,veL
G
As usually WL(G) denotes a Sobolev space with a scalar product

(U,'U)WQZ(G) (U, 0) 2oy + Z “u, D) ry(q)-
|a|=1

In order to cover a more general situation we follow [3] and introduce the notion
of boundary conditions. Denote the set of functions finite with respect to G and co
from C'(l = 0,1, ...,00) by C}(G), the space W(G) , I = 0,1, ...is determined as a
subspace of W(G) obtained by the closure in Wi(G) of the linear set C5° C Wi(G).
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It is known that W (G) for I > 1 coincides with the totality of all functions u(x) €
W(G) for which (D%u)(z) =0, (z € T') for || <1— 1.

Any subspace from W&(G) containing W(G) is called a subspace of functions
satisfying definite boundary conditions and is denoted as WZQ (0G).

Let’s consider a triple of equipped Hilbert spaces

WP c WP Lo(G), (6)

where G is an open bounded domain of the class A1), Let & = £(x), z € G be
a random field with probability 1 belonging to L2(G) and let the distribution He
in L£9(G) possess a logarithmic derivative along W22p of the form \(z) : L2(G) —
Lo(G). Take a general differential expression

Lu= Z ao(z)D%u, (7)

laf<r

and suppose that for differential operators L and L* the following energetic inequal-
ities are fulfilled:

[Lull gy 2 cllullzy@yr 1Ly @) = cllvllzy@ - (8)

where ¢ > 0, u,v € C§°(G).
We understand the solvability of the boundary value problem

Le(z) = £(x), < € W5(9G) (9)

in the following sense: as is known (details in [3] ,subject to energetic inequalities (8)
there exists a resolvable extension of L having a continuous inverse determined on
all £2(G) . We'll again write the resolvable extension of L by L . Under the solution
of the stated problem it is natural to understand ¢ = L~'¢. In the similar sense we
should also understand the solvability of the nonlinear boundary value problem

(Ln)(z) + g(z,n(z)) = £(x), 1 € W5(9G)

as the solvability of the equation

n(x) + L~ g(z,n(x)) = L€ (),

where g(z,y) is a smooth function in Lo(G).
Consider the nonlinear boundary value problem

(Ln)(z) + g(z,n(z)) = (), 1 € W5(9G) (10)

In (9) and (10) &(z) is a random field satisfying the conditions:

/ E&(z)dx < oo (11)
G
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and its distribution ue possesses a logarithmic derivative along the constant direc-
tions W22p . This means that for amy smooth functional ¢ € C~1(L2(G)) we have

E((©), Mwz(a) = Bo©)ME), Mz (c: (12)

where X : Lo(G) — Lo(G), h e WP

Let j1¢ be the distribution in £2(G) of problem (10) and g be the distribution
in L9(G) of problem (9). From theorem 2 it followers.

Theorem 3. Let A be an open bounded domain of the class AV with the
boundary OA , L be a differential operator determined by equality (7) with smooth
coefficients aq(z) € CIYN(AUOA), £(x) be a random field satisfying conditions (11)

and (12), g(x,u) determined on G x Lo(G) for each u possess derivatives generalized

0
in Sobolev’s sense and of order 2p and there exist an operator F = g9 satisfying

ou
the relation || F|| <~ where v = HL‘IH_I.

Then, if for any u,v € C§°(G). and for some C' > 0 the energetic inequalities
(8) are fulfilled, then p, ~ p; and

dun

g ’det (I+ L7t exp // (x) D% + tg(x,u) | g(z,u)dsdt+
“c

|04|<

// () D% + tg(x,u) ZDQaug(x,u)d:Edt , (13)
Ia\< |lal=p
for u e W2(G).
In the special case when £(x) is a Gaussion random field, whose correlation
operator in the scalar product of the space WZ(G) is 6 > 0 we have

d
,un |det (I+ L~ 1F exp{ - / Z ao () D% - g(, u)dz+
d,uc
o] <p
p'H/ Zaa u- D g(x, u)dx(z, u)d$—/ Z (D%u) dx}
1BI<p |lal=p

