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Elshad H. EYVAZOV

ON SELF-ADJOINTNESS OF THE
TWO-DIMENSIONAL MAGNETIC SCHRODINGER

OPERATOR

Abstract

In the paper, under definite conditions on magnetic and electric poten-
tials, the self-adjointness of the two-dimensional Schrodinger operator in electro-
magnetic field is proved.

It is known that the Hamiltonian of a number of physical problems (see for
example [1]) in the two-dimensional space R2 is given formally by the magnetic
differential Schrodinger expression

Ha,V =
2∑

k=1

(
1
i

∂

∂xk
+ ak (x)

)2

+ V (x) , (1)

where i =
√−1 is the imaginary unit, x = (x1, x2) ∈ R2, a (x) = (a1 (x) , a2 (x)) and

V (x) are magnetic and electric potentials, respectively, and these potentials are real
functions. Note that if the magnetic field is perpendicular to the plane x1Ox2 and
retains the three-dimensional charged particle in this plane, then after insulating the
free motion along the axis x3 we get a Hamiltonian of the form Ha,V in the state
space L2 (R2) (see [2] or [3]).

In the present paper, in the space L2 (R2) we study the self-adjointness of the two-
dimensional magnetic Schrodinger operator generated by the differential expression
Ha,V , where the real magnetic and electric potentials a (x) and V (x) satisfy the
following conditions:

1)
∫

R2

|a (x)|ν dx < +∞ , where ν > 2, |a (x)| =
√

a2
1 (x1, x2) + a2

2 (x1, x2);

2)
∫

R2

|Φ(x)|µ dx < +∞ , where µ > 1, Φ (x) ≡ Φ(x1, x2) = a2 (x1, x2) +

V (x1, x2)+idiνa (x1, x2), a2 (x) ≡ a2 (x1, x2) = a2
1 (x1, x2)+a2

2 (x1, x2), diνa (x1, x2) =
∂a1(x1,x2)

∂x1
+ ∂a2(x1,x2)

∂x2
.

Note that the similar issues were studied in one-dimensional case in [4], in three-
dimensional case in [5], [6].

Subject to conditions 1) and 2) we can write differential equation (1) in the form

∆a,V = −∆ + W,

where ∆ is a two-dimensional Laplace operator

W = −2idiνa (x) + Φ (x) . (2)

It is known that if a (x) and V (x) are sufficiently smooth bounded functions,
then the minimal operators (in this case they are maximal) H0 and H = H0 + W
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that correspond to differential expressions −∆ and −∆a,V respectively, are self-
adjoint operators in L2 (R2) with identical domains of definition W 2

2 (R2) (second
order Sobolev space). Generally speaking, under conditions 1) and 2) the differential
expression ∆a,V doesn’t define the minimal operator on a linear manifold C∞

0 (R2).
Therefore, for constructing a self-adjoint operator with the help of this expression,
we’ll use the method of quadratic forms. To this end, recall some denotation and
notation (detailed information in the books [7, p. 303], [8, p. 185], [9, p. 386]).

Let E be a Hilbert space and the linear manifold Q (q) be dense in E. Denote
by q (ϕ,ψ) a complex-valued one-and-a half linear form with domain of definition
Q (q), and by q (ϕ) = q (ϕ, ϕ) a quadratic form associated with q (ϕ,ψ).

It the one-and-a half linear form q (ϕ,ϕ) is generated by some linear operator A
i.e

