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Azer B. MUSTAFAYEV

THE ACTION OF LOCAL TEMPERATURE FIELD
ON RETARDATION OF CURVILINER CRACK

WITH REGARD TO PLASTIC DEFORMATIONS

Abstract

The influence of local temperature field on retardation of the growth of a
crack with end plastic zones is studied. We consider the case when the size of
the heated area is small compared with the crack’s length. The obtained formulas
enable to determine the crack opening at the foot of the plastic zone and analyze
the in fluence of the directed thermoelstic stress field.

Problem statement. Let’s consider a homogeneous isotropic body with the
end plastic zone crack. The body’s material is accepted as elastico- idealey- plas-
tic subjected to Tresk-Saint Venant’s plasticity condition In real materials because
of structural and technological factors the crack’s surfaces have unevennesses and
distortions. Consider an elastico-plastic failure mechanics problem on a crack with
end prefracture zones assuming that the crack’s contour has roughnesses (small de-
viations from the linear form). The crack in the plane is assument to be close to
the linear form allowing only small deviation of the crack’s line from the straight
line y = 0. The equation of the contour of the end zone crack is accepted in the
form y = f (x) . It is assumed that the crack satisfies the local symmetry condition.
The crack faces are free from external loads. For retardation of crack propagation,
on the way of its crack by means of heating of domain S by the thermal source to
temperature T0 the compressible stresses zone is created. It is accepted that the
thermoplastic characteristics of the material are temperature independent.

It is assumed that at time t = 0 the arbitrary area S on the way of the crack
propagation in the place instantly heats up to the constant temperature T = T0.

The remaining part of the plate at initial time has zero temperature. In the
case when the typical linear size of the area is small in comparison with the length
of the prefracture zone crack or with other typical linear size of the plate in the
plan, the effective asymptotic solution of the problem based on representation of
thin structure [1] of the crack’s end is possible.

Consider the vicinity of the crack’s end that is small compared with typical linear
size in the plan of the plate but is greater comparatively with typical size of the area
S and the typical size of the plastic area. Then the crack on the plane xOy is
represented by a semi- infinite through curvilinear cut along y = f(x),−∞ < x < 0,
free from external loads. Therewith, in the vicinity of the origin of coordinates
we’ll have a plastic area to be defined.The area S may have any (but finite) sizes
and configurations. The stress field typical for thin structure of the crack’s end is
realized at infinity. This field is assumed to be given and has the form

for z → ∞ Φ(z) =
KI − iKII

2
√
2πz

; Ω (z) =
KI − iKII

2
√
2πz

(z = x + iy = reiθ; r, θ are polar coordinates; Φ (z) ,Ω(z) are complex potentials
[2]).
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In the problem under consideration the stress intensity factors KI ,KII repre-
senting some functions of the form of plates, boundary conditions are the loading
parameters.They are determined from the “global” solution of the problem at no
thermal action.

The stated problem consists of determination of opening of the crack faces at
the foot of the plastic zone and limiting value of the external load causing the crack
growth at the action of the stress field induced by thermal source of .

The boundary conditions of the considered problem are of the form

σn − iτnt = 0 for y = f(x),−∞ < x < 0,

σn − iτnt = σs − iτ s for y = f(x), 0 ≤ x ≤ d,

where n, t are natural coordinates, σs is the yield point of the material in tension;
τ s is the yield point of the material in shear.

The solution method of the boundary value problem. Represent the
stress state in the plane with a crack in the from

σx = σx0 + σx1 , σy = σy0 + σy1 , τxy = τxy0 + τxy1 ,

where σx0 , σy0 , τxy0 is the solution of a thermolasticity problem for a crackless plane.
For finding the stresses σx0 , σy0 , τxy0 we solve the thermolasticity problem for

an entire plane. As first we determine the temperature distribution in the plane.
For that we solve the boundary value problem of heat- conductivity theory

∂T

∂t
= a∆T, T =

{
T0 (x, y ∈ S)

0 (x, y /∈ S)
for t = 0,

where ∆ is the Laplace operator; a is the heatconductivity coefficient of the plane’s
material.

