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OSCILLATION PROPERTIES OF EIGEN
FUNCTIONS OF A VIBRATIONAL BOUNDARY

VALUE PROBLEM

Abstract

A spectral problem for an ordinary differential opertor of fourth order with
self-adjoint boundary conditions is considered. The structure of the root sub-
spaces and oscillation properties of eigenfunctions of this problem is studied
completely.

Let’s consider the following boundary value problem

lr(y) ≡ (p(x)y′′)′′ − (q(x)y′) + r(x)y(x) = λτ(x)y, 0 < x < l, (1)

y′(0) cosα− (py′′)(0) sinα = 0, (2a)

y(0) cosβ + Ty(0) sinβ = 0, (2b)

y′(l) cos γ + (py′′)(l) sin γ = 0, (2c)

y(l) cos δ − Ty(l) sin δ = 0, (2d)

where λ ∈ C is a spectral parameter, Ty ≡ (py′′) − qy′, p(x), τ(x) > 0, q(x) ≥ 0
for x ∈ [0, l], p′ ∈ AC[0, l], r, τ ∈ C[0, l], α, β, γ, δ are real constants, and α, β,
γ ∈ [0, π/2], δ ∈ [0, π).

Problem (1), (2) arises by separating variables in the dynamic boundary value
problem describing small lateral oscillations of a non-homogeneous bar subjected to
axial forces.

Under rather wide class of boundary conditions, equation (1) was studied in [1,2].
In these papers, the classes of regular and completely regular Sturmian systems were
introduced and studied. For completely regular Sturmian systems it is established
that eigenvalues of these systems are real and form an infinitely monotonically in-
creasing subsequence, and in the case r ≡ 0 all of them are positive and simple, and
the corresponding eigenfunctions have Sturm oscillation properties (see also [3,4]).
In the case when r(x) doesn’t vanishes identically on any interval constituting the
part of [0, l] it is shown that the eigenvalues are simple, except may be the first m
ones, and the corresponding eigenfunctions with ordinary numbers greater that m
possess Sturm oscillation properties (see definition of number m in the context).

Note that problem (1), (2) for δ ∈ [0, π/2], except the case β = δ = π/2, is
a completely regular Sturmian system, and in the case δ ∈ [π/2, π] is a regular
Strumian system.

Oscillation properties of eigenvalues and their derivatives of problem (1), (2) for
r ≡ 0, δ ∈ [0, π/2] were studied in detail in [4], for δ ∈ [π/2, π] in [5] and [6].

Oscillation properties of eigenfunctions corresponding to the first m eigenvalues
of completely regular Strumian systems were studied in the papers [7, 8].

The present paper is devoted to studying the structure of root subspaces and
oscillation properties of eigenfunctions corresponding to the first m eigenvalues of
problem (1), (2).
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It is known that for each fixed λ ∈ C there exists a unique nontrivial solution
y(x, λ) to within constant factor of problem (1), (2a)-(2c) for r ≡ 0, i.e. of differential
equation

l0(y)(x) ≡ (p(x)y′′(x))′′ − (q(x)y′(x))′ = λr(x)y(x), 0 < x < l, (3)

satisfying the boundary conditions (2a)-(2c). For any fixed x ∈ [0, l] the function
y(x, λ) is an entire function of λ.

Obviously, the eigenvalues µn(0) and µn(π/2), n ∈ N, of boundary value problem
(3), (2) for δ = 0 and δ = π/2 are the zeros of entire functions y(l, λ) and Ty(l, λ),
respectively. Notice that the function

F0(λ) = Ty(l, λ), /y(l, λ)

was determined for the values

λ ∈ A ≡

( ∞∪
n=1

An

)∪
(C8R) ,

where An =
(
µn−1(0), µn(0)

)
, n ∈ N, µ0(0) = −∞ and is a meromophic function

of finite order, µn (π/2) and µn(0), n ∈ N are the zeros and poles of these function,
respectively.

Denote: δ0 =

{
π/2, if β ∈ [0, π/2) ,
arctgF0(0), if β = π/2.

Recall that the problem (3), (2) was investigated in the papers [4, 5], where in
particular, the following theorem was proved.

