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TO THEORY OF SOBAILITY OF FOURTH ORDER

OPERATOR - DIFFERENTIAL EQUATIONS

Abstract

In the paper, sufficient conditions providing regular solvability of a boundary
value problem containing an operator coefficient, for an elliptic type operator-
differential operator of fourth order are found. These coefficient are expressed
by the coefficient of the boundary value problem.

Let A be a positive-definite self-adjoint separable operator in separable Hilbert
space H, and Hγ be a scale of Hilbert spaces generated by the operator A i.e.
Hγ = D (Aγ) , (x, y)γ = (Aγx,Aγy) , x, y ∈ Hγ (γ ≥ 0) .For γ = 0, we assume that
H0 = H, (x, y)0 = (x, y) .

Denote by L2 (R+; H) a Hilbert space of functions f (t) determined in R+ =
(0,∞) almost everywhere , with the values in H , for which

‖f‖L2(R+;H) =
(∞∫

0

‖f (t)‖2
)1/2

< ∞.

Let
W 4

2 (R+; H) =
{

u : u(4) ∈ L2 (R+;H) , A4u ∈ L2 (R+;H)
}

be Hilbert space with the norm [1]

‖u‖W 4
2 (R+;H) =

(∥∥∥u(4)
∥∥∥

2

L2(R+;H)
+

∥∥A4u
∥∥2

L2(R+;H)

)1/2

Here and in the sequel , the derivatives are understood in the sense of distributions
theory. Denote by L (X, Y ) a space of linear bounded operators acting from the
space X to the space Y , and suppose that the operator S ∈ L(W 4

2 (R+; H) ,H5/2) .
Then from the theorem on traces it follows that the sub-space

W 4
2,S (R+; H) =

{
u : u ∈ W 4

2 (R+; H) , u (0) = 0, u′ (0) = Su
}

was well- defined.
Consider in H the boundary value problem

P (d/dt) u (t) = u(4) (t) + A4u (t) +
4∑

j=0

A4−ju
(j) (t) = f (t) , t ∈ R+, (1)

u (0) = 0, u′ (0) = Su, (2)
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where f (t) , u (t) ∈ H, for t ∈ R+ almost everywhere, and the operator coefficients
satisfy the conditions:

1) A is a positive-definite self –adjoint operator;
2)The operators Aj are linear, Bj = AjA

−j
(
j = 0, 4

)
are bounded in H;

3)The operators S ∈ L(W 4
2 (R+; H) ,H5/2), and ‖S‖W 4

2 (R+;H)→H5/2
= χ.

Definition 1. In for any f ∈ W 4
2 (R+;H) there exists the function (u)t ∈

W 4
2 (R+;H) that satisfies equation (1) almost everywhere in R+, boundary condi-

tions (2) in the sense of convergence

lim
t→+0

‖u (t)‖7/2 = 0, lim
t→+0

∥∥u′ (t)− Su
∥∥

5/2
= 0,

and it holds the estimation

‖u‖W 4
2 (R+;H) ≤ const ‖f‖L2(R+;H) ,

problem (1),(2) is said to be regularly solvable.
In the present paper, we’ll find sufficient conditions on the coefficients of bound-

ary value (1),(2) that provide regular solvability of problem (1),(2). Note that for
S = 0 this problem was studied in the paper [2]. When Su = T1u (0), where
T1 ∈ L

(
H7/2, H5/2

)
, the problem was investigated in [3] normal solvability of prob-

lem (1),(2) was studied in [4]. For operator-differential equations of second and third
order, such non-local problems were studied for example, in the papers [6,7].

Denote by

P0u = P0 (d/dt) u = u(4) + A4u, P1u =
4∑

j=0

A4−ju
(j),

Pu = P0u + P1u, u ∈ W 4
2,S (R+; H) .

