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APPROXIMATE SOLUTION OF AN INVERSE
PROBLEM FOR A SEMILINEAR PARABOLIC

EQUATION

Abstract

The goal of the paper is the approximate solution of the inverse problem
on definition of the coefficient for the minor term of a semi-linear parabolic
equation in the case of a problem with a nonlinear boundary condition. For
approximate solution of the inverse problem under consideration, the method
of sequential approximations is used. A theorem on convergence of sequential
approximations to exact solution is proved.

Let Rn be a real n - dimensional Euclidean space, x = (x1, ..., xn) be an arbitrary
point of a bounded domain D ⊂ Rn with rather smooth boundary ∂D, Ω = D ×
(0, T ], S = ∂D × [0, T ], 0 < T be a fixed number.

The space C l (·), C l+α (·), C l,l/2 (·), C l+α,(l+α)/2 (·), l = 0, 1, 2, α ∈ (0, 1) and the
norms in these spaces were determined, for instance, in [1, p. 12-20] ‖u‖l = ‖u‖Cl ,

‖g (x, t, u)‖0 = sup
Ω
|g (x, t, u (x, t))|, ut = ∂u

∂t , uxi = ∂u
∂xi

, i = 1, n, ∆ =
n∑

i=1

∂2u

∂x2
i

is the

Laplace operator,
∂u

∂ν
is the internal conormal derivative.

We consider an inverse problem on definition of a pair of functions {c (x) , u (x, t)}
from the conditions:

ut −∆u + c (x) u = f (x, t, u) , (x, t) ∈ Ω, (1)

u (x, 0) = ϕ (x) , x ∈ D = D ∪ ∂D, (2)

∂u

∂ν
= ψ (x, t, u) , (x, t) ∈ S, (3)

T∫

0

u (x, t) dt = h (x) , x ∈ D, (4)

here f (x, t, p), ϕ (x), ψ (x, t, p), h (x) are the given functions.
We can cite examples that the stated problem (1)-(4) is ill-posed in the sense

of Hadamard. Similar problems were studied in [2-5] (see also references in these
papers).

For the input data of problem (1)-(4) we make the following suppositions:
10. The function f (x, t, p) is determined and is continuous in
A =

{
(x, t, p) | (x, t) ∈ Ω, p ∈ R1

}
;

- for m1 > 0 and |p| < m1 the function f (x, t, p) is Holder continuous with
respect, for x and t with the exponents α and α/2, respectively, for (x, t) ∈ Ω;

- there exists a constant m2 > 0 such that for all p1, p2 ∈ R1 and (x, t) ∈ Ω

|f (x, t, p1)− f (x, t, p2)| ≤ m2 |p1 − p2|
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20. ϕ (x) ∈ C2+α
(
D

)
, h (x) ∈ C2+α

(
D

)
;

30. The function ψ = ψ (x, t, p) satisfies the following conditions:
-the function ψ (x, t, p) is determined and continuous in totality of variables in

B =
{
(x, t, p) | (x, t) ∈ S, p ∈ R1

}
;

- for m3 > 0 and |p| < m3 the function ψ (x, t, p) is Holder discontinuous with
respect to x and t with the exponents α and α/2 respectively, for (x, t) ∈ S,

- there exists a constant m4 > 0 such that for all p1, p2 ∈ R1 and (x, t) ∈ S

|ψ (x, t, p1)− ψ (x, t, p2)| ≤ m4 |p1 − p2| .
Definition 1. The pair of functions {c (x) , u (x, t)} is called the solution of

problem (1)-(4), if:
1) c (x) ∈ C

(
D

)
;

2) u (x, t) ∈ C2,1 (Ω) ∩ C1,0
(
Ω

)
;

3) for these functions the relations (1)-(4) are fulfilled, and the conditions (3)
are determined as follows:

∂u (x, t)
∂ν (x, t)

= lim
y→x
y∈σ

∂u (y, t)
∂ν (x, t)

,

where σ is any closed cone on the vertex x that is contained in D ∪ {x}.
Determine the so called correctness set Kα:

Kα =
{

(u, c) |u (x, t) ∈ C2+α,1+α/2
(
Ω

)
, c (x) ∈ Cα

(
D

)
, |u (x, t)| ,

|ui (x, t)| , ∣∣uxixj (x, t)
∣∣ ≤ m5, i, j = 1, n,

(x, t) ∈ Ω, |c (x)| ≤ m6, x ∈ D
}

.