Theorem A. For the fixed α, β, γ, the eigenvalues of the problem (3), (2)
for δ ∈ [0, π) are real, simple and form an infinitely increasing sequence {µk(δ)}

∞
k=1

such that µ1(δ) < µ2(δ) < ... < µk(δ) < ..., and µk(δ) > 0 for k ≥ 2, µ1(δ) > 0 in
the case δ ∈ [0, δ0), µ1(δ) = 0 in the case δ = δ0, µ1(δ) < 0, in the case δ ∈ (δ0, π).

Furthermore, the eigenfunction y
(δ)
k (x) corresponding to the eigenvalue λk(δ) for

k ≥ 2 has exactly k − 1 simple zeros in the interval (0, l), eigenfunction y
(δ)
1 (x) in

the case δ ∈ [0, δ0) has no zeros, and in the case δ ∈ [δ0, π) may have arbitrary
number of zeros in the interval (0, l) which are also simple.

For studying oscillation properties of eigenfunctions of problem (3), (2), in the
papers [4, 5] the following Prufer type transformation was used

y(x) = r(x) sinψ(x) cos θ(x),
y′(x) = r(x) cosψ(x) sinφ(x),
(py)′′(x) = r(x) cosψ(x) cosφ(x),
Ty(x) = r(x) sinψ(x) sin θ(x).

(4)

Following the corresponding reasonings carried out in the course of proof of theorem
A, we are convinced that for any δ1, δ2 ∈ (0, π) such that δ1 < δ2 the following
relations are fulfilled

µ1(δ2) < µ1(δ1) < µ1(0) < µ2(δ2) < µ2(δ1) < µ2(0) < ... . (5)
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Based on max-min properties of eigenvalues [9, p.343], the eigenvalues of problem
(1), (2) are determined from the relation:

λk = max
V (k−1)

min
y∈B.C.

{
R[y]

∣∣∣∣∣ l∫ τ(x)y(x)φ(x)dx = 0, φ ∈ V (k−1)

}
, (6)

where R[y] is the Reley ratio

R[y] =

{
l∫
0

(py′′2 + qy′2 + ry2)dx+N [y]

}/
l∫
0

τy2dx,

N [y] = y′2(0)ctgα+ y2(0)ctgβ + y′2(l)ctgγ + y2(l)ctgδ,

(7)

V (k−1) is an arbitrary set of linearly-independent functions φj ∈ B.C., 1 ≤ j ≤
k − 1, B.C. is the set of functions satisfying the boundary conditions (2).

Assume:

r0 = min
x∈[0,l]

r(x), r1 = max
x∈[0,l]

r(x), τ0 = min
x∈[0,l]

τ(x), τ1 = max
x∈[0,l]

τ(x).

Denote by (Ψ0) a comlepetely regular Sturmian system that is obtained from the
system (1), (2) by substituting r0 for r(x) and τ1 for τ(x). By substituting λ′ = λτ1−
r0 the system (Ψ0) goes into the equaivalent system (Ψ1) for which the statement
of theorm A is valid.

Let λk,1, k ∈ N be the k-th eigenvalue of the system (Ψ1) which is positive by
theorem A, and λk,0 = (λk,1 + r0) /τ1, k ∈ N be the k-th eigenvalue of the system
(Ψ0). Then by theorem A, the eigenfunction yk,0(x) corresponding to the eigenvalue
λk,0, k ∈ N has exactly k − 1 simple zeros in the interval (0, l).

Now pass from the system (Ψ0) to the system (1), (2) using the ”µ-process” (see
[1.2]) by means of deformation

r(x, µ) ≡ (1− µ′)r0 + µ′r(x),

τ (x, µ) = (1− µ′′)τ1 + µ′′τ(x), x ∈ [0, l], µ′, µ′′ ∈ [0, 1].

Since r (x, µ) increases, and τ (x, µ) decreases, then by [2, lemma 4] the positive
eigenvalues don’t decrease.

Define the positive integer m0 from the relations

λm0+1,0 > (r1τ1 − r0τ0) /r0 ≥ λm0,0 and λm0+1,0 > 0.

