Aynur I. HASANOVA

APPROXIMATE SOLUTION OF AN INVERSE PROBLEM FOR A SEMILINEAR PARABOLIC EQUATION

Abstract

The goal of the paper is the approximate solution of the inverse problem on definition of the coefficient for the minor term of a semi-linear parabolic equation in the case of a problem with a nonlinear boundary condition. For approximate solution of the inverse problem under consideration, the method of sequential approximations is used. A theorem on convergence of sequential approximations to exact solution is proved.

Let \mathbb{R}^n be a real n - dimensional Euclidean space, $x = (x_1, ..., x_n)$ be an arbitrary point of a bounded domain $D \subset \mathbb{R}^n$ with rather smooth boundary ∂D , $\Omega = D \times$ $(0,T], S = \partial D \times [0,T], 0 < T$ be a fixed number.

The space $C^{l}(\cdot), C^{l+\alpha}(\cdot), C^{l,l/2}(\cdot), C^{l+\alpha,(l+\alpha)/2}(\cdot), l = 0, 1, 2, \alpha \in (0, 1)$ and the norms in these spaces were determined, for instance, in [1, p. 12-20] $||u||_{l} = ||u||_{C^{l}}$ $\|g(x,t,u)\|_{0} = \sup_{\Omega} |g(x,t,u(x,t))|, u_{t} = \frac{\partial u}{\partial t}, u_{x_{i}} = \frac{\partial u}{\partial x_{i}}, i = \overline{1,n}, \Delta = \sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}} \text{ is the}$

Laplace operator, $\frac{\partial u}{\partial \nu}$ is the internal conormal derivative.

We consider an inverse problem on definition of a pair of functions $\{c(x), u(x, t)\}$ from the conditions:

$$u_t - \Delta u + c(x)u = f(x, t, u), \quad (x, t) \in \Omega,$$
(1)

$$u(x,0) = \varphi(x), x \in \overline{D} = D \cup \partial D, \qquad (2)$$

$$\frac{\partial u}{\partial \nu} = \psi \left(x, t, u \right), \quad (x, t) \in S, \tag{3}$$

$$\int_{0}^{T} u(x,t) dt = h(x), \quad x \in \overline{D},$$
(4)

here $f(x,t,p), \varphi(x), \psi(x,t,p), h(x)$ are the given functions.

We can cite examples that the stated problem (1)-(4) is ill-posed in the sense of Hadamard. Similar problems were studied in [2-5] (see also references in these papers).

For the input data of problem (1)-(4) we make the following suppositions:

1⁰. The function f(x, t, p) is determined and is continuous in

 $A = \left\{ (x, t, p) \,|\, (x, t) \in \overline{\Omega}, \quad p \in \mathbb{R}^1 \right\};$

- for $m_1 > 0$ and $|p| < m_1$ the function f(x,t,p) is Holder continuous with respect, for x and t with the exponents α and $\alpha/2$, respectively, for $(x, t) \in \overline{\Omega}$;

- there exists a constant $m_2 > 0$ such that for all $p_1, p_2 \in \mathbb{R}^1$ and $(x, t) \in \overline{\Omega}$

$$|f(x,t,p_1) - f(x,t,p_2)| \le m_2 |p_1 - p_2|$$

[A.I.Hasanova]

2⁰. $\varphi(x) \in C^{2+\alpha}(\overline{D}), h(x) \in C^{2+\alpha}(\overline{D});$

 3^{0} . The function $\psi = \psi(x, t, p)$ satisfies the following conditions:

-the function $\psi(x,t,p)$ is determined and continuous in totality of variables in $B = \{(x,t,p) | (x,t) \in S, p \in \mathbb{R}^1\};$

- for $m_3 > 0$ and $|p| < m_3$ the function $\psi(x, t, p)$ is Holder discontinuous with respect to x and t with the exponents α and $\alpha/2$ respectively, for $(x, t) \in S$,

- there exists a constant $m_4 > 0$ such that for all $p_1, p_2 \in \mathbb{R}^1$ and $(x, t) \in S$

$$|\psi(x,t,p_1) - \psi(x,t,p_2)| \le m_4 |p_1 - p_2|.$$

Definition 1. The pair of functions $\{c(x), u(x,t)\}$ is called the solution of problem (1)-(4), if:

1) $c(x) \in C(\overline{D});$

2) $u(x,t) \in C^{2,1}(\Omega) \cap C^{1,0}(\overline{\Omega});$

3) for these functions the relations (1)-(4) are fulfilled, and the conditions (3) are determined as follows:

$$\frac{\partial u\left(x,t\right)}{\partial \nu\left(x,t\right)} = \lim_{\substack{y \to x \\ y \in \sigma}} \frac{\partial u\left(y,t\right)}{\partial \nu\left(x,t\right)},$$

where σ is any closed cone on the vertex x that is contained in $D \cup \{x\}$.

