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OSCILLATION PROPERTIES OF EIGEN
FUNCTIONS OF A VIBRATIONAL BOUNDARY
VALUE PROBLEM

Abstract

A spectral problem for an ordinary differential opertor of fourth order with
self-adjoint boundary conditions is considered. The structure of the root sub-
spaces and oscillation properties of eigenfunctions of this problem is studied
completely.

Let’s consider the following boundary value problem

(y) = (p(2)y")" = (q(2)y) + r(z)y(z) = Ar(z)y, 0 <z <1, (1)

y'(0) cos a — (py”")(0) sina = 0, (2a)

y(0) cos B+ Ty(0)sin B =0, (2b)

y' (1) cosy + (py") (1) siny = 0, (2¢)

y(l) cosd — Ty(l)sind = 0, (2d)

where A\ € C is a spectral parameter, Ty = (py”) — qv/, p(x), 7(x) > 0, g(x) >0

for z € [0,1], p' € AC|0,l], r, 7 € C[0,l], «, 3,7, are real constants, and «, f3,
v € [0,7/2], § € [0,7).

Problem (1), (2) arises by separating variables in the dynamic boundary value
problem describing small lateral oscillations of a non-homogeneous bar subjected to
axial forces.

Under rather wide class of boundary conditions, equation (1) was studied in [1,2].
In these papers, the classes of regular and completely regular Sturmian systems were
introduced and studied. For completely regular Sturmian systems it is established
that eigenvalues of these systems are real and form an infinitely monotonically in-
creasing subsequence, and in the case r = 0 all of them are positive and simple, and
the corresponding eigenfunctions have Sturm oscillation properties (see also [3,4]).
In the case when r(x) doesn’t vanishes identically on any interval constituting the
part of [0,[] it is shown that the eigenvalues are simple, except may be the first m
ones, and the corresponding eigenfunctions with ordinary numbers greater that m
possess Sturm oscillation properties (see definition of number m in the context).

Note that problem (1), (2) for 6 € [0,7/2], except the case § = § = 7/2, is
a completely regular Sturmian system, and in the case § € [r/2,7] is a regular
Strumian system.

Oscillation properties of eigenvalues and their derivatives of problem (1), (2) for
r =0, § € [0,7/2] were studied in detail in [4], for 6 € [7/2, 7] in [5] and [6].

Oscillation properties of eigenfunctions corresponding to the first m eigenvalues
of completely regular Strumian systems were studied in the papers [7, §].

The present paper is devoted to studying the structure of root subspaces and

oscillation properties of eigenfunctions corresponding to the first m eigenvalues of
problem (1), (2).
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It is known that for each fixed A € C there exists a unique nontrivial solution
y(z, A) to within constant factor of problem (1), (2a)-(2c) for r = 0, i.e. of differential
equation

lo(y)(z) = (p(x)y" ()" — (9(2)y (2)) = Ar(x)y(x), 0 <z <L, (3)

satisfying the boundary conditions (2a)-(2c). For any fixed = € [0,[] the function
y(x, \) is an entire function of .

Obviously, the eigenvalues p,,(0) and p,,(7/2), n € N, of boundary value problem
(3), (2) for § = 0 and § = 7/2 are the zeros of entire functions y(I, A) and Ty(l, \),
respectively. Notice that the function

FO()‘) = Ty(la )‘)’ /y(l’ )‘)

was determined for the values

A6A5<UA> U(CR),

where A, = (p,,_1(0), 1£,(0)), n €N, p(0) = —oco and is a meromophic function
of finite order, u,, (7/2) and p,,(0), n € N are the zeros and poles of these function,
respectively.

w/2, if B€l0,7/2),

Denote: 9o :{ azctgFo(O), i[f ,6/:)71'/2.

Recall that the problem (3), (2) was investigated in the papers [4, 5], where in
particular, the following theorem was proved.

Theorem A. For the fixred o, 3, 7, the eigenvalues of the problem (3), (2)
for 6 € [0,7) are real, simple and form an infinitely increasing sequence {u;,(8)}rey
such that py(0) < ps(d) < ... < pp(d) < ..., and pi(6) >0 for k> 2, py(6) > 0 in
the case 6 € [0,00), p1(d) =0 in the case § = dp, pu1(0) <0, in the case 6 € (4o, ).