It is known [2] that if k > m = max {2,m0}, then the following inequality is fulfilled

r (x, µ)− λk (µ) τ (x, µ) < 0, x ∈ [0, l] , µ ∈ [0, 1] .

where λk (µ) is the k-th eigenvalue of the Sturmian system that is obtained from the
system (1), (2) by substituting r (x, µ) for r(x) and τ (x, µ) for τ(x). Consequently,
by Corollary 1, Lemma 7 and Remark 1 from [2], the eigenvalues λ1, λ2, ..., λm,
λm+1, ..., of the completely regular Sturmian system (1), (2), except may be the
first m ones, are positive and simple, and the eigenfunction ϑk(x) corresponding to
the eigenvalue λk for k > m has k − 1 simple zeros in the interval (0, l).
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Obviously, these statements are valid also for the regular Sturmian system

l0 (y) + µr(x)y = λτ(x)y, x ∈ (0, l),
y(x) ∈ B.C., µ ∈ [0, 1].

}
(8)

Lemma 1. The following relation is valid

νk(µ) ∈ [µk + µr0/τ0, µk + µr1/τ0] , (9)

where νk(µ) is the k-th eigenvalue of problem (8), µk = µk(δ).
Proof. From (6) we have

λk(µ) = max
V (k−1)

min
y(x)∈B.C.

{
Rµ[y]

∣∣∣∣∣ l∫0 τ(x)y(x)φ(x)dx = 0, φ(x) ∈ V (k−1)

}
, (10)

where

Rµ[y] =

(
l∫
0

(
py′′2 + qy′2 + µry2

)
dx+N [y]

)/
l∫
0

τy2dx. (11)

For an arbitrary choice of V (k−1) from (11) we get

Rµ[y] = R0[y] + µ

(
l∫
0

ry2dx

/
l∫
0

τy2dx

)
, (12)

where

R0[y] =

(
l∫
0

(
py′′2 + qy′2

)
dx+N [y]

/
l∫
0

τy2dx

)
. (13)

From (12), (13) it follows that

R0[y] + µr0/τ0 ≤ Rµ[y] ≤ R0[y] + µr1/τ0. (14)

Taking into account (14), from (10) we get the relation (9). The lemma is proved.

Let E = C3[0, l] ∩B.C. Banach space endowed with the norm ∥y∥j =
j∑

i=0

∣∣y(i)∣∣
0
,

where |·|0 is an ordinary sup.-norm in C[0, l].
Let S = {y ∈ E}

∣∣y(i)(x) ̸= 0, x ∈ (0, l), i = 0, 3
}
∪ {y ∈ E| if y(ξ) = 0 or

y′′(ξ) = 0 for ξ ∈ (0, l), then y′(ξ)Ty(ξ) < 0; if y′(η) = 0 or Ty(η) =
= 0 for η ∈ (0, l) then y(η)y′′(η) < 0} .

Denote by Sν
k , k ∈ N, ν = + or −, the set of functions y ∈ S satisfying the

following conditions:
1) y(x) has exactly k − 1 zeros in the interval (0, l):
2) lim

x→0
νsgny(x) = 1;

3) the angular function ψ satisfies either the condition ψ(x) ∈ (0, π/2) or
ψ(x) ∈ (π/2, π);

4) the boundary values of angular functions θ and φ from (4) are determined as
follows:

θ(0) = π/2− β, θ(l) = kπ − π/2− δ;

φ(0) = α, φ(l) = nkπ − γ, k ∈ N,
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where α = 0 in the case ψ(0) = π/2, γ = 0 in the case ψ(l) = π/2, nk = k or
k+1 in the case ψ(0) ∈ (0, π/2), n1 = 1 and nk = k or k−1, k ∈ N\ {1} , in the
case ψ(0) ∈ [π/2, π) ; w(0) = ctgψ(0) determined at least by one of the following
equalities:

a) w(0) =
y′(0) sinβ

y(0) sinα
, b) w(0) = −(py′′)(0) cosβ

Ty(0) cosα
,

c) w(0) =
(py′′)(0) sinβ

y(0) cosα
, b) w(0) = − y′(0) cosβ

Ty(0) sinα
;

5) the graphs of the functions θ(x) and φ(x), x ∈ [0, l], intersect the lines

θ = (2m− 1)π/2, θ = mπ and φ = mπ, m = 0, 1, 2, ...,

strongly increasing;
6) if (i) y(0)y′(0) > 0, (ii) y(0) = 0 or (iii) y′(0) = 0 and y(0)y′′(0) > 0, then

ψ(x) ∈ (0, π/2) for x ∈ (0, l), and if (iν)y(0)y′(0) < 0, (ν)y′(0) = 0 and y(0)y′(0) < 0
or (νi) y′(0) = 0, then ψ(x) ∈ (π/2, π) for x ∈ (0, l).

