Elnara B. SULTANOVA

TO THEORY OF FOURTH ORDER OPERATOR BUNDLES

Abstract

In the paper the conditions on the coefficients of a fourth order operator bundle, providing four-fold completeness of the system of eigen and associated vectors in separable Hilbert space are obtained.

Let H be a separable Hilbert space and assume that

- 1) C is a completely continuous self-adjoint operator in H with a spectrum in the angular sector $S_{\varepsilon} = \{\lambda : |arq\lambda| \le \varepsilon\}, \ 0 \le \varepsilon < \pi/4;$
 - 2) The operators B_j (j = 0, 3) are bounded in H.

Consider in H the operator bundle

$$L(\lambda) = \lambda^4 C^4 + E + \sum_{j=0}^{3} \lambda^j B_j C^j, \tag{1}$$

where λ is a spectral parameter, E is a unit operator in H.

Definition 1. If for some $\lambda \in \mathbb{C}$ there exists, $L^{-1}(\lambda)$ is determined in all of the space H and is bounded, then λ is said to be a regular point of the operator bundle $L(\lambda)$, and $L^{-1}(\lambda)$ is a resolvent of the operator bundle $L(\lambda)$.

If for some $\lambda \in \mathbb{C}$ the equation $P(\lambda_0) \varphi_0 = 0$ has the solution $\varphi_0 \neq 0$, then φ_0 is said to be an eigen number, and φ_0 is called an eigen vector of the bundle $L(\lambda)$ responding to λ_0 . If the vectors $\varphi_0, \varphi_1, ..., \varphi_{m_0}$ satisfy the equations

$$\sum_{m=0}^{s} \frac{L^{(m)}(\lambda_0)}{m!} \varphi_{s-m} = 0, \quad s = 0, ..., m_0,$$

then $\{\varphi_0, \varphi_1, ..., \varphi_{m_0}\}$ is said to be the system of eigen and associated vectors re-

Definition 2. Let $\{\varphi_0, \varphi_1, ..., \varphi_{m_0}\}$ be the system of eigen and associated vectors of the bundle $L(\lambda)$ responding to the eigen number λ_0 . Define the vectors

$$\varphi_q^{(0)} = \varphi_q,$$

$$\varphi_q^{(j)} = \frac{d^j}{dt^j} e^{\lambda t} \left(\varphi_q^{(0)} + \varphi_{q-1}^{(0)} \frac{t}{1!} + \dots + \frac{t^q}{q!} \varphi_0^{(0)} \right) \Big|_{t=0}, \quad (q = 0, \dots, m_0)$$

in H and construct the system $\{\widetilde{\varphi}_q\} \subset H^4$, where $\widetilde{\varphi}_q = \left(\varphi_q^{(0)}, \varphi_q^{(1)}, \varphi_q^{(2)}, \varphi_q^{(3)}\right) \in H^4$, and ${\cal H}^4$ is the product of four copies of the space ${\cal H}.$

If the system $\left\{\widetilde{\varphi}_q\right\}\subset H^4$ formed with respect to all eigen numbers and eigen vectors is complete in H^4 , it is said that the system of eigen and associated vectors of the bundle $L(\lambda)$ is four-fold complete in H.

The theorems on multiple completeness of eigen and associated vectors and the spectrum of such operator bundles were proved for instance in [1-6].

[E.B.Sultanova

In the present paper we study analytic properties of the resolvent and prove theorems on four-fold completeness of the system of eigen and associated vectors of the bundle $L(\lambda)$ in H.

At first prove a theorem on behavior of the resolvent on some rays.

Theorem 1. Let conditions 1), 2) be fulfilled, and it hold the inequality

$$\sum_{j=0}^{3} b_j(\varepsilon) \|B_j\| < \varepsilon, \tag{2}$$

where

$$b_{0}\left(\varepsilon\right) = \begin{cases} 1, & 0 \leq \varepsilon \leq \pi/8 \\ \frac{1}{\sin 4\varepsilon}, & \pi/8 \leq \varepsilon < \pi/4, \ b_{1}^{\left(\varepsilon\right)} = b_{3}\left(\varepsilon\right) = \frac{3^{3/4}}{4} \frac{1}{\cos 2\varepsilon}, \ b_{2}\left(\varepsilon\right) = \frac{1}{2\cos 2\varepsilon} \end{cases}$$

