Veli M. KURBANOV, Yasemen I. HUSEYNOVA

ON CONVERGENCE OF SPECTRAL EXPANSION OF ABSOLUTELY CONTINUOUS VECTOR-FUNCTION IN EIGEN VECTOR-FUNCTIONS OF FOURTH ORDER DIFFERENTIAL OPERATOR

Abstract

In the paper, a fourth order ordinary differential operator with matrix coefficients is considered, absolute and uniform convergence of orthogonal expansion of an absolutely continuous vector-function in eigen vector-functions of the given operator is studied, and the rate of uniform convergence of this expansion is established.

Consider on the interval G = (0,1) the operator

$$L\psi = \psi^{(4)} + U_2(x) \psi^{(2)} + U_3(x) \psi^{(1)} + U_4(x) \psi$$

with matrix coefficients $U_{\ell}(x) = (u_{\ell ij}(x))_{i,j=1}^{m}, \ \ell = \overline{2;4}$, where $u_{\ell ij}(x) \in L_{1}(G)$ are real functions $u_{\ell ij}(x) = u_{\ell ji}(x)$.

Denote by D(G) the class of m-component vector-functions absolutely continuous together with own derivatives to the third order inclusively on the closed interval $\overline{G} = [0, 1] \left(D \left(G \right) = W_{1,m}^4 \left(G \right) \right).$

Under the eigen vector-function of the operator L responding to the eigen value λ we'll understand any vector-function $\psi(x) = (\psi_1(x), \psi_2(x), ..., \psi_m(x))^T \in D(G)$ identically not equal to zero and satisfying almost everywhere in G the equation (see [1]

$$L\psi + \lambda\psi = 0.$$

Let $L_p^m(G)$, $p \ge 1$, be the space of m-component vector-functions $f(x) = (f_1(x), f_2(x), ..., f_m(x))^T$ with the norm

$$||f||_{p,m} = \left\{ \int_{G} |f(x)|^{p} dx \right\}^{1/p} = \left\{ \int_{G} \left(\sum_{i=1}^{m} |f_{i}(x)|^{2} \right)^{p/2} dx \right\}^{1/p}.$$

Suppose that $\left\{ \psi_{k}\left(x\right) \right\} _{k=1}^{\infty}$ is a complete, orthornomalized system in $L_{2}^{m}\left(G\right)$ consisting of eigen-functions of the operator L. Denote by $\{\lambda_k\}_{k=1}^{\infty}$, $\lambda_k \leq 0$ the appropriate system of eigen values.

Denoting $\mu_k = \sqrt[4]{-\lambda_k}$ introduce into consideration the partial sum of the orthogonal expansion of the vector-function $f(x) \in W_{1,m}^1(G)$ in the system $\{\psi_k(x)\}_{k=1}^{\infty}$

$$\sigma_{\nu}(x, f) = \sum_{\mu_{k} \le \nu} f_{k} \psi_{k}(x), \quad \nu > 0,$$

where

$$f_k = (f, \psi_k) = \int_0^1 \langle f(x), \psi_k(x) \rangle dx = \int_0^1 \sum_{j=1}^m f_j(x) \psi_{kj}(x) dx,$$

 $84 \\ \hline [V.M.Kurbanov, Ya.I.Huseynova]$

$$\psi(x) = (\psi_{k1}(x), \psi_{k2}(x), ..., \psi_{km}(x))^{T}.$$

In the paper the following theorem is proved.

