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COMMUTATORS OF VECTOR-VALUED
INTRINSIC SQUARE FUNCTIONS ON
VECTOR-VALUED GENERALIZED MORREY
SPACES

Abstract

In this paper, we will obtain the strong type and weak type estimates for
vector-valued analogues of intrinsic square functions in the generalized Morrey
spaces M®%(1%). We study the boundedness of intrinsic square functions in-
cluding the Lusin area integral, Littlewood-Paley g-function and gy -function
and their commutators on vector-valued generalized Morrey spaces M®#(12).
In all the cases the conditions for the boundedness are given either in terms of

Zygmund-type integral inequalities on p(x,r) without assuming any monotonic-

ity property of p(x,r) on r.

1. Introduction

It is well-known that the commutator is an important integral operator and it
plays a key role in harmonic analysis. In 1965, Calderon [2], [3] studied a kind
of commutators, appearing in Cauchy integral problems of Lip-line. Let K be a
Calderén-Zygmund singular integral operator and b € BMO(R"™). A well known
result of Coifman, Rochberg and Weiss [9] states that the commutator operator
b, K|f = K(bf) —bK f is bounded on LP(R") for 1 < p < 1. The commutator of
Calderon-Zygmund operators plays an important role in studying the regularity of
solutions of elliptic partial differential equations of second order (see, for example,
6-18], [51, [10], [11]).

The classical Morrey spaces were originally introduced by Morrey in [25] to study
the local behavior of solutions to second order elliptic partial differential equations.
For the properties and applications of classical Morrey spaces, we refer the readers
to [10], [11], [16], [25].

For x € R" and r > 0, let B(z,r) = {y € R” : |z —y| < r}, denote the open
ball centered at x of radius r. The intrinsic square functions were first introduced
by Wilson in [29], [30]. They are defined as follows. For 0 < a < 1, let C,, be
the family of functions ¢ : R™ — R such that ¢’s support is contained in B(0, 1),
Jgn #(x)dx =0, and for =, 2/ € R™, |¢(x) — ¢(a')| < |o — 2/|~.

For (y, t) € R and f € LYo%R) | set Aof(y,t) = sup {|f = ¢y(y)| : ¢ €
Ca}, where ¢,(y) = t*”qﬁ(%). Then we define the varying-aperture intrinsic square

(intrinsic Lusin) function of f by the formula

Gap(D)() = ( /] M(Aafw’t))?ffff )

35



6 Transactions of NAS of Azerbaijan
[V.S.Guliyev,K.R.Rahimova,M.N.Omarova/

where T'5(z) = {(y, t) € R : |z — y| < Bt}. Denote Go1(f) = Galf) -

This function is independent of any particular kernel, such as Poisson kernel. It
dominates pointwise the classical square function(Lusin area integral) and its real-
variable generalizations. Although the function G, g(f) is depend of kernels with
uniform compact support, there is pointwise relation between G, g(f) with different
B: Gap(f)(x) < BTHGo(f)(x) . We can see details in [29)].

The intrinsic Littlewood-Paley g-function and the intrinsic g} function are de-

gmﬂ@=:<AYAmﬂx¢»“f)é

utter=(f [ (rerimyy) o)

When we say that f maps into [2, we mean that f(a:) (f]) |» Where each f;

fined respectively by

is Lebesgue measurable and, for almost every z € R" ||f(z)];2 = ( Z |fj(x)|2)1/2.
j=1

Let f = (f1, fa2, ...) be a sequence of locally integrable functions on R"™. For any
x € R"™, Wilson [30] also defined the vector-valued intrinsic square functions of f by
|Gaf(z)|l;2 and proved the following result.

Theorem A. Let 1 <p<1and0 < a < 1. Then the operators G, and gf\va are
bounded from LP(1%) into itself for p > 1 and from L'(1%) to WL (1?).

