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Sevda B. AKPEROVA

ASYMPTOTIC BEHAVIOR OF THE SOLUTION OF
A TORSION PROBLEM OF A TRANSVERSALLY

-ISORTOPIC CYLINDRICAL SHELL WITH
VARIABLE SHEAR MODULUS

Abstract

In the paper, we study a torsion problem of a transversally –isotropic hollow
cylinder when the lateral surfaces are free from stresses, and the elastic charac-
teristics vary according to general power laws on radius. Exact and asymptotic
solutions of the torsion problem are constructed. The exact asymptotic expan-
sions of homogeneous solutions are obtained and the stress –strain state of the
cylinder is analyzed. It is shown that the solution is composed of two types of
solutions: the penetrating solution and the boundary layer type solution. In the
case of considerable anisotropy, some boundary layer solutions don’t damp and
may penetrate rather deep and essentially change the picture of the stress- strain
state far from the cylinder endfaces.

In the paper, we study a torsion problem of a transversally –isotropic hollow
cylinder when the lateral surfaces are free from stresses, and the elastic charac-
teristics vary according to general power laws on radius. Exact and asymptotic
solutions of the torsion problem are constructed. The exact asymptotic expansions
of homogeneous solutions are obtained and the stress –strain state of the cylinder
is analyzed. It is shown that the solution is composed of two types of solutions:
the penetrating solution and the boundary layer type solution. In the case of con-
siderable anisotropy, some boundary layer solutions don’t damp and may penetrate
rather deep and essentially change the picture of the stress- strain state far from the
cylinder endfaces.

1. Consider a torsion problem for a radially- inhomogeneous transversally –
isotropic hollow cylinder. The position of the cylinder points in the space is deter-
mined by the cylindrical coordinates r, ϕ, z varying within

r1 ≤ r ≤ r2, 0 ≤ ϕ ≤ 2π, −L ≤ z ≤ L

The equilibrium equations in displacements, at no mass forces have the form [4]:

∂

∂ρ

[
G (ρ)

(
∂uϕ

∂ρ
− uϕ

ρ

)]
+

2G (ρ)
ρ

(
∂uϕ

∂ρ
− uϕ

ρ

)
+ G1 (ρ)

∂2uϕ

∂ξ2 = 0 (1.1)

Here ρ = r
r0

, ξ = z
r0

are new pure variables; r0 = r1+r2
2 is the radius of the me-

dian surface of the cylinder; ρ ∈ [ρ1; ρ2] , ξ ∈ [−l; l]
(
ρ = rs

r0
, l = L

r0
; s = 1; 2

)
;uϕ =

uϕ (ρ; ξ) is a displacement vector component; G = G (ρ) , G1 = G1 (ρ) are dimen-
sionless elastic characteristics (shear module) considered as positive piecewise – con-
tinuous functions of variable ρ.
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Assume that the lateral part of the cylinder is free from stresses , i.e.

σρϕ = G (ρ)
(

∂uϕ

∂ρ
− uϕ

ρ

)∣∣∣∣
ρ=ρs

= 0, (s = 1, 2) (1.2)

and on the endfaces the following boundary conditions are given

σϕξ = G1 (ρ)
∂uϕ

∂ξ

∣∣∣∣
ξ=±l

= f± (ρ) , (1.3)

where f± (ρ) are sufficiently smooth functions satisfying the equilibrium conditions.
Assume that the shear module of the cylinder are given in the form of the func-

tions
G (ρ) = g0ρ

n, G1 (ρ) = g1ρ
n (1.4)

where n is an arbitrary positive number: g0, g1 are constants .
We’ll seek the solution of equation (1.1) in the form [1,2]:

uϕ (ρ, ξ) = υ (ρ)m (ξ) (1.5)

where the function m (ξ) is subjected to the condition

m′′ (ξ)− µ2m (ξ) = 0, (1.6)

and the parameter µ is determined after fulfilment of boundary conditions on the
lateral surface.