In the paper [4], it is proved that if the input data of problem (1)-(4) satisfy
conditions 10, 20, 30 respectively, then the solution of problem (1)-(4) on the set Kα

is unique and stable.
In conformity to problem (1)-(4), the method of sequential approximations con-

sists of the following: let
{
c(s) (x) , u(s) (x, t)

}
be already found, and c(s) (x) ∈

Cα
(
D

)
, u(s) (x, t) ∈ C2+α,1+α/2

(
Ω

)
.

Let’s consider a problem on definition of the function u(s+1) (x, t) from the con-
ditions:

u
(s+1)
t −∆u(s+1) + c(s) (x) u(s+1) = f

(
x, t, u(s)

)
, (x, t) ∈ Ω, (5)

u
(s+1)
t (x, 0) = ϕ (x) , x ∈ D, (6)

∂u(s+1) (x, t)
∂ν (x, t)

= ϕ
(
x, t, u(s)

)
, (x, t) ∈ S. (7)

If the input data of problem (5), (6), (7) satisfy conditions 10, 20, 30 respectively,
this problem has a unique classic solution belonging to C2+α,1+α/2

(
Ω

)
. Further, by

the functions u(s+1) (x, t) from the formula

c(s+1) (x)=
[
ϕ (x)+∆h (x)+

T∫

0

f
(
x, t, u(s+1) (x, t)

)
dt−u(s+1) (x, T )

]
(h (x))−1 , (8)
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c(s+1) (x) ∈ Cα
(
D

)
, are determined and the functions

{
c(s+1) (x) , u(s+1) (x, t)

}
are

used for conducting the next interation step.
Theorem. Let
1. conditions 1 0, 2 0, 3 0 be fulfilled;
2. the solution of problem (1)-(4) exist and belong to the set Kα.
Then the functions

{
c(s) (x) , u(s) (x, t)

}
obtained from (5), (6), (7), (8), uni-

formly converge to the solution of problem (1)-(4) with velocity of geometric pro-
gression.

Proof. Integrating equation (1) with respect to t within (0, T ) for c (x) we get:

c (x) =


ϕ (x) + ∆h (x) +

T∫

0

f (x, t, u (x, t)) dt− u (x, T )


 (h (x))−1 , x ∈ D. (9)

Subtracting from relations of the system (1), (2), (3), (9) the appropriate rela-
tions of the system (5), (6), (7), (8) we get that the functions

z(s) (x, t) = u (x, t)− u(s) (x, t) , λ(s) (x) = c (x)− c(s)(x)

satisfy the conditions of the system:

z
(s+1)
t −∆z(s+1) + c (x) z(s+1) = −λ(s) (x) u(s+1)+

+f (x, t, u)− f
(
x, t, u(s)

)
, (x, t) ∈ Ω, (10)

z(s+1) (x, 0) = 0, x ∈ D,
∂z(s+1)

∂ν
= ψ (x, t, u)− ψ

(
x, t, u(s)

)
, (x, t) ∈ S, (11)

λ(s+1) (x) =





T∫

0

[
f (x, t, u)− f

(
x, t, u(s+1)

)]
dt− z(s+1) (x, T )



×

× (h (x))−1 , x ∈ D. (12)

It is easy to check that if we choose c(0) (x) ∈ Cα
(
D

)
, u(0) (x, t) ∈ C2+α,1+α/2 (Ω)∩

C1+α,(1+α)/2
(
Ω

)
, then from the assumption on the smoothness of input data and the

theorem proved in [1, p. 364], it follows that for any s = 1, 2, ... c(s) (x) ∈ Cα
(
D