∀ϕ ∈ Q (q) , ∀ψ ∈ D (A) =⇒ q (ϕ,ψ) = (ϕ,Aψ) ,

then its domain of definition is denoted by Q (q) = Q (A).
Definition. Let the operator A be self-adjoint and lower bounded. The symmet-

ric operator B is said to be A-bounded in the sense of forms if
i) Q (A) ⊆ Q (B),
ii) ∃a, b > 0, ∀ϕ ∈ Q (A) ⇒ |(ϕ,Bϕ)| ≤ a (ϕ,Aϕ) + b (ϕ, ϕ).
The greatest lower bound of all such a is called A-bound of the operator B in the

sense of forms.
Consider in L2 (R2) the quadratic forms

h0 (ϕ) =

+∞∫

−∞
|∇ϕ|2 dx,

ha,V (ϕ) = h0 (ϕ) + (Wϕ, ϕ) ,

where ∇ =
(

∂
∂x1

, ∂
∂x2

)
is Hamilton’s symbolic vector, W an operator acting by

formula (2). Obviously, h0 (ϕ) corresponds to the selfadjoint operator H0 := −∆
with domain of definition W 2

2 (R2). It is known that Q (h0) = W 1
2 (R2) = D

(
H

1/2
0

)

(here W 1
2 (R2) is the Sobolev space of first order), and ∀ϕ ∈ Q (h0) = W 1

2 (R2) =
D

(
H

1/2
0 ϕ,H

1/2
0 ϕ

)
.

The following theorem is valid.
Theorem. Let conditions 1) and 2) be fulfilled. Then there exists a lower

bounded self-adjoint operator H = H0 + W responsible for the form ha,V (ϕ) =
h0 (ϕ)+(Wϕ,ϕ) with Q (H0) = Q (H) such that any essential domain of the operator
H0 is an essential domain for the operator H as well. In particular, the space of
the basic functions C∞

0 (R2) is the essential domain of the operator H.
Proof. Obviously, the operator W acting according to formula (2), is symmetric.

Show that Q (H0) ⊆ Q (W ). Take an arbitrary element ϕ from Q (H0) ⊆ W 1
2 (R2).

Apply to the integral
∫

R2

Φ(x) ϕ (x) ϕ (x)dx =
∫

R2

Φ(x) |ϕ (x)|2 dx
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the Holder inequality

∣∣∣∣∣∣

∫

R2

Φ(x) ϕ (x) ϕ (x)dx

∣∣∣∣∣∣
≤





∫

R2

|Φ(x)|µ dx





1
µ





∫

R2

|ϕ (x)|2µ′ dx





1
µ′

, (3)

where µ′ = µ
µ−1 > 1. From the Sobolev-Il’in imbedding theorem with a limiting

exponent (see [10] or [11, p. 273, point 6.1]) we have





∫

R2

|ϕ (x)|2µ′ dx





1
µ′

=








∫

R2

|ϕ (x)|2µ′ dx





1
2µ′


 ≤ c ‖ϕ‖2

W 1
2 (R2) , (4)

where c is independent of ϕ (in the course of the paper we’ll denote by the letter c
a constant, not necessary one and the same). From (3) and (4) we find

∣∣∣∣∣∣

∫

R2

Φ(x) ϕ (x)ϕ (x)dx

∣∣∣∣∣∣
< +∞. (5)

Now, using the equality

diν (a (x) ϕ (x))ϕ (x) = (diν (x)) |ϕ (x)|2 + a (x) diν (ϕ (x))ϕ (x),

we estimate the integral
∫

R2

diν (a (x)ϕ (x))ϕ (x)dx.

If we take into account that diνa (x) ∈ Lµ (R2) follows from condition 2) then

applying the reasoning similar in the estimation of the integral
∫

R2

Φ(x) ϕ (x) ϕ (x)dx,

we get

∣∣∣∣∣∣

∫

R2

diν(a (x) |ϕ (x)|2 dx

∣∣∣∣∣∣





∫

R2

|diν(a (x)|µ dx





1
µ








∫

R2

|ϕ (x)|2µ′ dx





1
2µ′




2

≤

≤ c





∫

R2

|diν (a (x))|µ dx





1
µ

‖ϕ‖2
W 1

2 (R2) < +∞. (6)

Now we estimate the integral
∫

R2

a (x)
∂ϕ (x)
∂xj

ϕ (x)dx, j = 1, 2.
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Using the general Holder inequality for several functions (see [12], p. 13), we have:
∣∣∣∣∣∣

