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LATERAL OSCILLATIONS OF A BEAM MADE OF
MULTI-MODULUS MATERIAL LYING ON

INHOMOGENEOUS VISCO-ELASTIC
FOUNDATION

Abstract

In the paper we consider a problem of free lateral oscillations of a beam
inhomogeneous in length and made of multi-modulus material, subject to exter-
nal visco-elastic inhomogeneous resistance. By using the separation of variables
and Bubnov-Galerkin methods, a formula for determining the values of angular
frequency was found. The numerical analysis was carried out, the results were
represented in the form of tables and characteristic graphs.

As is known the structural elements whose properties essentially depend on the
form of stress state [1,3] are often used in construction of engineering structures,
machine building and in many fields of engineering. Some sorts of pig iron, filled
polymers, composite materials, rocks, etc. are related to these elements.

In these materials, the hydrostatic pressure essentially influences on the depen-
dence stress-strain: At different forms of stress state these materials display not
identical mechanical properties (fig. 1)
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Fig.1.

Here σu and εu are stress and strain intensities, respectively, σ is a hydrostatic
pressure.

Note that account of multimodulus and real property of the foundation compli-
cates much the solution of the problems of lateral oscillations, and its ignorance may
lead to essential errors.
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In the present paper we solve a problem of eigen oscillation of symmetric cross-
section of a non-homogeneous bar with regard to resistance of a non-homogeneous
visco-elastic medium, whose reaction of the foundation is connected with the flexure
by the following relation [5]:

q = K1 (x) W + K2 (x)
∂2W

∂t2
. (1)

Here K1 (x) and K2 (x) are the characteristics of the foundation and are deter-
mined by means of the experiments, W is flexure, t is time.

The stress in section is distributed as follows:

σ+ = E+ (` + y℘) for y ∈ S1

σ− = E− (` + y℘) for y ∈ S2. (2)

Here ` and ℘ are deformation and curvature of the central line, respectively, S1

and S2 are the domains of stretching and compressed areas.
The boundary of the neutral line y0 is determined from the following condition:

` + y0℘ = 0. (3)

The quantity ` is connected with the curvature with no axial force condition and
has the following form:

` = −℘

∫

S1

yb (y) dy + α

∫

S2

yb (y) dy

∫

S1

b (y) dy + n

∫

S2

b (y) dy

. (4)

Here b (y) is the width of the bar n = E−
E+ .

It is easy to establish that the bending moment may be represented in the fol-
lowing form:

M = MOK · f (x) , (5)

where M0 = 2
3E+J℘

K =
1
J




∫

F1

ρ2b (ρ) dρ + α

∫

F2

ρ2b (ρ) dρ−




∫

F1

ρb (ρ) + α

∫

F2

ρb (ρ) dρ




2

∫

F1

b (ρ) dρ + α

∫

F2

b (ρ) dρ




. (6)

For a beam of rectangular cross section the equation of motion with regard to
(1) and (5) is written in the form

∂2

∂x2

[
f (x)

∂2W

∂x2

]
+ K1 (x) W + K2 (x)

∂2W

∂t2
+ ρψ (x)

∂2W

∂t2
= 0, (7)



Transactions of NAS of Azerbaijan
[Lateral oscillations of a beam made of...]

127

where the following de notations are accepted: K1 (x) = K1 (x)·(E+JK)−1, K2 (x) =
K2 (x) · (E+JK)−1, ρ = ρ0 (E+J0K)−1.

The solution of equation (7) will be realized by the combined approximately
analytic methods. At the first stage we use the method of separation of variables
and look for W as follows:

W (x, t) = V (x) exp (imt) . (8)

Here ω is an angular velocity, the function V (x) should satisfy the respective
boundary conditions.

Substituting (8) in (7), we get:

d2

dx2

[
f (x)

∂2W

∂x2

]
+ K1 (x) V − ω2K2 (x) V + ω2ρψ (x) V (x) = 0. (9)

We determine the value of ω2 by means of Bubnov-Galerkin’s orthogonalization
method, and accept the function V (x) in the form:

V (x) =
n∑

i=1

Ciθi (x) , (10)

where Ci are unknown constants, and each θi (x) should satisfy the boundary con-
ditions.

Allowing for (9) and (10), the error function will take the form:

ηi (x) =
n∑

i=1

Ci

{
d2

dx2

[
f (x)

∂2θi

∂x2

]
+ K1θ (x)− ω2 [(K2 (x) + ρψ (x))] θi

}
6= 0. (11)

On the basis of the orthogonalization method we can write:
`∫

0

ηi (x) θq (x) dx = 0 q = (1, 2, ...) (12)

In the general form, ω2 is determined from the system of linear homogeneous
algebraic equations constituted from the coefficients Ci. For the existence of non-
trivial solutions, the principal determinant of this system should equal zero

∥∥ω2
∥∥ = 0. (13)

However, for engineering calculations the first approximation is usually neglected.
Then the principal frequency tone is determined from the orthogonalization condi-
tion:

`∫

0

ηi (x) θi (x) dx = 0

or

ω2 =

`∫

0

[
d2θi

dx2

(
f (x)

d2θi

dx2

)
+ K1 (x) θi (x)

]
θ2

i dx

`∫

0

[
K2 (x) + ρψ (x)

]
θ2

i dx

. (14)
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As an example, consider the case of a right cross-section bar whose ends are
hingely supported, and the characteristic functions change by the following rules

θi (x) = sin mx; f (x) = 1 + εx; K1 (x) = K10 (1 + µ1x) ;

K2 (x) = K20 (1 + µ2x) ;

here
ε ∈ [0, 1] , µi ∈ [0, 1] ψ (x) = 1 + µ3x;

(
x = x · l−1

)
. (15)

Allowing for (15), formula (14) has the following form:

ω2 =

1R
0

h
(1+εx)

�
mπ

`
sin mπx−2ε`−1(mπ

` )3
cos mπ

x
+K10(1+µ1x) sin mπx

�i
sin mπxdx

1R
0

[K20(1+µ2x)+ρ(1+µ3x)] sin2 mπxdx

. (16)

Taking into account

1∫

0

sin2 mπxdx =
1
2
;

1∫

0

x sin2 mπxdx =
1
4
;

1∫

0

sin 2mπxdx = 0,

from (16) we can get:

ω2 =

(
mπ
l

)4 (1 + 0, 5ε) + K10 (1 + 0, 5µ1)
K20 (1 + 0, 5µ2) + ρ (1 + 0, 5µ3)

. (17)

For linear homogeneous viscoelastic resistance from (17) we get:

ω2
n =

(
mπ
l

)4 (1 + 0, 5ε) + K10

K20 + ρ (1 + 0, 5µ3)
. (18)

For the homogeneous case it holds:

ω2
0 =

(
mπ
l

)4 + K10 (1 + 0, 5µ1)
K20 (1 + 0, 5µ2) + ρ

. (19)

For resistancless external medium, for a nonhomogeneous bar we get:

ω2
n =

(
mπ
l

)4 (1 + 0, 5ε)
ρ (1 + 0, 5µ3)

. (20)

For a resistancless homogeneous bar we should take ε = 0, µ3 = 0.
From (20) we get

ω2
n′ =

(
mπ
l

)4

ρ

ω2 =
(

ωn

ωn′

)2

=
1 + 0, 5ε

1 + 0, 5µ3

.

The results of calculations are in tables 1.2 and fig. 3.4
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tab.

Fig.2.

tab.
Fig.3.
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