It is obvious that subject to the conditions 1)-3), the operators P0, P1 and P are
linear bounded operators acting from W 4

2,S (R+;H) to L2 (R+;H) .
Note also that problem (1) (2) for Aj = 0 (j = 0, 4) was studied in [5] and the

following fact were proved.
Lemma 1[5]. Let ω1 = − 1√

2
(1 + i) , ω2 = − 1√

2
(1− i) . Then for x ∈ H7/2 it

holds the following equalties

∥∥A4eωitAx
∥∥

L2(R+;H)
=

1√
2
‖x‖7/2 , i = 1, 2 (3)

∥∥eω1tAx− eω2tAx
∥∥

W 4
2 (R+;H)

= 4
√

2 ‖x‖7/2 . (4)

Theorem 1[5]. Let conditions 1) and 3) be fulfilled, and χ < 4
√

2 .Then the
operator P0 realizes isomorphism between the spaces W 4

2,S (R+;H) and L2 (R+; H) .
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In this paper it was shown that the operator Q acting in H7/2 in the following
way

Qx =
i√
2
A−1S

(
eω1tAx− eω2tAx

)
(5)

is bounded also subject to the condition of theorem 1

‖Q‖H7/2→H7/2
≤ χ

4
√

2
= q < 1. (6)

From this theorem it follows
Corollary 1. Let conditions 1) be fulfilled. Then problem

P0 (d/dt) u (t) = u(4) (t) + A4u (t) = f (t) , (7)

u (0) = u′ (0) = 0 (8)

is regularly solvable.
Now using the results of the paper [8], prove the following
Lemma 2. Let ξ (t) be a regular solution of problem (7) (8), and

|‖ξ‖| =
(
‖ξ‖L2(R+;H) + 2

∥∥A2ξ′′
∥∥2

L2(R+;H)
+

∥∥A4ξ
∥∥2

L2(R+;H)

)1/2
.

Then it holds the following inequality
∥∥∥A4−jξ(j)

∥∥∥
L2(R+;H)

≤ cj |‖ξ‖| , j = 0, 4, (9)

where c0 = c4 = 1, c1 = 33/4

4 , c2 = 1
2 , c3 = 1

4√3
.

Proof. By the theorem on intermediate derivatives [1], the norms ‖ξ‖W 4
2 (R+:H)

and ‖|ξ|‖ are equivalent. Then by integration by parts we see that for ξ (t) it holds
the equality

‖P0 (d/dt) ξ‖L2(R+;H) =
∥∥∥ξ(4) + A4ξ

∥∥∥
L2(R+;H)

=

=
∥∥∥ξ(4)

∥∥∥
2

L2(R+;H)
+

∥∥A4ξ
∥∥2

L2(R+;H)
+ 2 Re

(
ξ(4), A4ξ

)
L2(R+;H)

=

=
∥∥∥ξ(4)

∥∥∥
2

L2(R+;H)
+ 2

∥∥A2ξ′′
∥∥2

L2(R+;H)
+

∥∥A4ξ
∥∥2

L2(R+;H)
= |‖ξ‖|2 . (10)

Here we used that ξ (0) = ξ′ (0) = 0.
From equality (10) it follows that inequality (9) is valid for j = 0 and j = 4.

Following [8], for proving inequality (9), for j = 1, j = 2 and j = 3 we consider the
polynomial bundles of operators

Pj (λ; β; A) =
(
λ8E + 2λ4A4 + A4

)− β (iλ)2j A8−2j , j = 1, 2, 3.

The operator bundles Pj (λ; β) for β ∈ b0, d4,j) , where d4,j =
16

271/2
for j = 1,

j = 3 and d4,j = 4 for j = 2 are represented in the form

Pj (λ; β; A) = φj (λ; β;A) · φj (−λ; β; A)− β (iλ)2j A8−2j , j = 1, 2, 3, (11)
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φj (λ; β; A) =
4∏

k=1

(λkE − ηk (β) A) = λ4E + A4 +
3∑

k=1

αk,j (β) λ4A4−k,

where Re ηk (β) < 0, αk (β) > 0. Then from (11) it follows that the coefficients
αkj (β) satisfy the conditions for j = 1

α2
11 − 2α21 = −β, α2

21 = 2α11α31, α2
31 = 2α21; (12)

for j = 2
α2

12 = 2α22, α2
22 − 2α12 = −β, α2

32 = 2α22; (13)

for j = 3
α2

13 = 2α23, α2
23 = 2α13α33, α2

33 − 2α23 = −β. (14)

From the results of [8] it follows that for finding the exact values of the number
cj in the inequality (9),it is necessary to solve the system of equations (13) –(14)
together with the equation

det

(
α3jα2j − α1j α2j

α2j α3j

)
= 0.