Then on the rays $\Gamma_k = \left\{\lambda : \lambda = r^{\frac{\pi}{4}} e^{\frac{i\pi k}{2}} r > 0, k = \overline{0,3}\right\}$ the operator bundle $L(\lambda)$ is invertible and on these rays it holds the inequality

$$||L^{-1}(\lambda)|| \le const, \quad \lambda \in \Gamma_k, \quad k = \overline{0,3}.$$

Proof. Let $\lambda = re^{\frac{\pi i k}{2}}$, $k = \overline{0,3}$, r > 0. Then from the equality

$$L(\lambda) = L_0(\lambda) + L_1(\lambda) = \left(E + L_1(\lambda) L_0^{-1}(\lambda)\right) L_0(\lambda)$$

we get that for the invertibility of $L(\lambda)$ on the rays Γ_k the invertibility of the operator $E + L_1(\lambda) L_0^{-1}(\lambda)$ is enough, since on the rays Γ_k the operator bundle

$$L_0(\lambda) = E + \lambda^4 C^4 = \prod_{j=1}^4 (E - \lambda \omega_j C)$$

is invertible in H, and

$$L_0^{-1}(\lambda) = (E + \lambda^4 C^4)^{-1} = \prod_{j=1}^4 (E - \lambda \omega_j C)^{-1}.$$

Here

$$\omega_1 = -\frac{1}{\sqrt{2}} (1+i) \,\omega_2 = -\frac{1}{\sqrt{2}} (1-i) \,, \ \omega_3 = -\frac{1}{\sqrt{2}} (1+i) \,, \ \omega_4 = -\frac{1}{\sqrt{2}} (1-i) \,.$$

Show that subject to inequality (3) $E + L_1(\lambda) L_0^{-1}(\lambda)$ is invertible on the rays Γ_k ($k = \overline{0,3}$). Since on the rays Γ_k

$$||L_1(\lambda) L_0^{-1}(\lambda)|| = \left\| \sum_{j=0}^3 \lambda^j B_j C^j L_0^{-1}(\lambda) \right\| \le \sum_{j=0}^3 ||B_j|| ||\lambda^j C^j L_0^{-1}(\lambda)||.$$
 (3)

On the other hand,

$$\|\lambda^{j}C^{j}L_{0}^{-1}(\lambda)\| = \|\lambda^{j}C^{j}(E + \lambda^{4}C^{4})^{-1}\| = \|r^{j}C^{j}(E + r^{4}e^{2\pi ki}C^{4})^{-1}\| =$$

[To theory of fourth order operator bundles]

$$= \left\| r^j C^j \left(E + r^4 C^4 \right)^{-1} \right\|.$$

Note that for $\lambda_n \in S_{\varepsilon}$, $\lambda_n = |\lambda_n| e^{i\psi_n}$, $|\psi_n| < \varepsilon$ and if $\{e_n\}$ is an orthonornmalized basis of eigen vectors of the operator \mathbf{C} , then

$$Ce_n = \lambda_n e_n, \quad (e_n, e_m) = \delta_{nm} = \begin{cases} 1, & n = m \\ 0, & n \neq m \end{cases}, |\lambda_0| > |\lambda_1| > \dots |\lambda_n| \dots,$$

and from the spectral expansion of the operator C it follows that

$$\left\| r^{j}C^{j} \left(E + r^{4}C^{4} \right)^{-1} \right\| = \sup_{n} \left| r^{j} \left| \lambda_{n} \right|^{j} \left(1 + r^{4} \left| \lambda_{n} \right|^{4} e^{i4\psi_{k}} \right)^{-1} \right| =$$

$$= \sup_{n} \left| r^{j} \left| \lambda_{n} \right|^{j} \left(E + r^{4} \left| \lambda_{n} \right|^{4} \left(\cos 4\psi_{k} + i \sin 4\psi_{k} \right) \right)^{-1} \right| =$$

$$= \sup_{n} \left| r^{j} \left| \lambda_{n} \right|^{j} \left(1 + r^{8} \left| \lambda_{n} \right|^{8} + 2 \left| \lambda_{n} \right|^{4} r^{4} \cos 4\psi_{k} \right) \right|^{-1} =$$

$$= \sup_{n} \left(\left| r \right| \left| \lambda_{n} \right|^{j} \right) \left(1 + r^{8} \left| \lambda_{n} \right|^{8} + 2 \left| \lambda_{n} \right|^{4} r^{4} \cos 4\varepsilon \right)^{-1/2} \le$$

$$\leq \sup_{\tau > 0} \tau^{j} \left(1 + \tau^{8} + 2\tau^{4} \cos 4\varepsilon \right)^{-1/2} .$$