Determine the so called correctness set K_{α} :

$$K_{\alpha} = \left\{ (u,c) | u(x,t) \in C^{2+\alpha,1+\alpha/2} \left(\overline{\Omega}\right), \quad c(x) \in C^{\alpha} \left(\overline{D}\right), | u(x,t) |, \\ | u_{i}(x,t) |, \quad \left| u_{x_{i}x_{j}}(x,t) \right| \leq m_{5}, i, j = \overline{1,n}, \\ (x,t) \in \overline{\Omega}, \quad | c(x) | \leq m_{6}, x \in \overline{D} \right\}.$$

In the paper [4], it is proved that if the input data of problem (1)-(4) satisfy conditions 1^0 , 2^0 , 3^0 respectively, then the solution of problem (1)-(4) on the set K_{α} is unique and stable.

In conformity to problem (1)-(4), the method of sequential approximations consists of the following: let $\{c^{(s)}(x), u^{(s)}(x,t)\}$ be already found, and $c^{(s)}(x) \in C^{\alpha}(\overline{D}), u^{(s)}(x,t) \in C^{2+\alpha,1+\alpha/2}(\overline{\Omega}).$

Let's consider a problem on definition of the function $u^{(s+1)}(x,t)$ from the conditions:

$$u_t^{(s+1)} - \Delta u^{(s+1)} + c^{(s)}(x) u^{(s+1)} = f\left(x, t, u^{(s)}\right), (x, t) \in \Omega,$$
(5)

$$u_t^{(s+1)}(x,0) = \varphi(x), \quad x \in \overline{D},$$
(6)

$$\frac{\partial u^{(s+1)}(x,t)}{\partial \nu(x,t)} = \varphi\left(x,t,u^{(s)}\right), \quad (x,t) \in S.$$
(7)

If the input data of problem (5), (6), (7) satisfy conditions 1^0 , 2^0 , 3^0 respectively, this problem has a unique classic solution belonging to $C^{2+\alpha,1+\alpha/2}(\overline{\Omega})$. Further, by the functions $u^{(s+1)}(x,t)$ from the formula

$$c^{(s+1)}(x) = \left[\varphi(x) + \Delta h(x) + \int_{0}^{T} f\left(x, t, u^{(s+1)}(x, t)\right) dt - u^{(s+1)}(x, T)\right] (h(x))^{-1}, \quad (8)$$

52

 $c^{(s+1)}(x) \in C^{\alpha}(\overline{D})$, are determined and the functions $\{c^{(s+1)}(x), u^{(s+1)}(x,t)\}$ are used for conducting the next interation step.

Theorem. Let

1. conditions 1^0 , 2^0 , 3^0 be fulfilled;

2. the solution of problem (1)-(4) exist and belong to the set K_{α} .

Then the functions $\{c^{(s)}(x), u^{(s)}(x,t)\}$ obtained from (5), (6), (7), (8), uniformly converge to the solution of problem (1)-(4) with velocity of geometric progression.

Proof. Integrating equation (1) with respect to t within (0,T) for c(x) we get:

$$c(x) = \left[\varphi(x) + \Delta h(x) + \int_{0}^{T} f(x, t, u(x, t)) dt - u(x, T)\right] (h(x))^{-1}, x \in \overline{D}.$$
 (9)

Subtracting from relations of the system (1), (2), (3), (9) the appropriate relations of the system (5), (6), (7), (8) we get that the functions

$$z^{(s)}(x,t) = u(x,t) - u^{(s)}(x,t), \quad \lambda^{(s)}(x) = c(x) - c^{(s)(x)}$$

satisfy the conditions of the system:

$$z_t^{(s+1)} - \Delta z^{(s+1)} + c(x) \, z^{(s+1)} = -\lambda^{(s)}(x) \, u^{(s+1)} + f(x,t,u) - f\left(x,t,u^{(s)}\right), \quad (x,t) \in \Omega,$$
(10)

$$z^{(s+1)}(x,0) = 0, \quad x \in \overline{D}, \quad \frac{\partial z^{(s+1)}}{\partial \nu} = \psi(x,t,u) - \psi\left(x,t,u^{(s)}\right), \quad (x,t) \in S, \quad (11)$$
$$\lambda^{(s+1)}(x) = \left\{ \int_{0}^{T} \left[f\left(x,t,u\right) - f\left(x,t,u^{(s+1)}\right) \right] dt - z^{(s+1)}(x,T) \right\} \times (h(x))^{-1}, \quad x \in \overline{D}. \quad (12)$$