Substituting (1.5) in (1.1),(1.2), allowing for (1.4),(1.6),we have:

υ
′′
(ρ) +

(n + 1)
ρ

υ′ (ρ) +
[
g1

g0
µ2 − (n + 1)

ρ2

]
υ (ρ) = 0, (1.7)

g0ρ
n

(
υ′ (ρ)− υ (ρ)

ρ

)∣∣∣∣
ρ=ρs

= 0, (1.8)

(s = 1; 2) .

The general solution of (1.7) has the form:

υ (ρ) = ρ−
n
2

[
C1J1+n

2

(
µ

√
g1

g0
ρ

)
+ C2Y1+n

2

(
µ

√
g1

g0
ρ

)]
, (1.9)

where J1+n
2

(
µ
√

g1

g0
ρ
)

, Y1+n
2

(
µ
√

g1

g0
ρ
)

are the Bessel functions of first and second
kinds respectively; C1, C2 are arbitrary constants.

Using the Hooke’s law, we can represent the stresses σρϕ, σϕξ in the form

σρϕ = g0ρ
n
2
−1

[
C1

(
µρ

√
g1

g0
J ′1+n

2

(
µ

√
g1

g0
ρ

)
−

(
1 +

n

2

)
J1+n

2

(
µ

√
g1

g0
ρ

))
+

+ C2

(
µρ

√
g1

g0
Y ′

1+n
2

(
µ

√
g1

g0
ρ

)
−

(
1 +

n

2

)
Y1+n

2

(
µ

√
g1

g0
ρ

))]
m (ξ) , (1.10)

σϕξ = g1ρ
n
2

[
C1J1+n

2

(
µ

√
g1

g0
ρ

)
+ C2Y1+n

2

(
µ

√
g1

g0
ρ

)]
m′ (ξ) .
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Satisfying the homogeneous boundary conditions (1.8) with respect to C1, C2 ,we
get the linear system of algebraic equations:





[
µρ1

√
g1

g0
J ′1+n

2

(
µ
√

g1

g0
ρ1

)
− (

1 + n
2

)
J1+n

2

(
µ
√

g1

g0
ρ1

)]
C1+

+
[
µρ1

√
g1

g0
Y ′

1+n
2

(
µ
√

g1

g0
ρ1

)
− (

1 + n
2

)
Y1+n

2

(
µ
√

g1

g0
ρ1

)]
C2 = 0,[

µρ2

√
g1

g0
J ′1+n

2

(
µ
√

g1

g0
ρ2

)
− (

1 + n
2

)
J1+n

2

(
µ
√

g1

g0
ρ2

)]
C1+

+
[
µρ2

√
g1

g0
Y ′

1+n
2

(
µ
√

g1

g0
ρ2

)
− (

1 + n
2

)
Y1+n

2

(
µ
√

g1

g0
ρ2

)]
C2 = 0.

(1.11)

From the condition of existence of nontrivial solutions of the system (1.11), we
get the following characteristic equation:

4 (µ, ρ1, ρ2) = µ2ρ1ρ2

g1

g0
L(1;1)

1+ n
2

(
µ

√
g1

g0

)
− µ

(
1 +

n

2

)√
g1

g0

[
ρ1L

(1;0)
1+ n

2

(
µ

√
g1

g0

)
+

+ρ2L
(0;1)
1+ n

2

(
µ

√
g1

g0

)]
+

(
1 +

n

2

)2
L(0;0)

1+ n
2

(
µ

√
g1

g0

)
= 0, (1.12)

where

L(i;j)
1+ n

2

(
µ

√
g1

g0

)
= J (i)

1+ n
2

(
µ

√
g1

g0
ρ1

)
· Y (j)

1+ n
2

(
µ

√
g1

g0
ρ2

)
−

−J (j)
1+ n

2

(
µ

√
g1

g0
ρ2

)
· Y (i)