)
,

u(s) (x, t) ∈ C2+α,1+α/2 (Ω) ∩ C1+α,(1+α)/2
(
Ω

)
. Furthermore, as it was made in

[2], we can prove uniform (with respect to sup norm) boundedness of the sequences{
c(s) (x)

}
,
{
u(s) (x, t)

}
. Therefore, under the supposition of the theorem, there exists

a classical solution of the problem on determination of z(s+1) (x, t) from conditions
(10), (11) and it may be represented in the form [6, p.182]

z(s+1) (x, t) =

=

t∫

0

∫

D

Γ (x, t; ξ, τ)
[
f (ξ, τ , u)− f

(
ξ, τ , u(s)

)
− λ(s) (ξ) u(s+1)

]
dξdτ+

+

t∫

0

∫

∂D

Γ (x, t; ξ, τ) ρ(s+1) (ξ, τ) dξ0dτ, (13)
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where Γ (x, t; ξ, τ) is the fundamental solution of the equation z
(s+1)
t − ∆z(s+1) +

c (x) z(s+1) = 0, dξ = dξ1...dξn, dξ0 is the element of the surface ∂D, ρ(s+1) (x, t),
s = 0, 1, ... is the bounded, continuous solution of the following integral equation [6,
p. 182]:

ρ(s+1) (x, t) =

= 2

t∫

0

∫

D

Γ (x, t; ξ, τ)
∂ν (x, t)

[
f (ξ, τ , u)− f

(
ξ, τ , u(s)

)
− λ(s) (ξ) u(s+1)

]
dξdτ+

+2

t∫

0

∫

D

Γ (x, t; ξ, τ)
∂ν (x, t)

ρ(s+1) (ξ, τ) dξ0dτ − 2
[
ψ (x, t, u)− ψ

(
x, t, u(s)

)]
. (14)

Estimate the function
∣∣z(s+1) (x, t)

∣∣. From (13) we have:

∣∣∣z(s+1) (x, t)
∣∣∣ ≤

≤
t∫

0

∫

D

|Γ (x, t; ξ, τ)|
∣∣∣f (ξ, τ , u)− f

(
ξ, τ , u(s)

)
− λ(s) (ξ) u(s+1)

∣∣∣ dξdτ+

+

t∫

0

∫

D

|Γ (x, t; ξ, τ)|
∣∣∣ρ(s+1) (ξ, τ)

∣∣∣ dξ0dτ. (15)

The following estimates are valid for the fundamental solution of Γ (x, t; ξ, τ) and
its derivatives ∫

Rn

|Γ (x, t; ξ, τ)| dξ ≤ m7,

∫

Rn

∣∣∣Dl
xΓ (x, t; ξ, τ)

∣∣∣ dξ ≤ m8 (t− τ)−
l−α
2 , l = 1, 2. (16)

The integrand expression in the first addend of the right side of (15) is estimated
with regard to the theorem assumptions:

∣∣∣f (x, t, u)− f
(
x, t, u(s)

)
− λ(s) (x) u(s+1)

∣∣∣ ≤

≤ m9

∣∣∣u− u(s)
∣∣∣ +

∣∣∣λ(s) (x)
∣∣∣
∣∣∣u(s+1) (x, t)

∣∣∣ ≤ m10γ
(s), (17)

where m9, m10 > 0 depend on the data of problem (1)-(4) and the set Kα, γ(s) =∥∥u− u(s)
∥∥

0
+

∥∥c− c(s)
∥∥

0
.

Taking into account the Gauss-Ostrogradsky formula and estimation (16), for
l = 1 we get ∫

∂D

|Γ (x, t; ξ, τ)| dξ0 ≤ m11 (t− τ)−
1−α

2 , (18)
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∣∣ρ(s+1) (x, t)
∣∣ is the integrand function in the second addend of the right side of (15)

and is estimated from (13) subject to the theorem conditions, estimations (16), (17):

∣∣∣ρ(s+1) (x, t)
∣∣∣ ≤ 2

t∫

0

∫

D

∣∣∣∣
∂Γ (x, t; ξ, τ)

∂ν (x, t)