It is easy to check that if we choose $c^{(0)}(x) \in C^{\alpha}(\overline{D}), u^{(0)}(x,t) \in C^{2+\alpha,1+\alpha/2}(\Omega) \cap$ $C^{1+\alpha,(1+\alpha)/2}(\overline{\Omega})$, then from the assumption on the smoothness of input data and the theorem proved in [1, p. 364], it follows that for any $s = 1, 2, ..., c^{(s)}(x) \in C^{\alpha}(\overline{D})$, $u^{(s)}(x,t) \in C^{2+\alpha,1+\alpha/2}(\Omega) \cap C^{1+\alpha,(1+\alpha)/2}(\overline{\Omega})$. Furthermore, as it was made in [2], we can prove uniform (with respect to sup norm) boundedness of the sequences $\{c^{(s)}(x)\}, \{u^{(s)}(x,t)\}$. Therefore, under the supposition of the theorem, there exists a classical solution of the problem on determination of $z^{(s+1)}(x,t)$ from conditions (10), (11) and it may be represented in the form [6, p.182]

$$z^{(s+1)}\left(x,t\right) =$$

$$= \int_{0}^{t} \int_{D} \Gamma\left(x, t; \xi, \tau\right) \left[f\left(\xi, \tau, u\right) - f\left(\xi, \tau, u^{(s)}\right) - \lambda^{(s)}\left(\xi\right) u^{(s+1)} \right] d\xi d\tau + \int_{0}^{t} \int_{\partial D} \Gamma\left(x, t; \xi, \tau\right) \rho^{(s+1)}\left(\xi, \tau\right) d\xi_{0} d\tau,$$
(13)

54_____[A.I.Hasanova]

where $\Gamma(x,t;\xi,\tau)$ is the fundamental solution of the equation $z_t^{(s+1)} - \Delta z^{(s+1)} + \Delta z^{(s+1)}$ $c(x) z^{(s+1)} = 0, \ d\xi = d\xi_1 \dots d\xi_n, \ d\xi_0$ is the element of the surface $\partial D, \ \rho^{(s+1)}(x,t), \ d\xi_0 = d\xi_1 \dots d\xi_n$ $s = 0, 1, \dots$ is the bounded, continuous solution of the following integral equation [6, p. 182]: $o^{(s+1)}(x,t) =$

$$= 2 \int_{0}^{t} \int_{D} \frac{\Gamma(x,t;\xi,\tau)}{\partial\nu(x,t)} \left[f(\xi,\tau,u) - f(\xi,\tau,u^{(s)}) - \lambda^{(s)}(\xi) u^{(s+1)} \right] d\xi d\tau + + 2 \int_{0}^{t} \int_{D} \frac{\Gamma(x,t;\xi,\tau)}{\partial\nu(x,t)} \rho^{(s+1)}(\xi,\tau) d\xi_{0} d\tau - 2 \left[\psi(x,t,u) - \psi(x,t,u^{(s)}) \right].$$
(14)

Estimate the function $|z^{(s+1)}(x,t)|$. From (13) we have:

$$\left|z^{\left(s+1\right)}\left(x,t\right)\right| \leq$$

$$\leq \int_{0}^{t} \int_{D} |\Gamma(x,t;\xi,\tau)| \left| f(\xi,\tau,u) - f(\xi,\tau,u^{(s)}) - \lambda^{(s)}(\xi) u^{(s+1)} \right| d\xi d\tau + \int_{0}^{t} \int_{D} |\Gamma(x,t;\xi,\tau)| \left| \rho^{(s+1)}(\xi,\tau) \right| d\xi_{0} d\tau.$$
(15)