Let for definiteness the area S heated with thermal source be a rectangle with
the sides 2x0 and , 2y0 ,and the center O1, of the rectangle S have the coordinates
(L, b) .

The stress distribution will have the form

T1 (x, y, t) =
T0

4

[
Erf

(
x− L+ x0

2
√
at

)
+ Erf

(
x0 + L− x

2
√
at

)]
×

×
[
Erf

(
y − b+ y0

2
√
at

)
+ Erf

(
y0 + b− y

2
√
at

)]
;

Erf (z) =
2√
π

z∫
0

exp
(
−u2

)
du

For determining the temperature field, for simpli fication of the problem, the
perturbed temperature field is not taken account because of the crack .

The stresses σx0 , σy0 , τxy0 are expressed by the thermoelastic potential of dis-
placements [3].

Consider some arbitrary realization of the rough (with small deviations from the
rectilinear form) surfaces of the crack faces.
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As the functions f (x) and f ′ (x) are small variables, the function f (x) may be
represented in the form

f (x) = εH (x) , −∞ < x < d,

where ε is a small parameter.
We look for the stresses σx0 , σy0 , τxy0 and displacements in the form of expansions

in small parameter

σx1=σ
(0)
x + εσ(1)

x + ..., σy1=σ
(0)
y + εσy + ..., τxy1=τ

(0)
xy + ετ (1)xy + ...

u = u0 + εu1 + ..., υ = υ0 + ευ1 + ...,

Expanding the expressions for the stress in the vicinity of y = 0 in series, we find
the stresses for y = f (x) .

Using the perturbations method, allowing for previous formulas we find boundary
conditions for y = 0,−∞ < x < d :
in a zero approximation

σ(0)
y = −σy0 , τ (0)xy = −τxy0 for y = 0, −∞ < x < 0 (1)

σ(0)
y = σs − σy0 , τ (0)xy = τ s − τxy0 for y = 0, 0 ≤ x ≤ d0

in a first approximation

σ(1)
y = N, τ (1)xy = T for y = 0, −∞ < x < d1 (2)

Here

N = 2τ (0)xy

dH

dx
−H

∂σ
(0)
y

∂y
, T =

(
σ(0)
x − σ(0)

y

) dH

dx
−H

∂τ
(0)
xy

∂y
(3)

σy0 = −µ (1 + ν)αT0

4
√
π

{
4
√
πA (x, y) +

4√
π

[
arctg

(
y − b+ y0
x− L+ x0

)
+

+arctg

(
y + b− y

x0 + L− x

)
+ arctg

(
y0 + b− y

x− L+ x0

)
+ arctg

(
y − b+ y0
x0 + L− x

)]
−

−
t∫
0

1

τ
√
aτ

[
(x− L+ x0) exp

(
−(x− L+ x0)

2

4aτ

)
+

+(x0 + L− x) exp

(
−(x0 + L− x)2

4aτ

)
×

×
[
Erf

(
y − b+ y0
2
√
aτ

)
+ Erf

(
y0 + b− y

2
√
aτ

)]
dτ

}
;

τxy0 = −µ (1 + ν)αT0

2π

{
ln

(x− x0 − L)2 + (y − b+ y0)
2

(x− x0 − L)2 + (y − y0 − b)2
+

+ ln
(x− L+ x0)

2 + (y − y0 − b)2

(x− L+ x0)
2 + (y − b+ y0)

2 −
t∫
0

1

τ

[
exp

(
−(x− L+ x0)

2

4aτ

)
−
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− exp

(
−(x0 + L− x)2

4aτ

)][
exp

(
−(y − b+ y0)

2

4aτ

)
−

− exp

(
−(y0 + b− y)2

4aτ

)]
dτ

}
,

where A (x, y) =
{1 (x,y∈S)
0 (x,y /∈S)

µ is the shear modulus of the plate’s material; ν is the Poisson ratio; α is the
coefficient of linear temperature extension of the plate’s material. Here it is taken
into account that d = d+ εd1 + ...