Moreover, in [24], Lerner showed sharp L%, norm inequalities for the intrinsic
square functions in terms of the A, characteristic constant of w for all 1 < p < 1.
Also Huang and Liu [12] studied the boundedness of intrinsic square functions on
weighted Hardy spaces. Moreover, they characterized the weighted Hardy spaces by
intrinsic square functions. In [27] and [28], Wang and Liu obtained some weak type
estimates on weighted Hardy spaces. In [26], Wang considered intrinsic functions
and the commutators generated with BMO functions on weighted Morrey spaces.
Let b be a locally integrable function on R™ Setting

Aapf(y,t) = sup
$€Ca

Y

/Rn [b(l‘) - b(z)]qSt(y _ Z)f(Z)dz

the commutators are defined by

1

b,Galf :(// Mmhﬁﬁﬁy

st = ([t

[b: Xl f <//R"+1 <t+\m—y\)M( ol ))Qfgflt)z

and
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A function b € L{¢(R") is said to be in BMO(R") if

1
o= s oy Lo 10 oty <
where bp(, ) = m fB(x7r) b(y)dy.

In [26], Wang proved the following result.

Theorem B. Let 1 <p<1,0< a <1 andbe BMO(R"). Then the commu-
tator operators [b, Ga] and [b, g} ] are bounded from LP(1%) into itself.

In this paper, we will consider the boundedness of the operators G, gq, gi‘\’ o
and their commutators on vector-valued generalized Morrey spaces. Let o(z, ) be
a positive measurable function on R" x R,. For any f € LP (I2) , we denote by

loc
MP%(I?) the vector-valued generalized Morrey spaces, if

. 1S
[ fllapeqzy = sup (@, 7) 7 B, r)|"# I F ) el o)) <1
z€R™ r>0

There are many papers discussed the conditions on ¢(z, ) to obtain the boundedness
of operators on the generalized Morrey spaces. For example, in [15] (see, also [16]),

by Guliyev the following condition was imposed on the pair (¢}, ¢y) :

[ o0 <Cortan), )

where C' > 0 does not depend on x and r. Under the above condition, they obtained
the boundedness of Calderén-Zygmund singular integral operators from MP#1(R™)
to MP#2(R™). Also, in [1] and [18], Guliyev et. introduced a weaker condition: If
1 < p <1, there exits a constant C' > 0, such that, for any x € R™ and r > 0,

t““fgl dt < C gy(x,7). (2)
p

1 ess inf ¢ (z, s)s%
|

If the pair (pq, p5) satisfies condition (1), then (¢, ¢,) satisfied condition (2). But
the opposite is not true. We can see remark 4.7 in [18] for details.

In this paper, we will obtain the boundedness of the vector-valued intrinsic func-
tion, the intrinsic Littlewood-Paley g function, the intrinsic g} function and their
commutators on vector-valued generalized Morrey spaces when the pair (¢, @9)
satisfies condition (2)) or the following inequalities,

1 ¢ esssinlf p1(x,8)s?
/ <1+1nr> fess o) dtS C¢2($7T)7 (3)
r tr

where C' does not depend on x and r. Our main results in this paper are stated as
follows.

Theorem 1 Let1 <p<1,0<a<1and (p;,ps) satisfies condition (2). Then the
operator G, is bounded from MP%1(1%) to MP?2(1?) for p > 1 and from MY#1(I?)
to WML#2(12).
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Theorem 2 Let1 <p<1,0<a<1, A>3+ 2 and (1, 99) satisfies condition
n

(2). Then the operator g3 ,, is bounded from MP#1(12) to MP#?2(1%) for p > 1 and
from MY#1(12) to WMb#2(12).

Theorem 3 Let 1 <p<1,0<a<1,be BMO and (p;,py) satisfies condition
(3). Then [b,G4] is bounded from MP#1(12) to MP*2(I2) .

Theorem 4 Let 1 <p <1,0< a<1,be BMO and (p;,py) satisfies condition
(3), then for A>3+ &, [b,g} .| is bounded from MP#1 (12) to MP?2(I2).

In [29], the author proved that the functions G, f and g, f are pointwise comparable.
Thus, as a consequence of Theorem (1l and Theorem I3, we have the following results.

Corollary 5 Let 1 <p <1, 0<a <1 and (py,ps) satisfies condition (2)), then g,
is bounded from MP¥%1(12) to MP?2(1?) for p > 1 and from M %1(1%) to W M'#2((?).