The following estimates are valid for the fundamental solution of $\Gamma(x, t; \xi, \tau)$ and its derivatives

$$\int_{R^n} |\Gamma(x,t;\xi,\tau)| d\xi \le m_7,$$

$$\int_{R^n} \left| D_x^l \Gamma(x,t;\xi,\tau) \right| d\xi \le m_8 \left(t-\tau\right)^{-\frac{l-\alpha}{2}}, l=1,2.$$
(16)

The integrand expression in the first addend of the right side of (15) is estimated with regard to the theorem assumptions:

$$\left| f(x,t,u) - f(x,t,u^{(s)}) - \lambda^{(s)}(x) u^{(s+1)} \right| \leq \\ \leq m_9 \left| u - u^{(s)} \right| + \left| \lambda^{(s)}(x) \right| \left| u^{(s+1)}(x,t) \right| \leq m_{10} \gamma^{(s)}, \tag{17}$$

where m_9 , $m_{10} > 0$ depend on the data of problem (1)-(4) and the set K_{α} , $\gamma^{(s)} =$ $||u - u^{(s)}||_0 + ||c - c^{(s)}||_0.$

Taking into account the Gauss-Ostrogradsky formula and estimation (16), for l = 1 we get

$$\int_{\partial D} |\Gamma(x,t;\xi,\tau)| \, d\xi_0 \le m_{11} \, (t-\tau)^{-\frac{1-\alpha}{2}} \,, \tag{18}$$

 $\frac{1}{[Approximate solution of an inverse problem]} 55$

 $|\rho^{(s+1)}(x,t)|$ is the integrand function in the second addend of the right side of (15) and is estimated from (13) subject to the theorem conditions, estimations (16), (17):

$$\begin{split} \left| \rho^{(s+1)}\left(x,t\right) \right| &\leq 2 \int_{0}^{t} \int_{D} \left| \frac{\partial \Gamma\left(x,t;\xi,\tau\right)}{\partial \nu\left(x,t\right)} \right| \times \\ &\times \left| f\left(\xi,\tau,u\right) - f\left(\xi,\tau,u^{(s)}\right) - \lambda^{(s)}\left(\xi\right)u^{(s+1)} \right| d\xi d\tau + \\ &+ 2 \int_{0}^{t} \int_{\partial D} \left| \frac{\partial \Gamma\left(x,t;\xi,\tau\right)}{\partial \nu\left(x,t\right)} \right| \left| \rho^{(s+1)}\left(\xi,\tau\right) \right| d\xi_{0} d\tau + 2 \left| \psi\left(x,t,u\right) - \psi\left(x,t,u^{(s)}\right) \right| \leq \\ &\leq 2m_{10}\gamma^{(s)}t^{\frac{1+\alpha}{2}} + m_{12} \left\| \rho^{(s+1)} \right\|_{0}t^{\frac{\alpha}{2}} + m_{13} \left\| z^{(s)} \right\|_{0}, \\ &\left| \rho^{(s+1)}\left(x,t\right) \right| \leq m_{14}\gamma^{(s)} + m_{12} \left\| \rho^{(s+1)} \right\|_{0}t^{\frac{\alpha}{2}}, \quad (x,t) \in \overline{\Omega}. \end{split}$$

or

The last inequality is fulfilled for all
$$(x,t) \in \overline{\Omega}$$
. Therefore it should be fulfilled for maximal values of the left side:

$$\left\|\rho^{(s+1)}\right\|_{0} \le m_{14}\gamma^{(s)} + m_{12}\left\|\rho^{(s+1)}\right\|_{0} t^{\frac{\alpha}{2}}.$$

Let $T_1 (0 < T_1 \le T)$ be so small that $m_{12}T_1^{\frac{\alpha}{2}} < 1$. Then from the last inequality we get

$$\left\|\rho^{(s+1)}\right\|_{0} \le m_{15}\gamma^{(s)}, \quad s = 0, 1, \dots$$
 (19)

where $m_{15} > 0$ depends on the data of problem (1)-(4) and the set K_{α} .

Taking into account estimations (16), inequalities (17), (18), (19), from (15) we get: $|(s+1)(\ldots t)| \leq \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} (s)t \pm m \sum_{n=1}^{\infty} (s)t^{\frac{1+\alpha}{2}}$

$$\left| z^{(s+1)}(x,t) \right| \le m_{16}\gamma^{(s)}t + m_{17}\gamma^{(s)}t^{\frac{1}{2}}$$
$$\left| z^{(s+1)}(x,t) \right| \le m_{16}\gamma^{(s)}t^{\frac{1+\alpha}{2}} \quad (x,t) \in \mathbb{C}$$

or

$$\left|z^{(s+1)}\left(x,t\right)\right| \le m_{18}\gamma^{(s)}t^{\frac{1+\alpha}{2}}, \quad (x,t)\in\overline{\Omega},$$

where $m_{18} > 0$ depends on the data of problem (1)-(4) and the set K_{α} .