(9)

Furthermore, the eigenfunction y,’(x) corresponding to the eigenvalue A(d) for
k > 2 has ezxactly k — 1 simple zeros in the interval (0,1), eigenfunction y?) () in
the case 6 € [0,00) has no zeros, and in the case § € [0g,7) may have arbitrary
number of zeros in the interval (0,1) which are also simple.

For studying oscillation properties of eigenfunctions of problem (3), (2), in the
papers [4, 5] the following Prufer type transformation was used

y(x) = r(z) sing(x) cos O(x),

y'(x) = r(z) cosh(x) sinp(x), ()
y)" () = r(z) cos y(x) cos p(x),

y(x) = r(x)siny(z) sin f(x).

Following the corresponding reasonings carried out in the course of proof of theorem
A, we are convinced that for any 61, d2 € (0,7) such that §; < dy the following
relations are fulfilled

’ﬂ%\

f11(02) < p11(01) < p1(0) < pp(d2) < pg(d1) < po(0) < ... (5)
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Based on max-min properties of eigenvalues [9, p.343], the eigenvalues of problem
(1), (2) are determined from the relation:

A = max min R
k V(k—)%) yeB.C.{ [y]

}T(w)y(w)w(x)dx =0, pe VD } : (6)

where R[y] is the Reley ratio

l l
Rly] =< [0y + qy* + ry?)dz + N[y] [ Ty?de,
0 0

Nly] = y?(0)ctge + y*(0)ctgB + y*(I)ctgy + y*(1)ctgo,

(7)

V(=1 is an arbitrary set of linearly-independent functions p; € BC, 1< j<
k —1, B.C. is the set of functions satisfying the boundary conditions (2).
Assume:

ro = xrél[iol,ll]r(x)’ r = ;Iel[aoﬁ}r(m)’ To = xlél[i(){ll}r(x), T = 9612%?%]7'(1').
Denote by (W) a comlepetely regular Sturmian system that is obtained from the
system (1), (2) by substituting rq for 7(z) and 71 for 7(z). By substituting \' = A1 —
ro the system (¥() goes into the equaivalent system (W;) for which the statement
of theorm A is valid.

Let A1, k € N be the k-th eigenvalue of the system (¥;) which is positive by
theorem A, and Ay o = (Mg +70) /71, kK € N be the k-th eigenvalue of the system
(¥o). Then by theorem A, the eigenfunction yj o(z) corresponding to the eigenvalue
k0, k € N has exactly £ — 1 simple zeros in the interval (0,1).

Now pass from the system (¥) to the system (1), (2) using the ” u-process” (see
[1.2]) by means of deformation

r(x,p) = (1= p)ro+ p'r(z),

(2, p) =1 — ")+ p'(x), z €[0,1], ¢, p" €0,1].

Since r (z, ) increases, and 7 (z,u) decreases, then by [2, lemma 4] the positive
eigenvalues don’t decrease.
Define the positive integer mg from the relations

)\m0+1,0 > (7‘17‘1 — T()To) /T'o > )\mo,O and >\m0+1,0 > 0.
It is known [2] that if £ > m = max {2, mg}, then the following inequality is fulfilled

() = M () 7 (2, 0) <0, 2 €[0,1], pel01].

where A\ (@) is the k-th eigenvalue of the Sturmian system that is obtained from the
system (1), (2) by substituting = (x, u) for r(x) and 7 (x, u) for 7(x). Consequently,
by Corollary 1, Lemma 7 and Remark 1 from [2], the eigenvalues A1, A2, ..., Am,
Amt1, ..., of the completely regular Sturmian system (1), (2), except may be the
first m ones, are positive and simple, and the eigenfunction ¥ (z) corresponding to
the eigenvalue A, for & > m has k — 1 simple zeros in the interval (0,1).
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Obviously, these statements are valid also for the regular Sturmian system

lo (y) + pr(z)y = Ar(z)y, x € (0,1),
y(z) € B.C.,u € [0,1]. } (8)

Lemma 1. The following relation is valid
vi(p) € [y, + pro/To, iy + pr1 /7ol (9)

where vi(u) is the k-th eigenvalue of problem (8), puy, = p(9).
Proof. From (6) we have

V(k-1)y(z)eB.C.

