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ON CONVERGENCE OF SPECTRAL EXPANSION
OF ABSOLUTELY CONTINUOUS
VECTOR-FUNCTION IN EIGEN

VECTOR-FUNCTIONS OF FOURTH ORDER
DIFFERENTIAL OPERATOR

Abstract

In the paper, a fourth order ordinary differential operator with matriz co-
efficients is considered, absolute and uniform convergence of orthogonal expan-
sion of an absolutely continuous vector-function in eigen vector-functions of the
given operator is studied, and the rate of uniform convergence of this expansion
is established.

Consider on the interval G = (0, 1) the operator
Lp = Y + Uz () @ + Us () 9D + Us (2)

with matrix coefficients Uy (z) = (g (:1:))23.:1, 0 =2;4, where ug; (z) € Ly (G) are
real functions wug; () = wgj; ().

Denote by D (G) the class of m-component vector-functions absolutely continu-
ous together with own derivatives to the third order inclusively on the closed interval
G =10,1] (D (G) = Wf{m (G))

Under the eigen vector-function of the operator L responding to the eigen value
A we'll understand any vector-function ¢ (z) = (¢ (), ¥y (), ..., 1, (z))' € D (G)
identically not equal to zero and satisfying almost everywhere in G the equation (see
1))

Ly 4+ M =0.

Let L' (G), p > 1, be the space of m-component vector-functions f(z) =
(fi(@), fa(x), ey fim (I))T with the norm
1/p

m p/2
= x)|P dx = ()2 T
1 1pm = G/f( )" d /(;l |fi ()] ) d

G

1/p

Suppose that {1}, (z)},— is a complete, orthornomalized system in L% (G) con-
sisting of eigen-functions of the operator L. Denote by {Ax}r- 1, A < 0 the appro-
priate system of eigen values.

Denoting u;, = v/— g introduce into consideration the partial sum of the orthog-
onal expansion of the vector-function f (z) € Wllm (G) in the system {¢}, (z)} o,

O-V(m?f): Z fk¢k($)v v >0,

B <V

where

1 1 m
Fo = (f, ) = / (f (@) vy (2)) d = / S f; (@) by () d,
0 0
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Y (2) = (P (2) k2 (%) 5 ors Ypom ()7

In the paper the following theorem is proved.
Theorem. Let the vector-function f (z) € Wllm (G), the system {1}, (x)} 5, be
uniformly bounded, and the following conditions be fulfilled

(). u <m>>\;\ <C(Ppp. 0<a<3, > dm 1)
Zn_lwl,m (f’,n_l) < 00. (2)
n=2

Then the expansion of the vector-function f (z) in the system {1, (x)}re, con-
verges absolutely and uniformly on G = [0,1], and it is valid the estimation

sup o, (z, f) — f (x)| < const < Cy (f) a3 4 Z Wi,m (f’,n_l) nl4
z€G n=[v]

4
+(\fHoo,m+Hf'HLm)Zvl_’”HHUr\HﬁflHf’HLm},VZZ (3)
r=2

where w1 ,m (g,90) is an integral modulus of continuity of the vector-function g (x) =
m

(91 (@), 92 () oo g ()" € LT(@); WUy = D NUniglls 7 = 2.4; const s
ij=1

independent of f (x).

Note that such theorems for a second order operator were proved in [2]-[4].

For proving the theorem we estimate the Fourier coefficient f; of the vector-
function f € Wllm (G).

Lemma. For the Fourier coefficients fi of the vector-function f (x) € Wim (G)
satisfying condition (1) the estimation (u; > 47)

Wim (f,7 ,U'];l)
K

]fk|§const{01(f) a4 +

Hf’ HfHoom I1£115,
#k “k

wi " U |||1} (4)

is valid.
Proof of the lemma. For the eigen vector-function v, (¢) the following formula
is valid (see [5], [6])

ety () =

3
Z —iwj) )¢ exp (—iwjpgt) + (—iws)" Bra (0) exp (iwapy (1 — 1)) +

3 t
+30 (1) Wttt / M (€40 exp (iwpug (€ — £)) dé—
j:l 0
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1
i) Wt / M (€,4g) exp (iwapig (€ — 1)) de, (5)
t

where

By () = exp (iwapy, (1 — x)) X

1
X {Xm (0) +W4/M (&, ¥p) exp (iwjpuy (§ — x)) df} ;

4

M (&) = Zr Y.