1+ n
2

(
µ

√
g1

g0
ρ1

)
; i, j = 0; 1

The transcendental equation (1.12) determines the denumerable set µk and the
constants C1k, C2k corresponding to it are proportional to algebraic complements of
the elements of some row of the determinant of the system (1.11). For C1k, C2k we
have:

C1k =
[
µkρ2

√
g1

g0
Y ′

1+n
2

(
µk

√
g1

g0
ρ2

)
−

(
1 +

n

2

)
Y1+n

2

(
µk

√
g1

g0
ρ2

)]
Bk, (1.13)

C2k = −
[
µkρ2

√
g1

g0
J ′1+n

2

(
µk

√
g1

g0
ρ2

)
−

(
1 +

n

2

)
J1+n

2

(
µk

√
g1

g0
ρ2

)]
Bk,

where Bk are arbitrary constants.
Substituting (1.13) in (1.9), (1.10) and summing over all roots, we get the ho-

mogeneous solution in the following form:

uϕ (ρ, ξ) =
∞∑

k=1

ρ−
n
2

[
µkρ2

√
g1

g0
L(0;1)

1+ n
2

(
µk

√
g1

g0
ρ; µk

√
g1

g0
ρ2

)
−

−
(
1 +

n

2

)
L(0;0)

1+ n
2

(
µk

√
g1

g0
ρ; µk

√
g1

g0
ρ2

)]
mk (ξ) , (1.14)

σρϕ =
∞∑

k=1

g0ρ
n
2
−1

[
µ2

k

g1

g2
ρρ2 · L(1;1)

1+ n
2

(
µk

√
g1

g0
ρ;µk

√
g1

g0
ρ2

)
−

−µk

√
g1

g0

(
1 +

n

2

)(
ρL(1;0)

1+ n
2

(
µk

√
g1

g0
ρ; µk

√
g1

g0
ρ2

)
−
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−ρ2L
(0;1)
1+ n

2

(
µk

√
g1

g0
ρ; µk

√
g1

g0
ρ2

))
+

+
(
1 +

n

2

)2
L(0;0)

1+ n
2

(
µk

√
g1

g0
ρ; µk

√
g1

g0
ρ2

)]
mk (ξ) ; (1.15)

σϕξ =
∞∑

k=1

ρ
n
2 g1

[
µkρ2

√
g1

g0
· L(0;1)

1+ n
2

(
µk

√
g1

g0
ρ; µk

√
g1

g0
ρ2

)
−

−
(
1 +

n

2

)
L(0;0)

1+ n
2

(
µk

√
g1

g0
ρ;µk

√
g1

g0
ρ2

)]
m′

k (ξ) ; (1.16)

where

L(i;j)
1+ n

2

(
µ

√
g1

g0
ρ; µ

√
g1

g0
ρ2

)
= J (i)

1+ n
2

(
µ

√
g1

g0
ρ

)
Y (j)

1+ n
2

(
µ

√
g1

g0
ρ2

)
−

−J (j)
1+ n

2

(
µ

√
g1

g0
ρ2

)
Y (i)

1+ n
2

(
µ

√
g1

g0
ρ

)
; i, j = 0; 1;

mk (ξ) = D1ke
µkξ+ D2ke

−µkξ; D1k, D2k are arbitrary constants.
Represent (1.7), (1.8) in the form

Aυ = µ2υ, (1.17)

where

Aυ =

{
−g0

g1

[
d2υ

dρ2
+

(n + 1)
ρ

dυ

dρ
− (n + 1)

ρ2
υ

]
, g0ρ

n

(
dυ

dρ
− υ

ρ

)∣∣∣∣
ρ=ρs

= 0

}
.