If this system has no solution from the interval (0, d4,j) , then cj = d
−1/2
4,j , and if the

system has no solution from the interval (0, d4,j) ,and β0,j is the least of these , then
cj = β

−1/2
0,j .

There fore j = 1 we get the following system of equations α2
31α21 − α11α31 =

α2
21, α2

11 − 2α21 = −β, α2
21 = 2α11α31, α2

31 = 2α21. Taking into account the fourth
equation in the first one, we get α2

11 − α11α31 = α2
21, or α2

21 = α11α31. Then from
the third equation it follows 2a11a31 = a11a31. Since a11a31 > 0, the system has no
solution, i.e.c1 = 33/4

4 .
For j = 2 we have the system of equalities

α2
31α22 − α12α32 = α2

22, α2
12 = 2α22, α2

22 − 2α12α32 = −β, α2
32 = 2α22.

Hence we have a32 = a12, α
2
22 = α12α32 = α2

12 = 2α22, i.e.α22 = 2. Then
β = 2 α2

12 − α2
22 = α2

22 = 4 /∈ (0, 4) , i.e. c2 = 1
2 .

For j = 3 we have

α2
33α23 − α13α33 = α2

23, α2
13 = 2α23, α2

23 = 2α13α33, , α2
33 − 2α23 = −β.

From the first equation, allowing for the fourth equation, it follows that

(2α23 − β)α23 − α2
23

2
= α2

23, i.e. α23 = 2β, then α13 = 2β1/2 , α33 = β3/2.

Then from the fourth equation it follows β2 = 3, i.e. β0,3 =
√

3, c3 = 1
4√3

. The
lemma is proved.
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Now prove the following
Theorem 2. Let conditions 1) and 2) be fulfilled, χ < 4

√
2. Then for any u ∈

W 4
2,S (R+; H) it holds the inequality

∥∥∥A4−ju(j)
∥∥∥

L2(R+;H)
≤ dj ‖P0u‖L2(R+;H) , j = 0, 4, (15)

where

d0 = d4 = 1 +
χ

4
√

2− χ
, d1 =

33/4

4
+

χ
4
√

2− χ
,

d2 =
1
2

+
√

3χ
4
√

2− χ
, d3 =

1
4
√

3
+

√
3χ

4
√

2− χ
.

Proof. Since P0u = P0(d/dt)ξ = f, then u ∈ W 4
2,S (R+; H) is represented in the

form

u (t) = ξ(t) + eω1tAx1 + eω2tAx2,

where ω1 = − 1√
2
(1 + i) , ω2 = − 1√

2
(1− i) , x1, x2 ∈ H7/2 are unknown vectors

to be defined. Obviously
(
ξ (0) = 0, ξ′ (0) = 0

)
, and u (0) = ξ (0) + x1 + x2 =

x1 + x2 and u′ (0) = ω1Ax1 + ω2Ax2 . Then from condition (2) it follows that x2 =
−x1 (ω1 − ω2) x1 = A−1S

(
eω1tAx1 − eω2tAx2

)
+A−1S (ξ (t)) . Consequently for x1

we get the equation (E −Q) x1 = ψ, where ψ = A−1S (ξ (u)) ∈ H7/2 . Then
x1 = (E + Q)−1 ψ, x2 = − (E + Q)−1 ψ .Obviously x1x2 ∈ H7/2 .Therefore u (t) ∈
W 4

2,S (R+ : H). Then from the representation u (t) it follows that

∥∥∥A4−ju(j)
∥∥∥

L2(R+;H)
≤

∥∥∥A4−jξ(j)
∥∥∥

L2(R+;H)
+

∥∥∥A4(ωj
1e

ω1tAx1−ωj
2e

ω2tAx1)
∥∥∥

L2(R+;H)
. (16)

On the other hand, from lemma 1
∥∥∥A4(ωj

1e
ω1tAx1 − ωj

2e
ω2tAx1)

∥∥∥
L2(R+;H)

=
∥∥A4eω1tAx1

∥∥2

L2(R+;H)
+

+
∥∥A4eω2tAx1

∥∥2

L2(R+;H)
− 2Reω2j

1

(
A4eω1tAx1, A

4eω2tAx1

)
L2(R+;H)