Denote: Sk = S+
k ∪ S−

k . By lemma 2.2, corollary of theorem 3.1, theorems 3.3,

3.4, 5.1, 5.5, 6.1, 6.3 from [4], and theorem A, the eigenfunction ϑk(x) = ϑ
(δ)
k (x)

corresponding to the eigenvalue µk = µk(δ) of problem (3), (2) is contained in the
set Sk for k ∈ N in the case δ ∈ [0, δ0), for k ∈ N\ {1} in the case δ ∈ (δ0, π).
Consequently, the sets Sν

k , k ∈ N, ν = + or −, are nonemptly. The sets Sν
k ,

k ∈ N, ν = + or −, are open subsets in E [10].

Denote: N0 =

{
N, if δ ∈ [0, δ0),
N\ {1} , if δ ∈ [δ0, π),

Alongside with problem (1), (2) we consider the following nonlinear ”approxi-
mation” problem

(l0y) (x) + r(x) ∥y(x)∥ε3 y(x) = λτ(x)y(x), x ∈ (0, l),
y(x) ∈ B.C.,

}
(15)

where ε ∈ (0, 1].
Let’s determine the function g(y) ∈ C[0, l], y ∈ E, as follows:

g(y)(x) = −r(x)y(x), x ∈ [0, l] . (16)

Since r(x) ∈ C [0, l], then map g : E → C [0, l] is continuous. We can rewrite
problem (15) in the following equivalent form

l0(y) = λry + g (∥y∥ε3 y) , x ∈ (0, l) ,
y ∈ B.C.

}
(17)

By (16) for any fixed ε ∈ (0, 1] the following relation

g (∥y∥ε3 y) = 0 (∥y∥3) from ∥y∥3 → 0,

is valid. Consequently, for problem (15) the statement of theorem 1 from [10] is
true. Then for any k ∈ N0 and ν = + or −, there exists an unbounded continuum
of the set of solutions of problem (15) Cν

k,ε such that

(µk, 0) ∈ Cν
k,ε ⊂ (R× Sν

k ) ∪ {(µk, 0)} .
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Lemma 2. There exists ρ0 ∈ (0, 1) such that for any ε ∈ (0, ρ0) and γ > 0 there
doesn’t exist the non-trivial solution (λ,w) of problem (15) satisfying the conditions

w ∈ Sν
k , k ≤ m0, k ∈ N0, ν = +or−, ∥w∥3 ≤ p0 and dist (λ, I0) = γ,

where I0 = [µ1 + r0/τ0, µm + r1/τ0].
The proof is carried out by the scheme of the proof of lemma 2 from [7], using

lemma 1.
Assume that k ≤ m, k ∈ N0. Since C

ν
k,ε is a connected set, then for any ε ∈ (0, ρ0)

there exists the solution (λε, yε) of problem (15) such that λε ∈ I0 and ∥yε∥3 = ρ0.
Following the above reasonings conducted in proving lemma 2, we can find such
a sequence {εn}∞n=1 ⊂ (0, ρ0) and lim

n→∞
εn = 0 that the sequence {(λεn , yεn)}

∞
n=1

converges to the solution
(
λ̂, ŷ
)
of problem (1), (2), where λ̂ ∈ I0, ŷ ∈ Sk. So, for

any k ∈ {1, 2, ...,m} ∩ N0 there exists an eigenfunction yk = ŷ ∈ Sk of problem (1),
(2) corresponding to the eigenvalue λs = λ̂, s ∈ {1, 2, ...,m} ∩ N0. Using system
(8) by applying the ”µ-process”, we pass from the regular Sturmian system (3), (2)
to the regular Sturmian system (1), (2). Since the eigenvalues νk(µ) for the ”µ-
process” are displaced from the initial value (origin) µk to which corresponds the
eigenfunction ϑk ∈ Sk, we can assume s = k.