Let j=0. Then for $\lambda \in \Gamma_k (k=\overline{0,3})$

$$\left\| \left(E + r^4 C^4 \right)^{-1} \right\| \le \sup_{\tau \ge 0} \frac{1}{\left(1 + \tau^8 + 2\tau^4 \cos 4\varepsilon \right)^{1/2}}.$$

Since the function $f(\tau) \frac{1}{1+\tau^8+2\tau^4\cos 4\varepsilon}$ monotonically decreases for $0 \le \varepsilon \le \pi/8$, then $\sup_{\tau \ge 0} \frac{1}{1+\tau^8+2\tau^4\cos 4\varepsilon} = 1$, and for $\pi/8 \le \varepsilon \le \pi/4$ the function $f(\tau)$ accepts its maximum value for $r^4 = -\cos 4\varepsilon$ ($\cos 4\varepsilon < 0$), therefore

$$\sup_{\tau>0} \frac{1}{1+\tau^8+2\tau^4\cos 4\varepsilon} = \frac{1}{\sin^2 4\varepsilon}.$$

Consequently,

$$\left\| \left(E + r^4 C^4 \right)^{-1} \right\| \le b_0 \left(\varepsilon \right) = \begin{cases} 1, & 0 \le \varepsilon \le \pi/8 \\ \frac{1}{\sin 4\varepsilon}, & \pi/8 \le \varepsilon \le \pi/4 \end{cases}$$
 (4)

Let j = 2. In this case

$$\left\| r^2 C^2 \left(E + \lambda^4 C^4 \right)^{-1} \right\| \le \sup_{\eta \ge 0} \left| r^2 \left(1 + r^8 + 2\tau^4 \cos 4\varepsilon \right)^{-1/2} \right| \le$$

$$\le \sup_{\eta > 0} \left(\frac{\tau^4}{1 + \tau^8 + 2\tau^4 \cos 4\varepsilon} \right)^{1/2} = \frac{1}{2 \cos 2\varepsilon} = b_2 \left(\varepsilon \right).$$

$$(5)$$

Let j = 1. In this case

$$\left\| rC \left(E + \lambda^4 C^4 \right)^{-1} \right\| \le \sup_{\tau \ge 0} \left| \tau \left(1 + r^8 + 2\tau^4 \cos 4\varepsilon \right)^{-1/2} \right| \le$$

$$\leq \sup_{\tau \geq 0} \left(\frac{\tau^{2}}{1 + \tau^{8} + 2\tau^{4} \cos 4\varepsilon} \right)^{1/2} \leq \sup_{\tau \geq 0} \left(\frac{\tau^{2}}{1 + \tau^{8} + 2\tau^{4}} \right)^{1/2} \times \\
\times \left(\frac{1 + \tau^{8} + 2\tau^{4}}{1 + \tau^{8} + 2\tau^{4} \cos 4\varepsilon} \right)^{\frac{1}{2}} = \frac{3^{3/4}}{4} \cdot \left(1 + \frac{2\tau^{4} \left(1 - \cos 4\varepsilon \right)}{1 + \tau^{8} + 2\tau^{4} \cos 4\varepsilon} \right)^{1/2} \leq \\
\leq \frac{3^{3/4}}{4} \cdot \left(1 + \frac{4\tau^{4} \sin^{2} 2\varepsilon}{1 + \tau^{8} + 2\tau^{4} \cos 4\varepsilon} \right)^{1/2} \leq \frac{3^{3/4}}{4} \cdot \left(1 + \frac{4\sin^{2} 2\varepsilon}{4\cos^{2} 2\varepsilon} \right) = \\
= \frac{3^{3/4}}{4} \cdot \frac{1}{\cos 2\varepsilon} = b_{1}(\varepsilon). \tag{6}$$

