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Elshad G. GAMIDOV

ON A BOUNDARY VALUE PROBLEM FOR
SECOND ORDER OPERATOR-DIFFERENTIAL
EQUATIONS IN SPACE OF SMOOTH
VECTOR-FUNCTIONS

Abstract

In the paper the solvability conditions in abstract spaces of smooth vector-
functions for some initial-boundary value problems for a second order equation
with operator coefficients are found. All these conditions are expressed by the
features of coefficients of an operator-differential equation.

Let H be a separable Hilbert space, A a positive-definite self-adjoint operator in
H, H, (v > 0) a scale of Hilbert spaces generated by the operator A, i.e.

H,=D(A"), (z,y),=(A"2,A"), =z,y€ H,.

Let Ly (Ry; H) be a Hilbert space of vector-functions f (¢) determined almost
everywhere in R with the values in H, for which

1/2

0 stry = /Mﬂwwﬁ
0

Following the monograph [1] define the following space for natural m > 1:
Wi (R H) = {u () : ul™ (1) € Ly (R H),  A™u(t) € Ly (Rys H) |,

with the norm

) , 1/2
! A )

||UHW§"(R+;H) - Q Ly(R+;H)

For m = 3 we’ll derive subspaces in W3 (Ry; H)

W;Q?)(RJF;H): {u:ueWs (Ry; H),u(0)=u'(0)=0}.

The spaces Lo (R; H) and W3" (R; H) for R = (—00; 00) are determined similarly.
Let L(X,Y) be a space of linear bounded operators acting from X to Y.
Consider in H the following boundary value problem

d?u d7u

ﬁ—i-(pA—i-/h) dt+(qA2+A2)U(t):f(t)7 te Ry (1)
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where f (t), u(t € H) for t € R4 almost everywhere, and the operator coefficients
satisfy the following conditions:

1)p>0, ¢g>0.

2) A is a positive-definite self-adjoint operator;

3) The operators A; € L(Hy,H)N L (H2,Hy), Ay € L(H2,H)N L(Hs, Hy),

Definition 1. It for f(t) € W} (Ry; H) there exists the vector-function u (t) €
W3 (Ry; H) that satisfies equation (1) identically in Ry = (0,00), then u (t) will be
called a smooth solution of equation (1) from W3 (Ry; H).

Definition 2. If for any f (t) € Wy (Ry; H) there exists a smooth solution u (t)
of equation (1) from W3 (Ry; H) that satisfies boundary conditions in the sense of
convergence tli}EO lu(@)l5/2 =0, tliTO [u' (t)ll3/2 =0 and it holds the estimation

||UHW23(R+;H) < const Hf‘|W21(R+;H) ’

then problem (1), (2) is called regularly solvable in the space W3 (Ry; H).

In the given paper we find a condition on the coefficient of equation (1) that
provides regular solvability of the problem in space W3 (R ; H). Notice that for the
elliptic equation (p = 0, ¢ = —1) such problems were investigated in [2,3.4].

Denote by

Pyu = Py (d/dt)u = u" + pAu + qA*u, uwe W3 (Ry; H)
du ° 3
Piu=P (d/dt)u:Ala—i—Azu, ue Wy (Ry; H)

Pu= Pyu+ Piu, ucW;(Ry;H).

It is easy to see that subject to condition 1) the bundle
Py (X\) = A2+ pAX + qA?

is of the form Py (\) = (A —w1A) (A — waA), where Rew; < 0, Rewsy < 0.
Therefore equation (1) belongs to the parabolic type. For f € Lo (Ri;H),
u € W3 (Ry; H) this problem was studied in [5].
At first consider the following equation

Pu=f, ue Wi (R H), feWy(RyH).

It holds the following theorem.

Theorem 1. Let conditions 1) and 2) be fulfilled. Then the operator Py iso-
morphically maps the space W3 (Ry; H) onto Lo (Ry; H).

Proof. Show that the kernel of the operator Py consists of only a zero element.

Since the general solution of the equation Py (d/dt)wu(t) = 0 from the space
W3 (Ry; H) is of the form

U (t) — ewltAQOO + CWQtA(Pl
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for wy # wo or
up (1) = 1y + tAe*2 o)

for w1 = wy where ¢, p; € Hy)y, w1 and wy are the roots of the polynomial
Py(\) = A2 +pX+q.

In the first case (w; # wa) from boundary condition (2) it follows that ¢y + ¢, =0
and w1 Apy + waAp; = 0 or ¢ = —py and (w1 — wa) Apy = 0. Hence it follows
Apy = 0 ie. ¢y = 0. Consequently ¢; = 0, i.e. ug(t) = 0. In the second case
(w1 = wa) from condition (2) it follows that ¢y = 0 and ¢; = 0, i.e. wuo(t) = 0.
Thus, KerPy = {0}.