Thus, the eigenfunction yk(x) of problem (1), (2) corresponding to the eigenvalue
λk, k ∈ {1, 2, ...,m} ∩ N0 has exactly k − 1 simple zeros in the interval (0, l), and

λ1 ≤ λ2 ≤ ... ≤ λm < λm+1.

Determine the numbers d0 > 0 and d1 ≥ 0 from the following relations:

d0 = min
k=1,m

{
µk+1 − µk

}
,

d1 = inf {z ∈ R+ |r(x) + zτ(x) > 0, x ∈ [0, l]} .

By substituting ξ = λ+ d, the system (1), (2) goes into the equivalent system

ℓr(y) ≡ ℓ0(y) + ry = ξτy
y ∈ B.C.,

}
(18)

where r = r + d1τ . Now pass from the system (3), (2) to the system (18) using the
”µ-process”:

ℓ0(y) + µry = ξτy
y ∈ B.C..

}
(19)

Since the coefficient r (x, µ) = µr(x) increases, then the eigenvalues don’t decrease.
Notice that if the condition r1/τ0 + d1 < d0 is fulfilled, then the eigenvalues
ξ1(µ), ξ2(µ), ..., ξm(µ) of problem (19) don’t coincide for the ”µ-process” and conse-
quently, all of them are simple.

Remark 1. From the above reasonings it is seen that for δ ∈ [δ0, π) the first
eigenvalue ξ1(µ) is also simple.

Note that if the condition r1/τ0 + d1 < d0 is not fulfilled, then we can choose
such µ ∈ (0, 1) that the inequality µ(r1/τ0 + d1) < d0 is valid. Then obviously, the
eigenvalues ξ1(µ), ξ2(µ), ..., ξm(µ) of problem (19) for µ ∈ (0, µ) are also simple.
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Now show that then eigenvalues ξ1(µ), ξ2(µ), ..., ξm(µ) of problem (19) remain
simple for µ0 ∈ (µ, 1] as well. Indeed, if it is not so, then there exist µ0 ∈ (µ, 1]
closest to µ, k ∈ {1, 2, ...,m− 1} and δ1 ∈ [0, π) such that ξk(µ0, δ1) = ξk+1(µ0, δ1).
Take rather small ε > 0 (ε < µ− µ0) and consider the eigenvalues ξk(µ0 − ε) and
ξk+1(µ0 − ε). Obviously, ξk(µ0 − ε) < ξk+1(µ0 − ε).

Let δ2 ∈ (0, π/2) be such that if δ1 ∈ (0, π) , then 0 < δ2 < δ1. By property 1
from [4] and relations (5) we have

ξk (µ0 − ε, δ1) < ξk+1 (µ0 − ε, δ2) < ξk+1 (µ0 − ε, δ1) , if δ1 = 0,

ξk (µ0 − ε, δ1) < ξk (µ0 − ε, δ2) < ξk+1 (µ0 − ε, δ1) , if δ1 ∈ (0, π).

Further, passing in the latter two inequalities to limit as ε → 0 and taking into
account ξk(µ0, δ1) = ξk+1 (µ0, δ1), we get

ξk+1 (µ0, δ2) = ξk+1 (µ0, δ1) for δ1 = 0,

ξk(µ0, δ1) = ξk(µ0, δ2) for δ ∈ (0, π),

that contradict relations (5).
By substituting the variable λ = ξ−d1, the system (18) goes into the equivalent

system (1), (2).
Consequently, the following theorem is valid.
Theorem 1. For the fixed α, β, γ the eigenvalues of problem (1), (2) for

δ ∈ [0, π) are real, simple and form an infinitely increasing sequence such that
{λk(δ)}∞k=1 , λ1(δ) < λ2(δ) < ... < λk(δ) < .... Furthermore, the eigenfunction

y
(δ)
k (x) corresponding to the eigenvalue λk(δ) for k ∈ N0 has exactly k − 1 simple

zeros in the interval (0, l), more exactly y
(δ)
k (x) ∈ Sk.
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