The last inequality is fulfilled for all $(x,t) \in \overline{\Omega}$. Therefore it should be fulfilled also for maximal values of the left side:

$$\left\|z^{(s+1)}\right\|_{0} \le m_{18}\gamma^{(s)}t^{\frac{1+\alpha}{2}}, \quad s = 0, 1, \dots$$
 (20)

Now estimate the function $|\lambda^{(s)}(x)|$. From equality (12) we get

$$\left|\lambda^{(s)}(x)\right| \leq \left[\int_{0}^{T} \left|f(x,t,u) - f\left(x,t,u^{(s+1)}\right)\right| dt + \left|z^{(s+1)}(x,T)\right|\right] |h(x)|^{-1} dt$$

Taking the theorem conditions, inequality (20), from the last inequality we have:

$$\left|\lambda^{(s+1)}(x)\right| \le m_{19}\gamma^{(s)}t^{\frac{1+\alpha}{2}}, \ x \in \overline{D}.$$

A.I.Hasanova

The last inequality is fulfilled for all $x \in \overline{D}$. So, we can affirm that

$$\left\|\lambda^{(s+1)}\right\|_{0} \le m_{19}\gamma^{(s)}t^{\frac{1+\alpha}{2}},$$
(21)

where $m_{19} > 0$ depends on the data of problem (1)-(4) and the set K_{α} .

From inequality (20) and (21) we have:

$$\gamma^{(s+1)} \le m_{20} \gamma^{(s)} t^{\frac{1+\alpha}{2}},\tag{22}$$

Successively applying the inequality (22), we get

$$\gamma^{(s+1)} \le \sigma^s \gamma^{(0)}, \ \ \sigma = m_{20} t^{\frac{1+\alpha}{2}}.$$
 (23)

Let $T_2 (0 < T_2 \le T)$ be a number such that $m_{20}T_2^{\frac{1+\alpha}{2}} < 1$. Consequently, the sequence $\{\gamma^{(s)}\}$ is majorized for $(x,t) \in \overline{D} \times [0,T^*]$, $T^* = \min(T_1,T_2)$ with decreasing geometric progression, i.e. $\gamma^{(s)} \to 0$ as $s \to 0$ no slower than geometric progression.

Thus, we get that the functions $c^{(s)}(x)$, $u^{(s)}(x,t)$ obtained from (10), (11), (12) uniformly converge to the solution of problem (1), (2), (3), (4) as $s \to \infty$ with convergence rate no slower than the convergence rate of geometric progression.

The theorems proved.

References

[1]. Ladyzhenskaya O.A., Solonnikova V.A., Uraltseva N.I. Linear and quasilinear equations of parabolic type. M. Nauka, 1967, 736 p. (Russian).

[2]. Ivanchev N.M. Some inverse problems for heat conductivity equations with nonlocal boundary conditions. Ukr. Matem. Zhurnal, 1993, vol. 45, No 8, pp. 1066-1071 (Russian).

[3]. Akhundov A.Y. Some inverse problems for strong parabolic systems. // Ukraine math. Journal, 2006, v. 58, No 1, pp. 114-123.

[4]. Gasanova A.I. Determination of the coefficient of parabolic equation in the problem with nonlinear boundary condition. Trans. issue math. series of phys.-tech. and math. science, Baku, 2012, v. XXXII, No 1, pp. 39-44.

[5]. Akhundova A.Ya., Gasanova A.I. Determination of the coefficient in the right side of the system of reaction-diffusion type in the problem with a nonlinear boundary condition. Trans. issue math. series of phys.-tech. and math. science, Baku, 2013, v.XXXIII, No 1, pp. 3-8.

[6]. Friedman A. Partial differential equations of parabolic type. M. Mir. 1968 (Russian).

Aynur I. Hasanova

Institute of Mathematics and Mechanics of NAS of Azerbaijan 9, B.Vahabzade str., AZ 1141, Baku, Azerbaijan Tel.: (99412) 539 47 20 (off.).

Received October 07, 2013; Revised December 13, 2013.

 56_{-}