It is easy to prove that A is a self- adjoint operator in the Hilbert space L2 (ρ1, ρ2)
with the weight ρn+1 . Consequently, all the eigen values λk (A) = µ2

k are real,
and the eigen functious are orthonormed, complete and form a basis in the space
L2 (ρ1, ρ2) [6]:

(υk; υp) =

ρ2∫

ρ1

υk (ρ) υp (ρ) ρn+1dρ = δkp. (1.18)

Substitute (1.16) in boundary conditions (1.3),

∞∑

k=1

g1ρ
nυk (ρ) m′

k (ξ)

∣∣∣∣∣
ξ=±l

= f± (ρ) . (1.19)

Multiplying expression (1.19) by ρυp (ρ) and integrating within [ρ1, ρ2], allowing
for (1.18) we get

m′
k (ξ)

∣∣
ξ=±l

= t±k ,

i.e. (
µke

µkξD1k − µke
−µkξD2k

)
ξ=±l

= t±k , (1.20)

where

t±k =
1
g1

ρ2∫

ρ1

ρf± (ρ) υk (ρ) dρ.
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After solving (1.20) we determine the unknown constants D1k and D2k:

D1k =
t+k eµkl − t−k e−µkl

2µksh (2µkl)
, D2k =

t+k e−µkl − t−k eµkl

2µksh (2µkl)
.

2. Assume that the cylinder of a small thickness.Study the asymptotic behavior
of the solution of the above studied problem. The left hand side of transcendental
equation (1.12) as an entire function of the parameter µ has a denumerable set of
zeros with concentration point at infinity .

Assume
ρ1 = 1− ε; ρ2 = 1 + ε (2.1)

where ε = r2−r1
2r0

is a small parameter characterizing the cylinder thickness.
Substituting (2.1) in ((1.12), we get:

∆ (µ, ρ1, ρ2) = D (µ; ε) = 0. (2.2)

The function D (µ; ε) as ε → 0 has two groups of zeros with the following as-
ymptotic properties:

a) the first group consists of double zero µ = 0;
b) the second group consists of a denumerable set of zeros that are of order

O
(
ε−1

)
.

Give the sheme of the proof of these properties.
Represent D (µ; ε) in the form:

D (µ; ε) =
4ε

π
µ2

{
g1

g0
+

[
−2

3
µ2 g2

1

g2
0

+
2
3

g1

g0

(
1 +

n

2

)2
+

4
3

g1

g0

(
1 +

n

2

)]
ε2 +

+
[

2
15

g3
1

g3
0

µ4 +
g2
1

g2
0

(
2
15
− 4

15

(
1 +

n

2

)2
− 8

15

(
1 +

n

2

))
µ2 +

g1

g0

(
2
15

(
1 +

n

2

)4
+

+
8
15

(
1 +

n

2

)3
+

4
5

(
1 +

n

2

)2
+

8
15

(
1 +

n

2

))]
ε4 + .....

}
= 0, (2.3)

Note that
D (µ; ε) = µ2D0 (µ; ε)

and lim
µ→0

D0 (µ; ε) 6= 0.

Thus, we get that µ = 0 is a double zero of D (µ; ε) .

Show that all the zeros of D0 (µ; ε) unboundedly increase as ε → 0. Assume the
contrary. Suppose µ → µ∗k as ε → 0. Then the limit relation D0 (µk; ε) = εD∗ (µ∗k) is
valid as ε → 0. The limiting points of the zeros set µk as ε → 0 are determined from
the equation D∗ (µ∗k) = 4g1

πg0
= 0. Consequently the assumption on the existence of

bounded as ε → 0 zeros is not valid.
Determine the character of tendency of µk → ∞ as ε → 0 . As ε → 0 the

following cases are possible:
1) εµk → 0, 2) εµk → const 3) εµk →∞.