Theorem. Let the vector-function $f(x) \in W_{1,m}^1(G)$, the system $\{\psi_k(x)\}_{k=1}^{\infty}$ be uniformly bounded, and the following conditions be fulfilled

$$\left| \left\langle f(x), \psi_k^{(3)}(x) \right\rangle \right|_0^1 \le C_1(f) \,\mu_k^{\alpha}, \quad 0 \le \alpha < 3, \quad \mu_k \ge 4\pi; \tag{1}$$

$$\sum_{n=2}^{\infty} n^{-1} \omega_{1,m} \left(f', n^{-1} \right) < \infty. \tag{2}$$

Then the expansion of the vector-function $f\left(x\right)$ in the system $\left\{\psi_{k}\left(x\right)\right\}_{k=1}^{\infty}$ converges absolutely and uniformly on $\overline{G}=[0,1]$, and it is valid the estimation

$$\sup_{x \in \overline{G}} \left| \sigma_{\nu} \left(x, f \right) - f \left(x \right) \right| \le const \left\{ C_{1} \left(f \right) \nu^{\alpha - 3} + \sum_{n = \left[\nu \right]}^{\infty} \omega_{1, m} \left(f', n^{-1} \right) n^{-1} + \right.$$

+
$$\left(\|f\|_{\infty,m} + \|f'\|_{1,m} \right) \sum_{r=2}^{4} \nu^{1-r} \|\|U_r\|\|_1 + \nu^{-1} \|f'\|_{1,m}$$
, $\nu \ge 2$, (3)

where $\omega_{1,m}\left(g,\delta\right)$ is an integral modulus of continuity of the vector-function $g\left(x\right)=$ $(g_1(x), g_2(x), ..., g_m(x))^T \in L_1^m(G); \|\|U_r\|\|_1 = \sum_{i,j=1}^m \|U_{rij}\|, r = \overline{2,4}; const$ is

Note that such theorems for a second order operator were proved in [2]-[4].

For proving the theorem we estimate the Fourier coefficient f_k of the vectorfunction $f \in W_{1,m}^1(G)$.

Lemma. For the Fourier coefficients f_k of the vector-function $f(x) \in W^1_{1,m}(G)$ satisfying condition (1) the estimation $(\mu_k \ge 4\pi)$

$$|f_{k}| \leq const \left\{ C_{1}(f) \mu_{k}^{\alpha-4} + \frac{\omega_{1,m} \left(f', \mu_{k}^{-1} \right)}{\mu_{k}} + \frac{\|f'\|_{1,m}}{\mu_{r}^{2}} + \frac{\|f\|_{\infty,m} + \|f'\|_{1,m}}{\mu_{r}^{2}} \sum_{k=1}^{4} \mu_{k}^{2-r} \|\|U_{r}\|\|_{1} \right\}$$

$$(4)$$

independent of f(x).

Proof of the lemma. For the eigen vector-function $\psi_k(t)$ the following formula is valid (see [5], [6])

$$\mu_k^{-\ell} \psi_k^{(\ell)}(t) =$$

$$= \sum_{j=1}^3 X_{kj}(0) (-i\omega_j)^{\ell} \exp(-i\omega_j \mu_k t) + (-i\omega_4)^{\ell} B_{k4}(0) \exp(i\omega_4 \mu_k (1-t)) +$$

$$+ \sum_{j=1}^3 (-1)^{\ell} \omega_j^{\ell+1} \int_0^t M(\xi, \psi_k) \exp(i\omega_j \mu_k (\xi - t)) d\xi -$$

$$-(-i)^{\ell} \omega^{\ell+1} \int_{t}^{1} M(\xi, \psi_k) \exp(i\omega_4 \mu_k (\xi - t)) d\xi, \qquad (5)$$

where

$$\omega_{1} = -\omega_{2} = -1, \quad \omega_{4} = -\omega_{3} = i, \quad \ell = \overline{0,3}, \quad \mu_{k} \neq 0;$$

$$X_{kj}(x) = \frac{1}{4} \sum_{s=0}^{3} \omega_{j}^{s+1} (-i\mu_{k})^{s-3} \psi_{k}^{(3-s)}(x);$$

$$B_{k4}(x) = \exp(i\omega_{4}\mu_{k} (1-x)) \times$$

$$\times \left\{ X_{k4}(0) + \omega_{4} \int_{x}^{1} M(\xi, \psi_{k}) \exp(i\omega_{j}\mu_{k} (\xi - x)) d\xi \right\};$$

$$M(\xi, \psi_{k}) = \frac{1}{4\mu_{k}^{3}} \sum_{r=2}^{4} U_{r}(\xi) \psi_{k}^{(4-r)}(\xi).$$