For solving the boundary value problems at each approximation we use the
Kolosov-Muskheleshvili complex potentials. As the stresses in the elastic ideally
plastic body are restricted, the solution of boundary value problems (1)-(2) should
be sought in the class of everywhere bounded functions.

The solution of boundary value problem (1) is written [2] in the form

Φ0 (z) = Ω0 (z) =

√
z − d0

2πi

d0∫
−∞

f0 (x) dx√
x− d0 (x− z)

+

+
1

2
(σs − iτ s)

(
1− 1

πi
ln

i
√
d0 −

√
z − d0

i
√
d0 +

√
z − d0

)
(4)

where f0 (x = − (σy0) (x, 0)− iτxy0 (x, 0))
Here the functions

√
z − d0 is analytic exterior to the semi-infinite section for

y = 0, x < d0 and is positive on the continuation of the section for x > d0.
According to the condition on infinity, we find

− 1

πi

d0∫
−∞

f0 (x) dx√
x− d0

+
2 (σs − iτ s)

√
d0

π
=

KI −KII√
2π

(5)

Equation (5) is used to determine the unknown size d0 of the plastic deformations
zone in a zero approximation.

Using the obtained solution in a zero approximation of the elastico-plastic prob-
lem, calculate the displacements ϑ0−iu0 of the plastic area faces for y = 0, 0 ≤ x ≤ d0

ϑ0 − iu0 = ± 4

πE
{(σs − iτ s)

[
2
√

d0 (d0 − x) + x ln

√
d0 −

√
d0 − x√

d0 −+
√
d0 − x

]
+

+
√

d0 − x

d0∫
−∞

f0 (x) dx√
d0 − x

 (6)

At that the displacement ϑ0 − iu0 at the crack end (for y = 0, x = 0) becomes
equal

ϑ0 − iu0 = ± 2

πE

π (KI −KII)

4 (σs − iτ s)
+
√
d0

d0∫
−∞

f0 (x) dx√
d0 − x

 (7)
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After finding the solution in a zero approximation, we look for the solution in a
first approximation. We find the functions N andT from formula (3).

The solution of boundary value problem (2) is written in the form

Φ1 (z) = Ω1 (z) =

√
z − d1

2πi

d0∫
−∞

(N − iT ) dx√
x− d1 (x− z)

(8)

Therewith the following solvability condition of the boundary value problem
should be fulfilled

1

πi

d0∫
−∞

(N − iT ) dx√
x− d1

= 0 (10)

Condition (10) is used to determine the unknown parameter d1 using the obtained
solution in a first approximation of the stated elasticplastic problem, we find the
displacements ϑ1 − iu1 of the plastic area faces for y = 0, 0 ≤ x ≤ d1 :

ϑ1 − iu1 = ± 4

πE

√
x− d1

d0∫
−∞

(N − iT ) dx√
d1 − x

(11)

Therewith the displacement ϑ1− iu1 at the crack’s end at the foot of the plastic
zone (for y = 0, x = 0) becomes equal

ϑ0
1 − iu01 =

4
√
d1

πE

d0∫
−∞

(N − iT ) dx√
d1 − x

(12)

For the displacements at the crack end for y = 0, x = 0 we have

ϑ0 − iu0 = ϑ0
0 − iu00 + ε

(
ϑ0
1 − iu01

)
=
(
ϑ0
0 − εϑ0

1

)
− i
(
ϑ0
1 − εu01

)
(13)

As the crack propagation criterions we use the criterion of critical opening of the
crack faces

V (x0) =
√(

ϑ0
)
+ (u0) = δc (14)

where is the fracture toughness of the plane determined experimentally.

The obtained relations (14),(7),(12),(13) permit to calculate the influence of local
change of temperature near the crack end on the crack growth in an elastico-plastic
sheet structural element in any form of the area S. Recall that KI ,KII describe the
stress filed from the distances of the crack end that greater in comparison with the
sizes of the area S and the plastic zone.
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