Corollary 6 Let 1 <p<1,0<a<1,be BMO and (¢, p,) satisfies condition
(3), then [b,ga] is bounded from MP¥1(1%) to MP+¥2(1?).

Remark 7 Note that, in the scalar valued case the Theorems 1/ -4 and Corollaries

5 - 6 was proved in [19].

Throughout this paper, we use the notation A < B to mean that there is a posi-
tive constant C independent of all essential variables such that A < C'B. Moreover,
C may be different from place to place.

2. Vector-valued generalized Morrey spaces

The classical Morrey spaces MP* were originally introduced by Morrey in [25]
to study the local behavior of solutions to second order elliptic partial differential
equations. For the properties and applications of classical Morrey spaces, we refer
the readers to [13],[23].

We denote by MP*(12) = MPA(R™,[?) the vector-valued Morrey space, the space

p

P (1*) with finite quasinorm

of all vector-valued functions f el

A
Pl = Vs
where 1 < p <1and 0 < A < n. Note that MP?(1?) = LP(I?) and MP"(1%) = L}(I?).
If A < 0or A > n, then MPA(I?) = O, where O is the set of all vector-valued
functions equivalent to 0 on R”.

We define the vector-valued generalized Morrey spaces as follows.
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Definition 8 Let 1 < p <1 and ¢ be a positive measurable vector-valued function
on R™ x (0,1). We denote by MP¥(1%) the vector-valued generalized Morrey space,

the space of all vector-valued functions fe LfOC(ZQ) with finite norm

= _1
HfHMP#’(ﬂ) = sup 90(‘7:77,)71 ’B(CIZ,T’)‘ P HfHLP(B(J:,T),l2)7
zER™,r>0

where LP(B(x,r),12) denotes the vector-valued LP-space of measurable functions f
for which

1
p
17z = 1 Fxpe, lien) = ( /B rf<y>ugzdy) .

(zr)

Furthermore, by W MP%(I?) we denote the vector-valued weak generalized Morrey
space of all functions f € WL (1?) for which

loc

— 1o
HfHWMw(l?) = sup 90(1‘,7“)_1 |B(z,r)| » ||f||WLP(B(a:,r),12) <1,
z€R™,r>0

where W LP(B(x,7),12) denotes the vector-valued weak LP-space of measurable func-
tions f for which

P
1Fllw e (B i2) = 15X, Iwreqe =Supt</ ) dy) -
(Bl B O 750 \JyeB@n: 1wt

3. Preliminaries
We are going to use the following result on the boundedness of the Hardy operator

(o)1) = ¢ [ or)dutr). 0<t <

where (4 is a non-negative Borel measure on (0,1).
Theorem 9 ([}]) The inequality

ess supw(t)Hg(t) < cess supov(t)g(t)
>0 t>0

holds for all functions g non-negative and non-increasing on (0,1) if and only if
w(t) / t o du(r)
0

ess sup v(s)
0<s<r

A :=sup
t>0 t

<1,

and c = A.

We also need the following statement on the boundedness of the Hardy type

operator
1/t t
(Hig)(t):==~ [ In (e + 7> g(r)du(r), 0 <t <1,
t 0 T

where (1 is a non-negative Borel measure on (0,1).
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Theorem 10 The inequality

ess supw(t)Hig(t) < cess supv(t)g(t)
>0 t>0

holds for all functions g non-negative and non-increasing on (0,1) if and only if

t)y [* t d
Ay = supw()/ ln<e+7) A <1,
>0 t Jo r/ ess supv(s)
0<s<r

and c~ Ay.

Note that, Theorem [10 can be proved analogously to Theorem 4.3 in [17].

Definition 11 BMO(R") is the Banach space modulo constants with the norm ||-||«

defined by
1
bll« = sup / b(y) — b |dy <1,
” || \B(x,r)| B(x,'r)| ( ) B(z, )|

zER™ r>0

where b € L (R™) and

1
bB(l‘,T) B ’B(.Z‘, T)’ B(z,r) b(y)dy

Remark 12 (1) The John-Nirenberg inequality : there are constants Cq, Co > 0,
such that for all b € BMO(R"™) and 5 > 0

{z € B : |b(z) —bg| > B} < C1|Ble= 2P/l vB c R™.