With regard to definition of the eigen function $\psi_{k}\left(x\right)$ calculate the Fourier coefficients f_k for $\mu_k \geq 1$:

$$f_{k} = (f, \psi_{k}) = \frac{1}{\mu_{k}^{4}} (f, L\psi_{k}) = \frac{1}{\mu_{k}^{4}} \left(f, U_{2}\psi_{k}^{(2)} + U_{3}\psi_{k}^{(1)} + U_{4}\psi_{k} \right) + \frac{1}{\mu_{k}^{4}} \left(f, \psi_{k}^{(4)} \right) =$$

$$= \frac{1}{\mu_{k}^{4}} \left\langle f, \psi_{k}^{(3)} \right\rangle \Big|_{0}^{1} - \frac{1}{\mu_{k}^{4}} \left(f', \psi_{k}^{(3)} \right) + \frac{1}{\mu_{k}^{4}} \left(f, U_{2}\psi_{k}^{(2)} \right) + \frac{1}{\mu_{k}^{4}} \left(f, U_{3}\psi_{k}^{(1)} \right) + \frac{1}{\mu_{k}^{4}} \left(f, U_{4}\psi_{k} \right). \tag{6}$$

Taking into account the estimations (see [7])

$$\left\| \psi_k^{(s)} \right\|_{\infty, m} \le const \left(1 + \mu_k \right)^{s + \frac{1}{p}} \left\| \psi_k \right\|_{p, m}, p \ge 1,$$
 (7)

of uniform boundedness of the system $\left\{ \psi_{k}\left(x\right) \right\} _{k=1}^{\infty},$ we find

$$\frac{1}{\mu_k^4} \left| \left(f, U_2 \psi_k^{(2)} \right) \right| \leq \frac{const}{\mu_k^4} \| f \|_{\infty, m} \| \| U_2 \| \|_1 \| \psi_k \|_{\infty, m} \mu_k^2 \leq \frac{const}{\mu_k^2} \| f \|_{\infty, m} \| \| U_2 \| \|_1; (7')$$

$$\frac{1}{\mu_k^4} \left| \left(f, U_3 \psi_k^{(1)} \right) \right| \leq \frac{const}{\mu_k^3} \| f \|_{\infty, m} \| \| U_3 \| \|_1;$$

$$\frac{1}{\mu_k^4} \left| \left(f, U_4 \psi_k \right) \right| \leq \frac{const}{\mu_k^4} \| f \|_{\infty, m} \| \| U_4 \| \|_1.$$

From condition (1)

$$\left| \frac{1}{\mu_k^4} \left| \left\langle f, \psi_k^{(3)} \right\rangle \right|_0^1 \right| \le C_1(f) \,\mu_4^{\alpha - 4}. \tag{8}$$

For estimating the second addend in the right side of equality (6), use formula (5) for $\ell = 3$

$$\frac{1}{\mu_k^4} \left(f', \psi_k^{(3)} \right) = \frac{1}{\mu_k} \sum_{i=1}^3 \left(f', X_{kj} \left(0 \right) \exp \left(-i\omega_j \mu_k t \right) \right) \left(-i\omega_j \right)^3 +$$

[V.M.Kurbanov, Ya.I.Huseynova

$$+\frac{1}{\mu_{k}^{4}} (-i\omega_{4})^{3} \left(f', B_{k4}(0) \exp\left(i\omega_{4}\mu_{k}(1-t)\right)\right) +$$

$$+\frac{1}{\mu_{k}^{2}} \sum_{j=1}^{3} (-1)^{3} \omega_{j}^{4} \left(f', \int_{0}^{t} M\left(\xi, \psi_{k}\right) \exp\left(i\omega_{j}\mu_{k}(\xi-t)\right) d\xi\right) +$$

$$+\frac{1}{\mu_{k}^{2}} i^{3} \omega_{4}^{4} \left(f', \int_{t}^{1} M\left(\xi, \psi_{k}\right)\right) \exp\left(i\omega_{4}\mu_{k}(\xi-t)\right) d\xi\right). \tag{9}$$