Similar to the method in [5] we can show that cases 1) and 3) are impossible
here.
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For constructing the asymptotic of the zeros of the second group, we look for
them in the form :

µk =
δk

ε
+ O (ε) (2.4)

Substituting (2.4) in (1.12) and taking into account the asymptotic expansions
of functions J1+n

2

(
µ
√

g1

g0

)
, Y1+n

2

(
µ
√

g1

g0

)
for large values of the argument, [3] for

δk we get:

sin
(

2
√

g1

g0
δk

)
= 0, (2.5)

i.e. δk = πk

2
q

g1
g0

.

Unlike the isotropic shell for fixed values of “k” and for large values
√

g1

g0
( strong

anisotropy) the variability index of stress state δk tends to zero. In this case, some
boundary layer solutions have no damping properties and may cover the domain
engaged by a shell.

The displacement and stresses corresponding to the root µ2 = 0 are determine
by the following formulas:

u(1)
ϕ (ρ, ξ) = A0ρξ, (2.6)

σ
(1)
ϕξ = g1A0ρ

n+1, σ(1)
ρϕ = 0. (2.7)

Assuming ρ = 1 + εη (−1 ≤ η ≤ 1) , the solutions corresponding to the second
group of zeros may be represented in the form:

u(2)
ϕ =

∞∑

k=1

[√
g1

g0
δk cos

(√
g1

g0
δk (1− η)

)
+ O (ε)

]
mk (ξ) ,

σ(2)
ρϕ =

g1

ε

∞∑

k=1

[
δ2
k sin

(√
g1

g0
δk (1− η)

)
+ O (ε)

]
mk (ξ) , (2.8)

σ
(2)
ϕξ = g1

∞∑

k=1

[√
g1

g0
δk cos

(√
g1

g0
δk (1− η)

)
+ O (ε)

]
m′

k (ξ) .

Show the character of the constructed solutions. Represent the displacement in
the form:

uϕ (ρ, ξ) = A0ρξ +
∞∑

k=1

υk (ρ) mk (ξ) . (2.9)

The displacements determined by the second group of solutions are contained in
the second addend.

For stresses we have :

σϕξ = g1ρ
n+1A0 + g1

∞∑

k=1

ρnυk (ρ) m′
k (ξ) , (2.10)

σρϕ = g0

∞∑

k=1

ρn

(
υ′k (ρ)− υk (ρ)

ρ

)
mk (ξ) . (2.11)
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For the torques Mtrq of stresses acting in the section ξ = const, we have

Mkp = 2π

ρ2∫

ρ1

σϕξρ
2dρ, (2.12)

Substitute (2.10) in (2.12)

Mtrq =
2πg1A0

n + 4
(
ρn+4
2 − ρn+4

1

)
+ 2πg1

∞∑

k=1




1∫

−1

ρn+2υk (ρ) dρ


m′

k (ξ) . (2.13)

Multiply the both parts of (1.7) by ρn+2 and integrate the obtained expression
in [ρ1, ρ2] :

ρ2∫

ρ1

ρn+2υ′′k (ρ) dρ + (n + 1)

ρ2∫

ρ1

ρn+1υ′k (ρ) dρ+

+
g1

g2
µ2

k

ρ2∫

ρ1

ρn+2υk (ρ) dρ− (n + 1)

ρ2∫

ρ1

.υk (ρ) ρndρ = 0 (2.14)

By means of integration by parts and using (1.8), from (2.14) we get:

ρ2∫

ρ1

ρn+2υk (ρ) dρ = 0 (2.15)

Substitute (2.15) in (2.13)

Mkp =
2πg1

n + 4
(
ρn+4
2 − ρn+4

1

)
A0. (2.16)

Solution (2.6) determines the internal stress-strain state of the shell. The stress
state determined by this solution is equivalent to torque Mtrq of stresses acting in
the section ξ = const.

The stress state corresponding to the second group of solutions is selfbalanced
at each section ξ = const, and has the boundary layer character. The first terms of
its asymptotic expansion are equivalent to Saint –Venant’s edge effect in theory of
nonhomogeneous plates [5].
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