(2) For 1 < p <1 the John-Nirenberg inequality implies that

1
1 P
Il = s (1 [ o) = ) (@
B \|Bl /B
(3) Let f € BMO(R™). Then there is a constant C' > 0 such that

t
\ By — [B@s] < CIfll In— for 0<2r<t, (5)

where C'is independent of f, x, r and ¢ (see, for example, [22], also [14]).

4. Proofs of main theorems

Before proving the main theorems, we need the following lemmas.

Lemma 13 [26] For j € Z,, denote

G (P)0) = ( [ et s )

Let 0 <a<1and 1 < p <1 Then for any j € Z, we have

1Gazs(Dllr < 2 (549 |G )l 1e-

~
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This lemma follows easily from the following inequality that was proved in [29].

Gos(f)(@) < B TGa(f)(@).

By the similar argument as in [3], we can get the following lemma.

Lemma 14 Let 1 <p <1 and 0 < a <1, then the commutators [b, G| is bounded
from LP(I%) to itself whenever b € BMO.

Now we are in a position to prove theorems.

Lemma 15 Let 1 <p<1and 0 < a <1. Then, for p > 1 the inequality

dt

1
— < n — _ﬁi
|Gl o S 75 /2T|rf|rm(3(mw)t ; d

holds for any ball B = B(xo,r) and for all fe Lr (1%).
Moreover, for p =1 the inequality

- - dt
< pn —n
IGafllwrrpe) <7 /27« ”f”Ll(B(xo,t),l?) T

holds for any ball B = B(xg,r) and for all fe Lllocl2.

Proof. The main ideas of these proofs come from [15]. For arbitrary z € R,
set B = B(wo, r), 2B = B(xO,QT) We decompose f = fo + f,, where fB(y) =
FW)x25®); fity) = f(y) = foly). Then,

||Gaf”LP(B(x0,r),l2) S ||Gaf0HLp(B($0,7‘),l2) + ||GaleLp(B($0,T'),l2) = I + II
First, let us estimate I. By Theorem A, we can obtain that

I< ”Gaﬁ)HLP(P) N HJ%”LP(ZQ) = ||ﬂ’LP(2B,12)- (6)

On the other hand,

E _n_q
1 gy 5 ()

Therefore from (6) and (7) we get

LS [ U7y ) €7 0

Then let us estimate II.

1+ & ()llie =

-n y—z Tzdz
A AESIE

<o [ i) ed
2 ly—z|<t

l
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Since x € B(xo, 1), (y,t) € I'(z), we have |z — x| < |z —y| + |y — x| < 2¢t, and
r<lz—xzo| —|zo— x| <|x—z| <|r—y|+|y— 2| <2t

So, we obtain

2
> > dyd
Gafille < ([ ] (t—“ /|y_zl<t||f1(2)|hzd2> v <

[NIES

[N

2
g dydt
= filD)zdz| — ] <
/t>r/2/|zy|<t </|xz<2t” (@l ) 31
1
? dt
S ﬁz odz | ———
L. ( [N ) o
1

By Minkowski and Hélder’s inequalities and |z — x| > |z — 2| — |z — x| > §|z —x0],

we have

1
a \* ¢ 17
|GaFiella 5 [ (/ s H) fedes [ T s
F()|,2 - Tdt
<f MG, Fle [ s =
|z—x0|>2r |Z_:EU| |z—zo|>2r |z—xo| t

- dt ! = -1
<
/2 /27'<zwo|<t Hf(Z)”lzdzthrl ~ /27" HfHLp (B(xo,t),lQ) byt (9)
Thus,

- < n - -1
1Ga sy 75 [ 17 iy ¢ (10)
By combining (8) and (10), we have
— n v _n_q
1GoFlliny S5 | 17l ) 5