Estimate each term in the given equality. Passing to coordinates, we get

$$(f', X_{kj}(0) \exp(-i\omega_j \mu_k t)) = \sum_{\ell=1}^m \int_0^1 f_l'(t) X_{kj}^{\ell}(0) \exp(-i\omega_j \mu_k t) dt =$$

$$= \sum_{\ell=1}^m X_{kj}^{\ell}(0) \int_0^1 f_l'(t) \exp(-i\mu_k \omega_j t) dt, \quad j = \overline{1, 3}.$$

Here, taking into account estimation (7) for $p = \infty$, from uniform boundedness of the system $\{\psi_k(x)\}_{k=1}^{\infty}$ and estimation (see [5], [6])

$$\left| \int_{0}^{1} f_{\ell}'(t) \exp\left(-i\omega_{j}\mu_{k}t\right) dt \right| \leq const \left\{ \omega_{1}\left(f_{\ell}', \frac{1}{\mu_{k}}\right) + \frac{1}{\mu_{k}} \left\|f_{\ell}'\right\|_{1} \right\}, \quad \ell = \overline{1, m}$$

we find

$$(f', X_{kj}(0) \exp(-i\omega_j \mu_k t)) = const \left\{ \omega_{1,m} \left(f', \frac{1}{\mu_k} \right) + \frac{1}{\mu_k} \|f'\|_{1,m} \right\}.$$
 (10)

Now estimate the coefficients $B_{k4}(0)$. Having written formula (5) for $\ell = 0$, for $B_{k4}(0)$ we find.

$$|B_{k4}(0)| \le C \left\| \exp\left(i\omega_{4}\mu_{4}(1-\cdot)\right) \right\|_{\infty}^{-1} \times \left\{ \left\| \psi_{k} \right\|_{\infty,m} + \sum_{j=1}^{3} |X_{kj}(0)| + \sum_{j=1}^{3} \left\| \int_{0}^{\cdot} |M(\xi,\psi_{k})| \, d\xi \right\|_{\infty} + \left\| \int_{\cdot}^{1} |M(\xi,\psi_{k})| \, d\xi \right\|_{\infty} \right\}.$$

Taking into account

$$|M(\xi, \psi_{k})| \leq \left| \frac{1}{4\mu_{k}^{3}} \sum_{r=2}^{4} U_{r}(\xi) \psi_{k}^{(4-r)}(\xi) \right| \leq \frac{1}{4\mu_{k}^{3}} \sum_{r=2}^{4} \|U_{r}(\xi)\| \|\psi_{k}^{(4-r)}\|_{\infty, m} \leq \frac{\operatorname{const}}{\mu_{k}} \left[\sum_{r=2}^{4} \|U_{r}(\xi)\| \mu_{k}^{r-2} \right] \|\psi_{k}\|_{\infty, m} \leq \frac{\operatorname{const}}{\mu_{k}} \left[\sum_{r=2}^{4} \|U_{r}(\xi)\| \mu_{k}^{r-2} \right]; \tag{11}$$
$$|X_{kj}(0)| \leq \operatorname{const} \|\psi_{k}\|_{\infty, m} \leq \operatorname{const}, \quad j = \overline{1, 3},$$

we get

$$|B_{k4}(0)| \le const \|\psi_k\|_{\infty, m} \le const, \quad k \in \mathbb{N}.$$

Transactions of NAS of Azerbaijan $\overline{}$ [On convergence of spectral expansion of...]