∫

R2

a (x)
∂ϕ (x)
∂xj

ϕ (x)dx

∣∣∣∣∣∣
≤





∫

R2

|a (x)|ν dx





1
ν

×

×




∫

R2

∣∣∣∣
∂ϕ (x)
∂xj

∣∣∣∣
2

dx





1
2




∫

R2

|ϕ (x)|ν′ dx





1
ν′

, j = 1, 2, (7)

where 1
ν + 1

ν′ +
1
2 = 1 i.e. ν ′ = 2ν

ν−2 . The right integral in the right part of inequality
(7), is finite by condition 1) and the second integral is finite by ϕ (x) ∈ W 1

2 (R2).
Note that ν ′ = 2ν

ν−2 > 2, therefore, from the Sobolev Il’in imbedding theorem with
a limiting exponent it follows that





∫

R2

|ϕ (x)|ν′ dx





1
ν′

≤ c ‖ϕ‖W 1
2 (R2) .

Obviously, from the obtained estimations it follows
∣∣∣∣∣∣

∫

R2

a (x)
∂ϕ (x)
∂xj

ϕ (x)dx

∣∣∣∣∣∣
< +∞, j = 1, 2. (8)

Thus, from inequalities (5), (6) and (8) it follows that ∀ϕ ∈ Q (H0) expression

(Wϕ, ϕ) =

+∞∫

−∞
(Wϕ (x))ϕ (x)dx

makes sense. This means that ϕ ∈ Q (W ), hence it follows that Q (H0) ⊆ Q (W ).
Prove that the integrals ∫

|x−y|≤δ

|a (y)|
|x− y|dy

and ∫

|x−y|≤δ

ln
1

|x− y| |Φ(y)| dy

uniformly on R2 tend to zero as 0 < δ → 0. Apply to the integral
∫

|x−y|≤δ

|a (y)|
|x− y|dy

the Holder inequality

∫

|x−y|≤δ

|a (y)|
|x− y|dy ≤





∫

|x−y|≤δ

|a (y)|ν dy





1
ν





∫

|x−y|≤δ

1
|x− y|p dy





1
p

, (9)
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where 1
ν + 1

p = 1. From ν > 2 it follows that p = ν
ν−1 < 2. Since the integral

∫

|x−y|≤δ

1
|x− y|p dy

for p < 2 converges uniformly with respect to x ∈ R2, then from inequality (9) and
absolute continuity of the Lebesgue integral it follows that

lim
0<δ→0

{
sup
x∈R2

|a (y)|
|x− y|dy

}
= 0. (10)

Similarly, using the Holder inequality, we get

∣∣∣∣∣∣∣

∫

|x−y|≤δ

ln
1

|x− y| |Φ (y)| dy

∣∣∣∣∣∣∣
≤





∫

|x−y|≤δ

|Φ(y)|µ dy





1
µ





∫

|x−y|≤δ

|ln |x− y||p dy





1
p

,

where 1
µ + 1

p = 1. If we take into account that for any positive number ε

lim
r→0

rε ln r = 0,

then we get

lim
0<δ→0





sup
x∈R2

∫

|x−y|≤δ

ln
1

|x− y| |Φ(y)| dy





= 0. (11)

From conditions (10) and (11) it follows that the operator

W = −2idiνa (x) + Φ (x) = −2ia (x) · ∇+ Φ(x),

where a (x) · ∇ is a scalar product of the vectors a (x) and ∇, belongs to the Kato
class (see [13], p. 16). From the Schechter theorem [14, theorem 7.3] we get that the
relative H0 bound of the operator W equals zero. If we take into account that the
space of basic functions C∞

0 (R2) is the essential domain of the operator H0, then
we see that all the statements of the theorem follows from KLMN theorem (see e.i.
13, p. 11). The theorem is proved.

Remark. Note that the sum H0 + W is understood in the sense of forms, and
may differ from the operator sum.
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