Cite application of theorem 3 to theory of prediction and filtration of random
fields. Let X be a Hilbert space, £ be a random variable with values in X, & : X —
R be a measurable functional. Let E be some linear space with o— algebra of its
subsets €, and Q = X — F be some linear operator. The problem is in calculation
of optimal meansquare estimation ®*(&) of the function ® from the random variable
& by observations of Q¢ . It is known well that such an estimation is given by the

vio- {20}

equality

where QE?Q is o— algebra generated by the random element Q¢ .
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Suppose that on the Borel o -algebra of 25 space X another random variable 7
is given such that the distributions p, and p, are equivalent pe ~ p, and p(z) =

—(x).
@
Lemma. [t ®(x) is a bounded P -measurable function, then the following

formula is valid

£
pe) = E{o(mp(n)/e} | ”

E{p(n)/%}

Proof. By definition of conditional mean, for any measurable bounded function

n=§

h on E we have
E@(©h(Q) =E { B |0()/€5 | } n(Qe),

hence

&=n

peGipn(en) £ {E [a/e] _ LBl e,

but as

E@(n)p(n)h(Q€) =E { B |@(m)p(n)/€] | h(@n).

then because of arbitrariness of h(z) we get
El2()/€5),_ F{om/€q) = F [2mo(n)/€)

hence we get (14).

We can simplify formula (14) if 1 is a Gaussian variable in X and Q is a con-
tinuous linear mapping of the space X in X. For that we represent 7 in the form
n = n* 4+ 7 ,where n* = E{n/@&} is an optimal in the meansquare sense linear
prediction of Gaussian random variable 1 by observations Qn, while 7 is a Gaussian
variable independent of QE%. Then from (14) we can write

TR G Y S SR UL S {

E{p(n)/€}} E{plr+7)/€ }

_ E{®@+m)p(z+n)}
E{p(z+n)}

where (unconditional) mean value is taken with respect to 77 and is substitutied by
turns z = n* = E{n/ (’3&} and n = £ (this last substitution is assumed to be a
substitution of observation &).

n=¢ n=¢

: (15)
a=n*=E{n/€}}n=¢

Let the solution of problem (10)- n(z) be observed in some subdomain G; C G. It
is required to find an optimal in the meanquadratic sense estimation of the functional
® from the solution of n(z) at the point x = zp € Go = G — G .

To this end , in addition to problem (10) we consider the linear problem (9)

L¢(z) =&(x), <€ W;(@G).
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By combining theorem 3 with the lemma we get

Theorem 4. Let in open, bounded domain G of the class AN with the boundary
0G we consider a partial equation with boundary conditions (10) in which the coef-
ficients of the operator L are sufficiently smooth, ao(z) € CI*I(AUIA), &(x) is a
Gaussian random field whose correlation operator in the scalar product of the space
W2(G) is 01,0 > 0; g(z,u) is a function determined on G x L2(G) and possessing for
each = generalized in the Sobolev sense derivatives of order 2p, the operators F = %
satisfy the relation ||F| <~y , where v = HL_IH_I. Then if for any w,v € C§°(G)
and some C > 0 the energetic inequalities (8) are fulfilled, then optimal prediction

O*(n)(xg) is given by the formula:

O*(n)(zo) = {E@(z(wo) + 0(x0)) ‘det([ + L_lF(z(x) —1—@(:13)))} X

X exp —/ Z ao(z)D(z +0(z)g(z, 2(z) + 0(z))dz+

la|<p

0 [ 3 au@)DP (ele) + 7)) - Dyl 2(0) + ()~
18|<p

/ S (D% (2(a) + B(@)))2da § - {E |det(] + LLF(2(z) + ()] %

la|=p

X exp —/ Z ao(z)D(z +0(z)g(z, 2(z) + 0(z))dz+

oo <p

/ > a(@) D (a(w) + 0a)) - D¥g(, 2(x) + () do—

18I<p

|0‘| =p n=¢
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