Using the last estimation in the second addend of equality (9), we have

$$\left|\left(f',B_{k4}\left(0\right)\exp\left(i\omega_{4}\mu_{k}\left(1-t\right)\right)\right)\right| \leq \left|\sum_{\ell=0}^{m}\int_{0}^{1}f'_{l}\left(t\right)\exp\left(i\omega_{4}\mu_{k}\left(1-t\right)\right)dtB_{k4}^{\ell}\left(0\right)\right| \leq$$

$$\leq const \left\{ \omega_{1,m} \left(f', \frac{1}{\mu_k} \right) + \frac{1}{\mu_k} \left\| f' \right\|_{1,m} \right\}. \tag{12}$$

By virtue of (11), the third and fourth addends are estimated as follows

$$\left| \left(f', \int_{0}^{t} M\left(\xi, \psi_{k}\right) \exp\left(i\omega_{j}\mu_{k}\left(\xi - t\right)\right) d\xi \right) \right| \leq \frac{const}{\mu_{k}} \sum_{r=2}^{4} \left\| \left\| U_{r} \right\|_{1} \mu_{k}^{2-r} \left\| f' \right\|_{1,m},$$

$$\left| \left(f', \int_{t}^{1} M\left(\xi, \psi_{k}\right) \exp\left(i\omega_{4}\mu_{k}\left(\xi - t\right)\right) d\xi \right) \right| \leq \frac{const}{\mu_{k}} \sum_{s=2}^{4} \left\| \left\| U_{r} \right\|_{1} \mu_{k}^{2-r} \left\| f' \right\|_{1,m}.$$

$$(13)$$

By virtue of inequalities (10), (12)-(14), from equality (9) we find

$$\frac{1}{\mu_k^4} \left| \left(f', \psi_k^{(3)} \right) \right| \le$$

$$\leq \frac{const}{\mu_k} \left\{ \omega_{1,m} \left(f', \frac{1}{\mu_k} \right) + \frac{1}{\mu_k} \left\| f' \right\|_{1,m} + \frac{1}{\mu_k} \left\| f \right\|_{1,m} \sum_{r=2}^4 \left\| U_r \right\|_1 \mu_k^{2-r} \right\}. \tag{15}$$

Taking into account estimations (7'), (8) and (15), in equality (6) we get

$$|f_k| \le const \left\{ C_1(f) \mu_k^{\alpha - 4} + \frac{\omega_{1,m} \left(f', \frac{1}{\mu_k} \right)}{\mu_k} + \frac{\|f'\|_{1,m}}{\mu_k^2} + \frac{\|f\|_{\infty,m} + \|f'\|_{1,m}}{\mu_k^2} \sum_{r=2}^4 \mu_k^{2-r} \|\|U_r\|\|_1 \right\}.$$

The lemma is proved.

Proof of the theorem. Represent the series $\sum_{k=1}^{\infty} |f_k| |\psi_k(x)|$ in the form

$$\sum_{k=1}^{\infty} |f_k| |\psi_k(x)| = \sum_{0 \le \mu_k < 4\pi} |f_k| |\psi_k(x)| + \sum_{\mu \ge 4\pi} |f_k| |\psi_k(x)|.$$

[V.M.Kurbanov, Ya.I.Huseynova]

From the condition of "Sum of units" (see [7])

$$\sum_{\tau \le \mu_k \le \tau + 1} 1 \le const, \quad \forall \tau \ge 0 \tag{16}$$

and uniform boundedness of the system $\{\psi_k(x)\}_{k=1}^{\infty}$

$$\sum_{\tau \leq \mu_{k} < 4\pi} \left| f_{k} \right| \left| \psi_{k} \left(x \right) \right| \leq const \sum_{\tau \leq \mu_{k} < 4\pi} \left| \left(f, \psi_{k} \right) \right| \leq$$

$$\leq const \|f\|_{1,m} \sum_{\tau \leq \mu_k < 4\pi} 1 \leq const \|f\|_{1,m}$$
.