For j = 3, similarly we have

$$\left\| r^{2}C^{3} \left(E + \lambda^{4}C^{4} \right)^{-1} \right\| \leq \sup_{\eta \geq 0} \left| \tau^{3} \left(1 + r^{8} + 2\tau^{4} \cos 4\varepsilon \right)^{-1/2} \right| \leq$$

$$\leq \sup_{\eta \geq 0} \left(\frac{\tau^{6}}{1 + \tau^{8} + 2\tau^{4} \cos 4\varepsilon} \right)^{1/2} \leq \sup_{\eta \geq 0} \left(\frac{\tau^{6}}{1 + \tau^{8} + 2\tau^{4}\varepsilon} \right)^{1/2} \times$$

$$\times \left(\frac{1 + \tau^{8} + 2\tau^{4}}{1 + \tau^{8} + 2\tau^{4} \cos 4\varepsilon} \right)^{1/2} \leq \frac{3^{3/4}}{4} \cdot \frac{1}{\cos 2\varepsilon} = b_{3}(\varepsilon) .$$

$$(7)$$

Thus, taking into account inequalities (4-7) in inequality (3), we get that for $\lambda \in \Gamma_k, k = \overline{0,3}$

$$\left\|L_1 L_0^{-1}(\lambda)\right\| \le \sum_{j=0}^3 b_j(\varepsilon) \left\|B_j\right\| \le \alpha(\varepsilon) < 1.$$

Then $L^{-1}\left(\lambda\right)=L_{0}^{-1}\left(\lambda\right)\left(E+L\left(\lambda\right)L_{0}^{-1}\right)^{-1}$, for $\lambda\in\Gamma_{k},\,k=\overline{0,3}$ Thus, for $\lambda\in\Gamma_{k},\,k=\overline{0,3}$

$$\left\|L^{-1}\left(\lambda\right)\right\| \leq \left\|L_0^{-1}\left(\lambda\right)\right\| \left\|\left(E + L_1\left(\lambda\right) L_0^{-1}\left(\lambda\right)\right)^{-1}\right\| \leq \frac{b_0\left(\varepsilon\right)}{1 - \alpha\left(\varepsilon\right)} = const.$$

The theorem is proved.

Now, let's prove the following theorem.

Theorem 2. Let the conditions of theorem 1 be fulfilled. Then the operator bundle $L(\lambda)$ has only a discrete spectrum with a unique limiting point at infinity.

If $C \in \sigma_{\rho}$ $(0 < \rho < \infty)$, then $L^{-1}(\lambda)$ is represented in the form of ratio of entire functions of order ρ and of minimal type at order ρ .

Proof. Obviously,

$$L(\lambda) = E + \lambda^4 C^4 + \sum_{j=1}^3 \lambda^j B_j C_j + B_0 = (E + B_0) + \lambda^4 C^4 + \sum_{j=1}^3 \lambda^j B_j C^j.$$

Since $\alpha(\varepsilon) < 1$, hence it follows that $||B_0|| < b_0^{-1}(\varepsilon) < 1$. Thus, the operator $E + B_0$ is invertible and bounded in H. Then

$$L(\lambda) = \left(E + \sum_{j=1}^{3} \lambda^{j} B_{j} C^{j} (E + B_{0})^{-1} + \lambda^{4} C^{4} (E + B_{0})^{-1}\right) (E + B_{0}).$$

Transactions of NAS of Azerbaijan $\overline{\text{[To theory of fourth order operator bundles]}}$

Let

$$Q(\lambda) = \sum_{j=1}^{3} \lambda^{j} B_{j} C^{j} (E + B_{0})^{-1} + \lambda^{4} C^{4} (E + B_{0})^{-1}.$$

Then for $\lambda \in \mathbf{C}$ the operator $Q(\lambda)$ is a completely invertible operator in H, and

$$L(\lambda) = (E + Q(\lambda))(E + B_0).$$

Since E + Q(0) = E is invertible in H, then by the Keldysh lemma, the operator function $E + Q(\lambda)$ has a discrete spectrum with a limit point at infinity. From the representation

$$L^{-1}(\lambda) = (E + B_0)^{-1} (E + Q(\lambda))^{-1},$$

we get that $L(\lambda)$ also has a discrete spectrum with a unique limit point at infinity.