=2
With regard to definition of the eigen function 1, (x) calculate the Fourier coef-
ficients fy for p;, > 1:
1
i

fo = (frn) = — (f, Liby) =
My

= (Fe?) L W) (50 g (5.0 Y (. 0w - 6)

o Mk k

(f, Uzwg) + U3¢l(€1) + U4wk) 4 :ﬁ (f, %24)) =

Taking into account the estimations (see [7])

(s) < st >
Ui, S const (L )™ % 9kl 2 1, (7)

of uniform boundedness of the system {¢, (z)},—,, we find

1 2 const const
| U2 ) < 5 W N2 1l 2 < 5 W I 5 €79
H, 1E
1 (1) const
m \(f, Ust )] < 55 e TN
1 const
— 1 U] < == 1 e T
H, i
From condition (1)
! N RE AT 8
| o) | = (®)

For estimating the second addend in the right side of equality (6), use formula
(5) for £ =3

3
Z £ Xpj (0) exp (—iwjpgt)) (—iw;)® +

1 1
%<f @ij >:UJ:1
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—i—'ul;,; (—iw4)3 (f/7 By (0) exp (iwapy, (1 — t))) +

1< |
LS Pt | £ / M (€, by exp (iw;pn, (€ — 1)) d€ | +
0

L

_,_il wi /M &) | exp (iwapy, (€ —t)dE). (9)

M

Estimate each term in the given equality. Passing to coordinates, we get

|
(f', Xk (0) exp (—iwjput)) Z/f Xk] ) exp (—iwjpuyt) dt =
=17

1
/f exp (—ipw;t)dt, j=1,3.
0

E:l

Here, taking into account estimation (7) for p
]

= oo, from uniform boundedness
of the system {v, (x)};-, and estimation (see [5], [6])

1
'/fé (t) exp (—iwjpt) dt| < const {wl <flf, 1) + L Hfé”l} , f=1m
4 M Hi
we find

(f', X (0) exp (—iuwpgt)) = const {wl,m <f', 1) + 7, m} ~(0)
Hi 273 ’

Now estimate the coefficients By (0). Having written formula (5) for ¢ = 0, for
By4 (0) we find.

|Bis (0)] < C'Jlexp (iwapy (1 — )| x
1

o + 3 1K (0 |+Z /|Mswk\d£ 4 /rM@,wk)ms

Jj=1 00 . 00

Taking into account

1 o \ 4 .
M (€,4)] < mzwsw“ (¢ o colul | <
k r=2 H =2
conat iuU O 2| llogm < i\w@)uu;-? .
Fok r=2 T F r=2

|Xk?] ( )| < const ||¢k|| < COTLSt, ] = 1a37

we get
|Bra (0)] < const [|Yl o < const, k€ N.
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Using the last estimation in the second addend of equality (9), we have

m L
‘(f” By (0) exp (iwapy, (1 — 1)) { Z / £l (t) exp (iwapy, (1 —t)) dtBi, (0)] <
0

/=0
} . (12)

o (750) 3
<constqwim | f,— )+
Hi H

By virtue of (11), the third and fourth addends are estimated as follows

IN

t
7 / M (€,9) exp (iw;puy, (€ — 1)) de
0

4
t -T
< ST 7 e (13)