From the conditions of the theorem, condition (16) and statement of the lemma, we get

$$\begin{split} \sum_{\mu_k \geq 4\pi} |f_k| \, |\psi_k\left(x\right)| &\leq const \sum_{\mu_k \geq 4\pi} |f_k| \leq \left\{ C_1\left(f\right) \sum_{\mu_k \geq 4\pi}^{\infty} \mu_k^{\alpha-4} + \right. \\ &+ \sum_{\mu_k \geq 4\pi}^{\infty} \frac{\omega_{1,m}\left(f',\mu_k^{-1}\right)}{\mu_k} + \left\|f'\right\|_{1,m} \sum_{\mu_k \geq 4\pi}^{\infty} \mu_k^{-2} + \\ &+ \left(\|f\|_{\infty,m} + \|f'\|_{1,m} \right) \sum_{r=2}^{4} \|\|U_r\|\|_1 \left(\sum_{\mu_k \geq 4\pi}^{\infty} \mu_k^{-r} \right) \right\} \leq \\ &\leq const \left\{ C_1\left(f\right) \sum_{n=[4\pi]}^{\infty} \left(\sum_{n \leq \mu_k \leq n+1} \mu_k^{\alpha-4} \right) + \\ &+ \sum_{n=[4\pi]}^{\infty} \left(\sum_{n \leq \mu_k \leq n+1} \mu_k^{-1} \omega_{1,m} \left(f', \frac{1}{\mu_k} \right) \right) + \|f'\|_{1,m} \sum_{n=[4\pi]}^{\infty} \left(\sum_{n \leq \mu_k \leq n+1} \mu_k^{-2} \right) + \\ &+ \left(\|f\|_{\infty,m} + \|f'\|_{1,m} \right) \sum_{r=2}^{4} \|\|U_r\|\|_1 \sum_{n=[4\pi]}^{\infty} \left(\sum_{n \leq \mu_k \leq n+1} \mu_k^{-r} \right) \right\} \leq \\ &\leq const \left\{ C_1\left(f\right) \sum_{n=[4\pi]}^{\infty} n^{\alpha-4} \left(\sum_{n \leq \mu_k \leq n+1} 1 \right) + \\ &+ \sum_{n=[4\pi]}^{\infty} \frac{1}{n} \omega_{1,m} \left(f', \frac{1}{n} \right) \left(\sum_{n \leq \mu_k \leq n+1} 1 \right) + \|f'\|_{1,m} \sum_{n=[4\pi]}^{\infty} n^{-2} \left(\sum_{n \leq \mu_k \leq n+1} 1 \right) + \\ &+ \left(\|f\|_{\infty,m} + \|f'\|_{1,m} \right) \sum_{r=2}^{4} \|\|u_r\|\|_1 \sum_{n=[4\pi]}^{\infty} n^{-2} \left(\sum_{n \leq \mu_k \leq n+1} 1 \right) \right\} \leq \\ &\leq const \left\{ C_1\left(f\right) \left[4\pi \right]^{\alpha-3} + \sum_{n=[4\pi]}^{\infty} n^{-1} \omega_{1,m} \left(f', \frac{1}{n} \right) + \\ &\leq const \left\{ C_1\left(f\right) \left[4\pi \right]^{\alpha-3} + \sum_{n=[4\pi]}^{\infty} n^{-1} \omega_{1,m} \left(f', \frac{1}{n} \right) + \\ &\leq const \left\{ C_1\left(f\right) \left[4\pi \right]^{\alpha-3} + \sum_{n=[4\pi]}^{\infty} n^{-1} \omega_{1,m} \left(f', \frac{1}{n} \right) + \\ &\leq const \left\{ C_1\left(f\right) \left[4\pi \right]^{\alpha-3} + \sum_{n=[4\pi]}^{\infty} n^{-1} \omega_{1,m} \left(f', \frac{1}{n} \right) + \\ &\leq const \left\{ C_1\left(f\right) \left[4\pi \right]^{\alpha-3} + \sum_{n=[4\pi]}^{\infty} n^{-1} \omega_{1,m} \left(f', \frac{1}{n} \right) + \\ &\leq const \left\{ C_1\left(f\right) \left[4\pi \right]^{\alpha-3} + \sum_{n=[4\pi]}^{\infty} n^{-1} \omega_{1,m} \left(f', \frac{1}{n} \right) + \\ &\leq const \left\{ C_1\left(f\right) \left[4\pi \right]^{\alpha-3} + \sum_{n=[4\pi]}^{\infty} n^{-1} \omega_{1,m} \left(f', \frac{1}{n} \right) + \\ &\leq const \left\{ C_1\left(f\right) \left[4\pi \right]^{\alpha-3} + \sum_{n=[4\pi]}^{\infty} n^{-1} \omega_{1,m} \left(f', \frac{1}{n} \right) + \\ &\leq const \left\{ C_1\left(f\right) \left[4\pi \right]^{\alpha-3} + \sum_{n=[4\pi]}^{\infty} n^{-1} \omega_{1,m} \left(f', \frac{1}{n} \right) + \\ &\leq const \left\{ C_1\left(f\right) \left[4\pi \right]^{\alpha-3} + \sum_{n=[4\pi]}^{\infty} n^{-1} \omega_{1,m} \left(f', \frac{1}{n} \right) + \\ &\leq const \left\{ C_1\left(f\right) \left[4\pi \right]^{\alpha-3} + \sum_{n=[4\pi]}^{\infty} n^{-1} \omega_{1,m} \left(f', \frac{1}{n} \right) + \\ &\leq const \left\{ C_1\left(f\right) \left[4\pi \right]^{\alpha-3} + \sum_{n=[4\pi]}^{\infty} n^{-1} \omega_{1,m} \left(f', \frac{1}{n} \right) + \\ &\leq const \left\{$$