If $C \in \sigma_{\rho}$, then the operators $B_j C^j (E + B_0)^{-1} \in \sigma_{\rho/j}$, $j = \overline{1,3}$, $C^4 \in \sigma_{\rho/j}$. Then by the Keldysh lemma, $L^{-1}(\lambda)$ is represented in the form of ratio of two entire functions of order

$$\max_{j=\overline{1,4}} \left(j \cdot \frac{\rho}{j} \right) = \rho.$$

and of minimal type at order p.

The theorem is proved.

Now prove a theorem on four-fold completeness of the system of eigen and associated vectors.

Theorem 3. Let the conditions of theorem 1 be fulfilled, and $A^{-1} \in \sigma_{\rho}$ $(0 < \rho \le 2)$. Then the system of eigen and associated vectors is four-fold complete in H.

Proof. Assume the contrary. If the system of eigen and associated vectors of the bundle $L(\lambda)$ is not a four-fold complete system in H, then there exist the vectors $f_i(j=\overline{0,3})$ even one of which is not zero, the vector-function

$$R(\lambda) = (L^{-1}(\overline{\lambda}))^* \sum_{j=0}^{3} \lambda^j f_j$$

is an entire function [1]. Since on the rays $\lambda \in \Gamma_k$, $k = \overline{0,3}$ $L^{-1}(\lambda)$ exists and it holds the estimation $\|L^{-1}(\lambda)\| \leq const$, then by the Fragmen –Lindeloff theorem the operator bundle $\|L^{-1}(\lambda)\| \leq const$ for all λ from the complex plane, since $0 < \rho \le 2$ and the angle between the neighboring rays Γ_k equals $\frac{\pi}{4}$. Therefore,

$$||R(\lambda)|| \le const |\lambda|^2, \quad \lambda \in \mathbf{C}.$$

Hence we have $R(\lambda) = g_0 + \lambda g_1 + \lambda^2 g_2 + \lambda^3 g_3$. Then $\sum_{i=0}^{3} \lambda^j f_j = L^*(\overline{\lambda}) \sum_{q=0}^{3} \lambda^q g_q$.

Comparing the coefficients in front of λ^7 , we get $C^{*4}g_3=0$, i.e. $g_3=0$. Similarly we have that all $g_j = 0$, j = 0, 1, 2. Thus, $R(\lambda) \equiv 0$. Hence it follows that $f_0 = f_1 = f_2 = f_3 = 0$. This contradiction proves the theorem.

The theorem is proved.

Using the results of the Keldysh paper [1], the following theorem is easily proved.

[E.B.Sultanova

Theorem 4. Let the conditions of theorem 3 be fulfilled, and the operators T_j , be completely continuous in H, then the system of eigen and associated vectors of the bundle

$$M(\lambda) = E + \lambda^4 C^4 + \sum_{j=0}^{3} \lambda^j (B_j + T_j) C^j$$

is four-fold complete in H.

References.

- [1]. Keldysh M.V. On completeness of eigen functions of some classes of not self-adjoint operators. UMN, 1971, vol. 26, No 4, pp. 15-41 (Russian).
- [2]. Allahverdiyev J.E. On completeness of the system of associated vectors close to normal ones. DAN SSSR, 1957, vol. 115, No 2, pp. 207-210 (Russian).
- [3]. Radzievskii G.V. A problem on completeness of the root vectors in spectral theory of operator-functions. // Uspekhi matem. Nauk, 1982, vol. 37, No 2, pp. 81-145 (Russian).
- [4]. Gasymov M.G. To theory of polynomial operator bundles of operators. DAN SSSR, 1971, vol. 199, No 4, pp. 747-750 (Russian).
- [5]. Mirzoyev S.S., Karaaslan M.D. On well-posed solvability of a boundary value problem for second order operator-differential equations. // Vestnik Bakinskogo Universiteta. ser. fiz. mat. Nauk, 2013, No 2, pp. 21-28 (Russian).
- [6]. Sultanova E.B. On a spectrum of a class of quadratic operator bundle. Izvestia Pedagogicheskogo Universiteta. 2013, No 1, pp. 11-15 (Russian).

Elnara B. Sultanova

Baku State University,

23, Z. Khalilov str., AZ 1148, Baku, Azerbaijan

Tel.: (99412) 539 47 20 (off.).

Received October 03, 2013; Revised December 12, 2013.