I
Ak(p) = max  min {Ru[y] {T(m)y(m)@(x)dx =0, p(z) e VD } ,  (10)

where
l l
Ryuly] = (f 0y + q* + pry?) da + N[y]> /f Ty da. (11)
0 0
For an arbitrary choice of V*~1) from (11) we get
Loy Loy
Rulyl = Roly] + p | [ry“de [ [Ty*dz |, (12)
0 0
where
! !
Roly] = (f (py”2 n qy’Q) dx + Ny] /f Ty2da:> ) (13)
0 0

From (12), (13) it follows that

Rolyl + pro/To < Rulyl < Roly] + pr1/7o. (14)
Taking into account (14), from (10) we get the relation (9). The lemma is proved.
J .
Let E = C3[0,1] N B.C. Banach space endowed with the norm lyll; = 22 ‘y(l)
i=0

0’
where |-, is an ordinary sup.-norm in C10,].
Let S = {y € E}|y () #0, € (0,1), i=0,3}U{y € E| if y(£)=0 or

y"(§) =0 for § € (0,1), then y'(§)Ty(§) < 0; if y'(n) =0or Ty(n) =
=0 for n € (0,1) then y(n)y"(n) < 0}.

Denote by S}, k € N, v = + or —, the set of functions y € S satisfying the
following conditions:

1) y(z) has exactly k — 1 zeros in the interval (0, 1):

2) limysgny(z) = 1

3) the angular function i satisfies either the condition ¢(x) € (0,7/2) or
b(z) € (n/2,7);

4) the boundary values of angular functions 6 and ¢ from (4) are determined as
follows:

0(0)==n/2—-08, () =kr—7/2-19;

(p(O):Oé, cp(l):nkﬁ_ﬁ)ﬂ keNa
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where o = 0 in the case ¥(0) = 7/2, ~ = 0 in the case ¢(l) = 7/2, nx =k or
k+1 in the case ¢(0) € (0,7/2), ngy =1and ny=kork—1, k€ N\{1l}, inthe
case ¥(0) € [7/2,7); w(0) = ctgi(0) determined at least by one of the following
equalities:

y'(0)sin 8 __(py")(0) cos B
@) w(0) = y(0)sina’ b) w(0) =~ Ty(0)cosaw
) wf) = BOOSRE o O sd,

y(0) cos a 0)sina’

Ty(0)sina
5) the graphs of the functions §(z) and ¢(z), = € [0,], intersect the lines
0=02m—-1)n/2, 6 =mn and ¢ =mnmr, m=0,1,2,...,

strongly increasing;

6) if () y(0)y'(0) >0, (ii) y(0) =0 or (si) y'(0) =0 and y(0)y”(0) > 0, then
(z) € (0,7/2) for x € (0,1), and if (iv)y(0)y'(0) < 0, (¥)y'(0) = 0 and y(0)y'(0) < 0
or (vi) y'(0) =0, then ¢¥(x) € (n/2,7) for z € (0,1).

Denote: S, = S’lj U S, . By lemma 2.2, corollary of theorem 3.1, theorems 3.3,
3.4, 5.1, 5.5, 6.1, 6.3 from [4], and theorem A, the eigenfunction v (z) = 29,(3)(1:)
corresponding to the eigenvalue p; = p;,(6) of problem (3), (2) is contained in the
set Si for k € N in the case 6 € [0,0p), for £ € N\ {1} in the case § € (Jo, 7).
Consequently, the sets S}, k € N, v = + or —, are nonemptly. The sets S},
k €N, v =+ or —, are open subsets in E [10].

N, if §€10,d0),

Denote: Ng = { N\ {1}, if &€ [[50,7r;,

Alongside with problem (1), (2) we consider the following nonlinear ”approxi-
mation” problem

(loy) () +r(z) |ly(@)||5y(z) = A (z)y(x), =€ (0,1),
o A bow)

where ¢ € (0, 1].
Let’s determine the function g(y) € C[0,1], y € E, as follows:

9()(x) = —r(x)y(z), =< [0,1]. (16)

Since r(x) € C[0,l], then map g : E — C'[0,(] is continuous. We can rewrite
problem (15) in the following equivalent form

lo(y) = Ary +yge(\|]z§|.|%%/) , © € (0,1), } (17)

By (16) for any fixed ¢ € (0, 1] the following relation

g9(lyllzy) = 0(lylls) from lylls =0,

is valid. Consequently, for problem (15) the statement of theorem 1 from [10] is
true. Then for any k € Ny and v = + or —, there exists an unbounded continuum
of the set of solutions of problem (15) C_ such that

(11> 0) € C e € (R > S) U {(1g, 0)} -
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Lemma 2. There exists py € (0,1) such that for any € € (0, py) and v > 0 there
doesn’t exist the non-trivial solution (A, w) of problem (15) satisfying the conditions

we Sy, k<mg, keNy, v=+or—, |lw|; < poand dist (A, Iy) =7,

where In = [y + 70/To, oy, + 71/70)-

The proof is carried out by the scheme of the proof of lemma 2 from [7], using
lemma 1.