 $\frac{}{[On\ convergence\ of\ spectral\ expansion\ of...]}$

$$+ \|f'\|_{1,m} [4\pi]^{-1} + (\|f'\|_{1,m} + \|f\|_{\infty,m}) \sum_{r=2}^{4} \|\|U_r\|\|_{1} [4\pi]^{1-r}$$
 $< \infty.$

Thus, the expansion $\sum_{k}^{\infty} f_k \psi_k(x)$ of the function f(x) converges absolutely and uniformly on \overline{G} .

From the basicity of the system $\left\{\psi_{k}\left(x\right)\right\}_{k=1}^{\infty}$ in $L_{2\left(G\right)}^{m}$ this expansion converges uniformly to the function f(x). Consequently

$$f(x) = \sum_{k=1}^{\infty} f_k \psi_k(x), \quad x \in \overline{G}.$$
 (17)

Now, establish estimation (3). From equality (17) uniform boundedness of the system $\{\psi_k(x)\}_{k=1}^{\infty}$, conditions (16), (2) and the lemma

$$\begin{split} \sup_{x \in \overline{G}} \left| \sigma_{\nu} \left(x, f \right) - f \left(x \right) \right| &= \sup_{x \in \overline{G}} \left| \sum_{\mu_{k} \leq \nu} f_{k} \psi_{k} \left(x \right) - \sum_{k=1}^{\infty} f_{k} \psi_{k} \left(x \right) \right| = \\ &= \sup_{x \in \overline{G}} \left| \sum_{\mu_{k} > \nu} f_{k} \psi_{k} \left(x \right) \right| = \sum_{\mu_{k} \geq \nu} \left| f_{k} \right| \left| \psi_{k} \right|_{\infty, m} \leq C \sum_{\mu_{k} \geq \nu} \left| f_{k} \right| \leq C \sum_{n=[\nu]}^{\infty} \left(\sum_{n \leq \mu_{k} \leq n+1} \left| f_{k} \right| \right) \leq \\ &\leq C \sum_{n=[\nu]}^{\infty} \left(\sum_{n \leq \mu_{k} \leq n+1} \left\{ C_{1} \left(f \right) \mu_{k}^{\alpha-4} + \frac{\omega_{1, m} \left(f', \mu_{k}^{-1} \right)}{\mu_{k}} + \mu_{k}^{-2} \left\| f' \right\|_{1, m} + \right. \right. \\ & \left. + \left(\left\| f \right\|_{\infty, m} + \left\| f' \right\|_{1, m} \right) \sum_{r=2}^{4} \mu_{k}^{-r} \left\| \left\| U_{r} \right\| \right\|_{1} \right\} \right) \leq \\ &\leq const \left\{ C_{1} \left(f \right) \nu^{\alpha-3} + \sum_{n=[\nu]}^{\infty} n^{-1} \omega_{1, m} \left(f', n^{-1} \right) + \right. \\ & \left. + \nu^{-1} \left\| f' \right\|_{1, m} + \left(\left\| f \right\|_{\infty, m} + \left\| f' \right\|_{1, m} \right) \sum_{r=2}^{4} \mu^{1-r} \left\| \left\| U_{r} \right\| \right\|_{1} \right\} \right. \end{split}$$