1
7 / M (€,03) exp (iwapsy (6 — £)) dé | | <
t

4
const oI (LA TNTug (14)
r=2

By virtue of inequalities (10), (12)-(14), from equality (9) we find

L(r)| <

4
const 1 1 1
< W1,m (f'7)+ Pl =Wl DNl " 7 (15)
Lo (72 1y W 1005

K

Taking into account estimations (77), (8) and (15), in equality (6) we get

11
A G,
il < const § C1 (D ™ ——
k

Hf ||1m 1 oo + 1 lm o ,
Z 2 INTAN
Nk 'U’k

The lemma is proved.

o
Proof of the theorem. Represent the series Z | x| [k (2)] in the form
k=1

Yol @ = > Ualler @]+ D 1l ¢ ()]
k=1

0<py, <4m pu=>4m
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From the condition of “Sum of units” (see [7])

Z 1 <const, Y1 >0 (16)

T <T+1

and uniform boundedness of the system {1}, (z)},—,

Y 1l @) < const Y [(f)l <

Ty <47 T<py, <4m
< const | fll, S 1< const ],
T< g <4

From the conditions of the theorem, condition (16) and statement of the lemma,
we get

Z | fx| [y ()] < const Z 1fil < < C1(f) Z M2_4

o >4m g >4 w4

— wim (f
S AL

Wy 4T w4

4 [%S)
(o + 1) MDA | 32 w7 ) ¢ <

r=2 g >4

o0

< const C1 (f) Z Z ug—‘l +

n=[4n] \n<pp<n+1

o0 1 [e.e]
+ Z Z “lzlwl,m <f/7> ‘l‘Hf,HI,m Z Z ’UJI;Q +
n=[4x] \n<py<n+1 H n=[4r] \n<py<n+1
4 00
(1 oo+ 1) ML 3 | 22 | 7 <
r=2 n=[4r] \n<pp<n+1

< const { C1 (f) Z no—4 Z 1]+
n=[4n]

n<py, <nt1
=1 1
SR W (RN DY RY IV o) (I SIRI
n:Mwﬁl n n<p,<n+1 n=[4rx] n<p<n+1

(ufnoomﬂlfHlm)ZHHuruulZn S o<

=[4n] n<p,<n+1l

1
< const{ Cy (f 34 Zn w1m< 7>+
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4
1 s 477 (1T 1) S T [47@”} <.
r=2

o0
Thus, the expansion Z fri, (z) of the function f (z) converges absolutely and
k=1
uniformly on G.
From the basicity of the system {¢, (z)};-; in L}y this expansion converges

uniformly to the function f (z). Consequently,
f@)=> futy(x), z€G (17)
k=1

Now, establish estimation (3). From equality (17) uniform boundedness of the
system {1}, (z)}r—;, conditions (16), (2) and the lemma

sup oy (a, f) = f (2)] = sup | Y fithy (@) = Y ity (2)| =
k=1

el zeG e <v

=sup [ > fith ()] = D |fellWkloomn <C D IRI<C D | D0 Al <

2€C | >v pp>v pp>v n=[v] \n<pp<ntl

o) / —1
o B S Y
n=[v]

v n<p,<n+1

4
(U o+ 1) S " H||Ur|m1}> <
r=2

< const { C1 (f) O3 4 Z n_lem (f’, n_l) +

n=[v]

4
N N+ (o + 15 1) 3o HHUTHHI} .

r=2

The theorem is proved.

Corollary 1. If the system {1y (x)}32, is uniformly bounded, f (x) € Wi, (G),
f(0)=f(1)=0and f'(x) € HY,, (G), 0 <a <1 (H{,, (G) is the Nikolsky class
of m component vector-functions), then

sup |0, («, f) = f (x)] < const v || 7.
rzeG

where

w ,0
& = gl + suplml9:d),
’ ’ 6>0 0

lg
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Corollary 2. If the system {1y, (2)}7—; is uniformly bounded, f (z) € W}, (G),
f(0)=f(1) =0 and for somel > 0 it isfulfiled the estimation

wim (f,0) =0 <1n<1+ﬁ> ;) , 8 — +0,

then

sup |oy, (z, f) — f ()| = O (hfﬂ I/) , V — 00.
ze@
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