∣∣∣∣×

×
∣∣∣f (ξ, τ , u)− f

(
ξ, τ , u(s)

)
− λ(s) (ξ) u(s+1)

∣∣∣ dξdτ+

+2

t∫

0

∫

∂D

∣∣∣∣
∂Γ (x, t; ξ, τ)

∂ν (x, t)

∣∣∣∣
∣∣∣ρ(s+1) (ξ, τ)

∣∣∣ dξ0dτ + 2
∣∣∣ψ (x, t, u)− ψ

(
x, t, u(s)

)∣∣∣ ≤

≤ 2m10γ
(s)t

1+α
2 + m12

∥∥∥ρ(s+1)
∥∥∥

0
t

α
2 + m13

∥∥∥z(s)
∥∥∥

0
,

or ∣∣∣ρ(s+1) (x, t)
∣∣∣ ≤ m14γ

(s) + m12

∥∥∥ρ(s+1)
∥∥∥

0
t

α
2 , (x, t) ∈ Ω.

The last inequality is fulfilled for all (x, t) ∈ Ω. Therefore it should be fulfilled for
maximal values of the left side:

∥∥∥ρ(s+1)
∥∥∥

0
≤ m14γ

(s) + m12

∥∥∥ρ(s+1)
∥∥∥

0
t

α
2 .

Let T1 (0 < T1 ≤ T ) be so small that m12T
α
2

1 < 1. Then from the last inequality
we get ∥∥∥ρ(s+1)

∥∥∥
0
≤ m15γ

(s), s = 0, 1, ... (19)

where m15 > 0 depends on the data of problem (1)-(4) and the set Kα.
Taking into account estimations (16), inequalities (17), (18), (19), from (15) we

get: ∣∣∣z(s+1) (x, t)
∣∣∣ ≤ m16γ

(s)t + m17γ
(s)t

1+α
2

or ∣∣∣z(s+1) (x, t)
∣∣∣ ≤ m18γ

(s)t
1+α

2 , (x, t) ∈ Ω,

where m18 > 0 depends on the data of problem (1)-(4) and the set Kα.
The last inequality is fulfilled for all (x, t) ∈ Ω. Therefore it should be fulfilled

also for maximal values of the left side:
∥∥∥z(s+1)

∥∥∥
0
≤ m18γ

(s)t
1+α

2 , s = 0, 1, ... (20)

Now estimate the function
∣∣∣λ(s) (x)

∣∣∣. From equality (12) we get

∣∣∣λ(s) (x)
∣∣∣ ≤




T∫

0

∣∣∣f (x, t, u)− f
(
x, t, u(s+1)

)∣∣∣ dt +
∣∣∣z(s+1) (x, T )

∣∣∣

 |h (x)|−1 .

Taking the theorem conditions, inequality (20), from the last inequality we have:
∣∣∣λ(s+1) (x)

∣∣∣ ≤ m19γ
(s)t

1+α
2 , x ∈ D.
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The last inequality is fulfilled for all x ∈ D. So, we can affirm that
∥∥∥λ(s+1)

∥∥∥
0
≤ m19γ

(s)t
1+α

2 , (21)

where m19 > 0 depends on the data of problem (1)-(4) and the set Kα.
From inequality (20) and (21) we have:

γ(s+1) ≤ m20γ
(s)t

1+α
2 , (22)

Successively applying the inequality (22), we get

γ(s+1) ≤ σsγ(0), σ = m20t
1+α

2 . (23)

Let T2 (0 < T2 ≤ T ) be a number such that m20T
1+α

2
2 < 1. Consequently, the se-

quence
{
γ(s)

}
is majorized for (x, t) ∈ D× [0, T ∗], T ∗ = min (T1, T2) with decreasing

geometric progression, i.e. γ(s) → 0 as s → 0 no slower than geometric progression.
Thus, we get that the functions c(s) (x), u(s) (x, t) obtained from (10), (11), (12)

uniformly converge to the solution of problem (1), (2), (3), (4) as s → ∞ with
convergence rate no slower than the convergence rate of geometric progression.

The theorems proved.
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