The theorem is proved.

Corollary 1. If the system $\{\psi_k(x)\}_{k=1}^{\infty}$ is uniformly bounded, $f(x) \in W_{1,m}^1(G)$, f(0) = f(1) = 0 and $f'(x) \in H_{1,m}^{\alpha}(G)$, $0 < \alpha < 1$ ($H_{1,m}^{\alpha}(G)$ is the Nikolsky class of m component vector-functions), then

$$\sup_{x \in \overline{G}} |\sigma_{\nu}(x, f) - f(x)| \le const \ \nu^{-\alpha} \|f'\|_{1, m}^{\alpha},$$

where

$$\|g\|_{1,m}^{\alpha} = \|g\|_{1,m} + \sup_{\delta > 0} \frac{\omega_{1,m}(g,\delta)}{\delta^{\alpha}}.$$

Corollary 2. If the system $\{\psi_k(x)\}_{k=1}^{\infty}$ is uniformly bounded, $f(x) \in W_{1,m}^1(G)$, f(0) = f(1) = 0 and for $some \beta > 0$ it is fulfilled the estimation

$$\omega_{1,m}\left(f',\delta\right) = O\left(\ln^{-(1+\beta)}\frac{1}{\delta}\right), \quad \delta \to +0,$$

then

$$\sup_{x \in \overline{G}} |\sigma_{\nu}(x, f) - f(x)| = O\left(\ln^{-\beta} \nu\right), \quad \nu \to \infty.$$

References

- [1]. Il'in V.A. On unconditional basicity on a close interval of the system of eigen and adjoint functions of second order differential operator // DAN SSSR 1983, v. 273, No 5, pp. 1048-1053 (Russian).
- [2]. Lazetic N.L. On uniform convergence on closed intervals of spectral expansions and their derivatives for functions from $W_p^{(1)}//$ Mathematichki vestnik, 2004 (56), pp. 91-104.
- [3]. Kurbanov V.M., Safarov R.A. On uniform convergence of orthogonal expansions in eigenfunctions of Sturm-Liouville operator // Trans. of NAS of Azerbaijan, 2004, v. XXIV, No 1, pp. 161-168.
- [4]. Kurbanov V.M., Garayeva A.T. Absolute and uniform convergence of expansions in root vector-functions of Schrodinger operator with a matrix potential. Dokl. RAN, 2013, v. 450, No 3, pp. 268-270 (Russian).
- [5]. Kurbanov V.M. Equiconvergence of biorthogonal expansions in root functions of differential operators I // Diff. uravn. 1999, v. 35, No 12, pp. 1597–1609 (Russian).
- [6]. Kurbanov V.M. Equiconvergence of biorthogonal expansions in root functions of differential operators II // Diff. uravn. 2000, v. 36, No 3, pp. 319-335 (Russian).
- [7]. Kurbanov V.M. On Hansedorff-Young inequality for the system of root vector-functions of n-order differential operator // Diff. uravn. 1997, v. 33, No 3, pp. 356-357 (Russian).

Veli M. Kurbanov

Institute of Mathematics and Mechanics of NAS of Azerbaijan 9, B.Vahabzade str., AZ 1141, Baku, Azerbaijan

Yasemen I. Huseynova

Baku State University,

23, B. Vahabzade str., AZ 1148, Baku, Azerbaijan

Tel.: (99412) 539 47 20 (off.).

Received October 08, 2013; Revised December 20, 2013.