Assume that £ < m, k € Ny. Since O} _ is a connected set, then for any e € (0, py)
there exists the solution (A, y.) of problem (15) such that A. € Iy and [|yc||3 = po-
Following the above reasonings conducted in proving lemma 2, we can find such
a sequence {e,},~; C (0,py) and nli_}ngoen = 0 that the sequence {(\:, ,ve, )}

n=1
converges to the solution (X, @) of problem (1), (2), where = Iy, ¥ € Sk. So, for

any k € {1,2,...,m} NNy there exists an eigenfunction y, = § € Sy of problem (1),
(2) corresponding to the eigenvalue A = A, s € {1,2,...,m} N Ny. Using system
(8) by applying the ” u-process”, we pass from the regular Sturmian system (3), (2)
to the regular Sturmian system (1), (2). Since the eigenvalues v (u) for the ”pu-
process” are displaced from the initial value (origin) p; to which corresponds the
eigenfunction ¥ € S, we can assume s = k.

Thus, the eigenfunction yg(z) of problem (1), (2) corresponding to the eigenvalue
My k€ {1,2,...,m} NNy has exactly k — 1 simple zeros in the interval (0,1), and

A< A << A < A

Determine the numbers dy > 0 and d; > 0 from the following relations:
do = min {141 — 1.}
k=1,m

diy =inf{z € Ry |r(z) + 2z7(z) > 0,2 € [0,1] }.
By substituting £ = A + d, the system (1), (2) goes into the equivalent system

bxly) = o(y) + Ty = 7
T )

where 7 = r + dy7. Now pass from the system (3), (2) to the system (18) using the
” p-process”:
bo(y) +ary =&ty
y e B.C.. } (19)
Since the coefficient r (x, ;1) = fir(x) increases, then the eigenvalues don’t decrease.
Notice that if the condition ri/79 + di < do is fulfilled, then the eigenvalues
E1(1),Eq(p), ..., & (1) of problem (19) don’t coincide for the ” p-process” and conse-
quently, all of them are simple.
Remark 1. From the above reasonings it is seen that for § € [dg,n) the first
eigenvalue &, (p) is also simple.
Note that if the condition r; /79 + d1 < dp is not fulfilled, then we can choose
such @ € (0,1) that the inequality 7(ri/70 + di) < dp is valid. Then obviously, the
eigenvalues &1 (1), &a(1), ..., &,, (1) of problem (19) for p € (0, ) are also simple.
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Now show that then eigenvalues &; (1), &5(1), ..., &, (1) of problem (19) remain
simple for py € (@, 1] as well. Indeed, if it is not so, then there exist py € (&, 1]
closest to i, k € {1,2,...,m — 1} and ¢; € [0, 7) such that & (g, 01) = &1 (o, 1)-
Take rather small ¢ > 0(e < @t — o) and consider the eigenvalues & (yy, — ) and
Ery1(tg — €). Obviously, §i.(pg —€) < &ppa(po —€)-

Let §2 € (0,7/2) be such that if §; € (0,7), then 0 < d2 < §;. By property 1
from [4] and relations (5) we have

Er (o — €,01) < &gy (o — €,02) < Eppq (o —€,01), if 61 =0,

€k (1o — €,01) <& (1o — €,02) < &pqr (1o — €,61), if 61 € (0, ).
Further, passing in the latter two inequalities to limit as ¢ — 0 and taking into
account ék(MO?al) = §k+1 (MO?dl)a we get

Et1 (Hos 02) = &jqq (Hg, 01) for 61 =0,

gk(:u()vél) = 5k(“0a52) for 6 € (0,71‘),

that contradict relations (5).

By substituting the variable A = £ — dy, the system (18) goes into the equivalent
system (1), (2).

Consequently, the following theorem is valid.

Theorem 1. For the fized «,B,7 the eigenvalues of problem (1), (2) for
0 € [0,7) are real, simple and form an infinitely increasing sequence such that
{Me(0)}2,21(0) < A2(d) < ... < Xg(0) < ... Furthermore, the eigenfunction
y,(f) (z) corresponding to the eigenvalue \i(0) for k € Ny has exactly k — 1 simple
zeros in the interval (0,1), more exactly y,(f) (x) € Sk.
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