Yasin Ya. GULIYEV, Javanshir J. HASANOV¹

THE BOUNDEDNESS OF B-RIESZ POTENTIAL IN WEIGHTED B-MORREY SPACES

Abstract

We consider the generalized shift operator, associated with the Bessel (Hankel) differential operator $B = \frac{\partial^2}{\partial x^2} + \frac{\gamma}{x} \frac{\partial}{\partial x}$, $\gamma > 0$. The fractional maximal operator $M_{\alpha,\gamma}$ (fractional B-maximal operator) and the Riesz potential $I_{\alpha,\gamma}$ (B-Riesz potential), associated with the generalized shift operator are investigated. At first, we prove that the fractional B-maximal operator $M_{\alpha,\gamma}$ is bounded from the weight B-Morrey space $\mathcal{L}_{p,\lambda,|\cdot|^\beta,\gamma}$ to $\mathcal{L}_{q,\lambda,|\cdot|^\beta,\gamma}$, where $1/p - 1/q = \alpha/(1+\gamma-\lambda)$, $1 , for all <math>1 \le p < \infty$ and $0 \le \lambda < 1+\gamma$.

We study the B-Riesz potential in the weight B-Morrey space. We prove that B-Riesz potential $I_{\alpha,\gamma}$, $0 < \alpha < 1+\gamma$ is bounded from the weight B-Morrey space $\mathcal{L}_{p,\lambda,|\cdot|^{\beta},\gamma}$ to $\mathcal{L}_{q,\lambda,|\cdot|^{\beta},\gamma}$, where $1/p-1/q=\alpha/(1+\gamma-\lambda)$, $1 , for all <math>1 and <math>0 < \lambda < 1+\gamma$.