Proof of Theorem [1
By Lemma [15 and Theorem 9 we have for p > 1

Gofllympezgzy < su zo, 1) T dt =
[Geflareaan) S sup  @alawo, )7 | I Io (Baosy2)
frnd xoe?Rl}LI’)r>0 ()01 (.’1:[),7’) p || || (B(IOJ”),ZQ) = ” HMP#PI (l2)
and for p=1
Gl < [ "
7 su Zo,T T
e VV]W1 “2 (lz) ~ mQGR"I,)'I’>O SOQ 0 Ll 930 t) 12) t
— - -n - Fl
= xoe?ng)r>0 (pl(l‘o, 1") r Hf||L1 (B(:ﬂg,T),lQ) - H HMl,«pl (12)-
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Lemma 16 Letl <p<1,0<a<1land A > 3+g. Then, for p > 1 the inequality
n

80Pl ) S 77 / 1l gy £

holds for any ball B = B(xo,r) and for all f € LlOC(ZQ).
Moreover, for p =1 the inequality

850w (5 S 7 17y (g y €
holds for any ball B = B(xo,r) and for all f e Ellocl2.

Proof. From the definition of g, o(f), we readily see that

el = ([ [ () (Aefn) 22y
1 nA —

<[(f [, () (ion) 35)"
1 nA -

L ) (aeon) 25)"

=1I1T+1V.

l2

12

2

First, let us estimate III.

1 n/\ =
ms ([ () (eflen) )"

Now, let us estimate IV.

L t nh o 2 dydt /2
V= H(Z_:/o /2j1t<z—y<21t <t+ |2 —3/’> (Aa (y,t)) t"H)

< HGaf(m)Hﬂ'

2z

2z~
n Y 2dydt l/2
5 H(Z/ /2] 1t<]z— y\<2ﬂt ” >\< f( )) tn—i—l) 2~
< N g AT 2dydt\12) o A
”]212 K/o /x_mjt( fwn) ) |l 22 o (@)
Thus,
Hgi,a(.ﬂ”Ll’(B,P) < ||G0lf_”LP(B,l2) —+ Z27¥HG0«2J'(JF)HLP(BJ2)- (11)

J=1

By Lemma [15 we have

1GaFllnze <75 / 1Pl Beny 5 d. (12)
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In the following, we will estimate |Gy 95 (f)]|1r(5,2). We divide |G (f)llzo(52)
into two parts.

1G a2 (Al o (B2) < G (f)llo(ma2y + G ()l o(22): (13)

—

where fo(y) = f(W)xap®), fi(y) = f(y) — fi(y). For the first part, by Lemma 13|
3n -0 3n
G 25 (f0) | 1o (Baz) S 2702 TG )HLP i) S PN Fll opzy S

3n n
< J(5+a),. L
2 / (o) 7 b (14)

For the second part

|Gas(F)@)

2

1 - dydt

= sup |f * ¢, (y -
. H /O/Ix—y|<2ft (¢eca‘ 3 ”) i1
1 ? dydt

7 Y
1 £i(2) |2z
/0 /x—y|§2jt </|Z—y§t ¢ $3n+1

Since |z — 2| < |y — 2| + |z — y| < 27H1¢, we get

dydt
fl de S
/ /lr y|<2it </x z\<2;+1tH (2l £3n+1
1 * ginqy :
F()ledz | 22 <
/0 </|zac|<2j+1tHf(Z)’l2 z> $2n+1 >

1
jn — dt 2 in
<2¥ [ ([ 1@l | de<2¥ U,
R7 tz% t |zo—z|>2r |z — 2|

1 1
For |z — x| > |xg — 2| — |x — xo| > |20 — 2| — 5’1‘0 —z| = §|ZE0 — z|, so by Fubini’s

12

IA

N

[CRATAIE

IN

theorem and Hélder’s inequality, we obtain
- 2gn @l , e Co [

Gaoi(f)(@)|| <272 T dz = 1 (2)li2 dz <
H A 12 |zo—z|>2r ’xo - Z’n |xo—z|>2r 2| tntl

M ! d 2In _Ll_l
<2 d < 2 dt.
<27 /2 /lmo_qul ()lldz g / ||f||Lp (Bao), 12) »

So,

Ji n _n_
HGQQJ fl)”LP(Bl2 <272 rr / HfHLp B(xot)lQ) 1dt (15)

Combining (13), (14) and (15), we have

— qsnioy o no TS _n_
(G (Fllsizany S PE 05 [ 7 gy 57 (10)
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Thus,
— — ! In\ —
X a(Hllr2) < Gafllrrsz) + 22_% |G a2 ()l Lr(B,2)- (17)
j=1