≤

≤
√

2 ‖x1‖2
7/2 − 2Reω2j

1

(
A4eω1tAx1, A

4eω2tAx1

)
L2(R+;H)

. (17)

Further, assuming A7/2x1 = y ∈ H and from the spectral expansion of the
operator A after simple calculations we get

−2Reω2j
1

(
A4eω1tAx1, A

4eω2tAx1

)
= −2Reω2j

1

∞∫

0

(
A1/2eω1tAy,A1/2eω2tAy

)
dt =

= −2Reω2j
1

(∞∫

0

(
Ae2ω1tAy, y

)
dt

)
= −2Reω2j

1

∞∫

0

(∞∫

µ0

µe2ω1tµ (dEµy, y) dt
)

=
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= −− 2Reω2j
1

∞∫

µ0

µ
(∞∫

0

e2ω1tµdt (dEµy, y)
)

= kj ‖x‖2
7/2 , (18)

where k0 = k1 = k4 = − 1√
2
, k2 = k3 = 1√

2
.

Then, taking into account (18) in (17), we get

∥∥∥A4
(
ωj

1e
ω1tAx− ωj

2e
ω2tAx

)∥∥∥
2

L2(R+;H)
≤

(√
2 + kj

)
‖x‖2

7/2 , j = 0, 4. (19)

Consequently, using inequality (19) lemma 2, allowing for

∥∥∥(E + Q)−1
∥∥∥ ≤ 1

1− q
, q =

χ√
2

< 1,

we get

∥∥∥A4−ju(j)
∥∥∥

L2(R+;H)
≤ cj ‖|ξ|‖+

(√
2 + kj

)1/2
‖x1‖7/2 ≤ cj ‖|ξ|‖+

+
(√

2 + kj

)1/2 ∥∥∥(E + Q)−1 ψ
∥∥∥

7/2
≤ cj ‖|ξ|‖+

(√
2 + kj

)1/2

1− q
‖ψ‖7/2 =

≤ cj ‖|ξ|‖+

(√
2 + kj

)1/2

1− q

∥∥A1S (ξ (t))
∥∥

7/2
≤

≤ cj ‖|ξ|‖+

(√
2 + kj

)1/2

1− q
χ ‖ψ‖W 4

2 (R+;H) ≤
(
cj +

χ
(√

2 + kj

)1/2 · 21/4

4
√

2− χ

)
‖|ξ|‖

= dj ‖|ξ|‖ = dj ‖P0(d/dt)ξ‖L2(R+;H) = dj ‖P0u‖L2(R+;H) .

The theorem is proved.
Now prove the main theorem.
Theorem 3. Let conditions 1) -3), χ < 4

√
2 be fulfilled, and it hold the inequality

d =
4∑

j=0

dj ‖B4−j‖ < 1,

where the numbers dj are determined from theorem 2. Then problem (1),(2) is
regularly solvable.

Proof. Write problem in(1),(2) the form of the equation Pu = P0u + P1u = f,

where f ∈ L2 (R+; H) , u ∈ W 4
2,S (R+; H). Since P−1

0 exists and is bounded (theorem
1), then after substitution of ω = P0u we get the equation ω + P1P

−1
0 ω = f in

L2 (R+; H). Then allowing for theorem 2 we get

∥∥P1P
−1
0 ω

∥∥
L2(R+;H)

= ‖P1u‖L2(R+;H) ≤
4∑

j=0

∥∥∥A4−ju
(j)

∥∥∥
L2(R+;H)

≤
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≤
4∑

j=0

‖B4−j‖
∥∥∥A4−ju(j)

∥∥∥
L2(R+;H)

≤



4∑

j=0

dj ‖B4−j‖

 ‖P0u‖L2(R+;H) =

= d ‖P0u‖L2(R+;H) = d ‖ω‖L2(R+;H) .

According to the theorem condition d < 1, therefore ω =
(
E + P1P

−1
0

)
f and

u = P−1
0

(
E + P1P

−1
0

)−1
f ‖u‖W 4

2 (R+;H) ≤ const ‖f‖L2(R+;H). The theorem is
proved.
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