Since A > 3 + g, by (12), (16) and (17), we have the desired lemma.
n

Proof of Theorem 2
From inequality (18) we have

— — ! inA —
leX o (Ol arre22y < |Gafllareen g2y + ZQ_JT 1Ga2i (Ol ppeaey-  (18)
=1

By Theorem [1, we have

1Gafllarmezzy S I1F 1 aroe 2y (19)

—

In the following, we will estimate |G, o (f)|lare2q2y- Thus, by substitution of
variables and Theorem 9, we get

(F < 9i(%+a) 5t <
G (Plazy SPE sip ga(aorr I T P
< 9i(3+a) —1\—1,.3 — 9i(3t+a)
~ zoe?lg?oosol(xo’r o HfHLP(B(a:o,r—l),lQ) 2 HMP’“”(ZZ)'

(20)

Since A > 3 + g, by (18), (19) and (20), we have the desired theorem.
n

Lemma 17 Letl<p<1,0<a<1andbe BMO.
Then the inequality

116, Gal Fll o (p ey S 7 /2;111( ) HfHLp( o )f%* dt
holds for any ball B = B(xo,r) and for all f € Lloc(l2).
Proof. We decompose f: ﬁ) + f_;, where ﬁ) = JFXZB and ﬁ: f— ﬁ;. Then
16, Gal _]|LP(B,l2) < /[0, Goa]JE(;HLP(B,ZQ) + II[b, Ga]ﬁHLP(B,lQ)-
By Lemma (14, we have that

b, GalFollzomy S 16l 1 Follisey = Iblle 1l rom ey
< fbllrs / 17, et
B(ao,t),12)
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For the second part, we divide it into two parts.

=10 f, -t 2

< A(w)+ B = | ([ / | / 7) = bsly(y z>ﬁ<z>dz\2f3ff)é

2 dydt
—i—H // sup’/ ) — bp|oy( —zf1 d‘
< (z) $Ca | Jrn Bt $n+1 >

Therefore

.Gl

l2

12

2

116, Gal fill Losazy < IAC) o) + 1BC) | Lo(s)-
First, for A(z), we find that

A(a) = [b(x) ~ s [ // sup | [ oy —z)ﬁ(z)dszgff)%

I'(z) $€Cq
= |b(@) = b [|Gafi()]] o-

2

From the inequality (9), we can get

4 ) = ( | 1t —bBrp(HG F@)) wwie)” <
< ([ wta —bB\de) L0y (g £ <

< ljpflr5 / 10 iy

For B(x), since |y — x| < t, we get |z — z| < 2¢t. Thus, by Minkowski’s inequality,
2 dydt )é

(x) < ||( / / R OO
/‘/x z|<2t bp = b(z |Hf‘ ngdz 2752”4‘1)1

< bp — b(z —_—
B /x0z|>2r| b | Hf Hl2 |33 - Z’n

For B(z), using the inequality |z — 2| > %|z — 2|, we have

~Y
x—z|<2t 12

- dz
B < / b(z) —b — <
(x) |zo—z|>2r ‘ (z) B‘ Hf(Z)Hl2 ‘1‘0 - Z‘n

! dt
< b(z) — b [
/|:c0—z|>27"‘ Bl Hf Hz? o—7] tn+1
! dt
< b(z) —b d
~ Lr /2r<x02|<t ’ (Z) B| Hf Hl2 Zt"+1
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Applying Hélder’s inequality, we get

1
o

n 1 / P - dt
1B <% [ ( / |b<z>—bB|pdz) IFON ez 5te0.y ey
r (zo,t)

n 1 t - _n_4
SIlr® [ i (e DY 17 gy 5

Thus,

n ! t - _n_
16 Gl fll oy < 1Bl 77 / 1 (€4 ) 11 (g ) £t

Proof of Theorem 3

By substitution of variables, we obtain
116: Gal fllarpen a2y S

[ N Ca
Sl sw oo™ (et D) 17l () £ S
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By using the argument as similar as the above proofs and that of Theorem 2, we
can also show the boundedness of [b, g3 |-
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