Now show that the image of the operator Py coincides with W3 (Ry; H). Since
f € W} (R,4; H), we can continue it on the negative semi-axis so that [1] its contin-
uation fi (t) € W4 (Ry; H), and

Ifillw ey my < const[fllwarym -

Then from the equation Py (d/dt) u (t) = fi (t), after Fourier transformation we get
that the vector-function

1 1~

uy (t):m/ (EE + EpA + qA?) "F©et teR

satisfies the equation Py (d/dt) = f (t) in R,. Show that u; (t) € W3 (R; H). From
the Plancherel theorem it follows that it suffices to prove A%y (&) € Lo (R; H) and
E3 A%, (€) € W3 (R; H). Obviously,

<

48 @l = [4° B+ 04+ ) R0 <

<

< sup HA2 (§2E +EpA+ qu)—IH ' HAE (5)‘ La(R;H)

£eA

< constig}z HA2 (fZE +E{pA + qAQ)ilH : Hf||W21(R+;H) : (3)

On the other hand, for any £ € A

HA2 (€2E+§pA+qA2)71H = sup ‘Mz (& +€pu+qu2)71‘ <

pea(A)
< 27,2 -1 2 -1 -1/2
sup |(&2/p* +pé/u+q) | <sup|r?+pr+q| <By 77,
B> o >0
where
2 2
~1/2 _ ) pag—p) 721 >
0 1 < P
q’ 1= 5
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From (3) it follows that A%uy (€) € Ly (Ry; H). Tt is similarly proved that &3uy (€) €
Lz (Ry; H). Now denote by &; (t) = u1 (t) /j0,00); 1-€. & (t) is the contraction of
the vector-function uy (t) on [0,00). Then & (t) € W3 (Ry; H) and & (0) € Hjo,
&1 (0) € Hy 5. Now we'll look for the solution of the equation Pyu = f in the form

u(t) =& (t)+ ewltA% + ewztASf’l, ®o.p1 € Hspp for wi # ws.

Hence, using boundary conditions (2), we get:

o+ o1 =—6(0) and wiAp; +wadp, = =& (0).

Since &; (0) € Hs /o and &) (0) € Hyo, then ¢y = ﬁ [A71E](0) + wet’ (0)] €
Hs/o and ¢ = —p — &, (0) € Hy/9. Consequently, u € W3 (Ry; H) i.e. the image
of the operator Py coincides with the space Ls (Ry;H). On the other hand, for
ue W3 (R H)

2

d
1Psulos o) = 1A~ Poull . o) + HPou
5 (R4:H) (Ry;H) dt LRy sH)

= ||Au" + pA*/ —&—A?’uHiQ(R%H) + || + pAu” —|—A2u’}|i2(R+;H).

Using the theorem on intermediate derivatives, we get

|’P0UHW21(R+;H) < const Hu\|W§>(R+;H) .

Finally, applying the Banach theorem on the inverse operator we get the statement
of the theorem.
Consider in the space Hg the following operator bundles of sixth order

Ro (N ;A) =

= ((M)‘L E+ (p* —2q) (iA)* A% + > A* — ﬁA4) (=\2E + A?) (4)
and
Ry (N7 4) =
- ((M)4 E+ (p? — 2q) (iX)? A% + @2 A* — 4 (i))? AZ) (=X2E+ 42 (5)
where p, q are real numbers, 3 and ~ real parameters.
It holds the following

Theorem 2. Let p > 0, ¢ > 0. Then for 8 € [0,5,), and for v € [0,7,)
operator bundles (4) and (5) have no spectrum on the imaginary azis, where

2 p
q-, 0<QS7
ﬁoz{ 2(4g—p2 2 (6)
%7 QZ%v 70:p2

and they are represented in the form

Ro (N85 A) = Fo (A 85 A) Fo (—A; 85 A), (7)
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Ri (M A) = Fr (Mv; A) Fr (=13 A), (8)

where

3
H (AE —wjpo(8) A) =
= NE+c20(3) )\2A+c10(5) AA% 4 o0 (8) A3 (9)
3
H AE — w] 1 A) =

= NE+a1,0 (7) N*A+ a0 (7) AA® + ago (7) A°. (10)

Here wj () = wjo (a) = —1, Rew;o () < 0, wj1(y) <0, for g € [0,8,) and
v € [0,7¢), and the numbers

02,o=1+2\/\/q2—ﬁ+p2—2q7 cl,o:\/2Vq2—ﬂ+p2—2q+\/q2—ﬁ

co0 (B) =vVq*— D, (11)
as1 (V) =1+ VP2 =7, at1 =V —7+4¢ aoi(7)=q. (12)

Proof. Prove the statement for the bundle R; (\;~; A), since it is proved for
Ry (X\; B; A) similarly.
Let pe€o(A) (> pg>0). Then for A\=i€, £ € R

Ry (i&yip) = (4 12) (€8 + (0° — 20) €1 + ¢Ppt — vEp7) =
_ (52 +H2) <1 PN &2 ) (54 n (p2 _ 2q) €22 + q2,u4) —
€+ (17— 20) €2 + Pt

¢ (pPP—29) &
:(§2+M2)M4<H4+( H2) —l—q2>><

y <1_7 : &/u i ) >
(/)" + (p* —2q) (&/p)° + ¢
2 2 4 (4 2 2 2 _ 7_2
2 (€@t (4 02 P ) (1 T ).

Since, 74 + (p2 — 2q) 724+ ¢ > 0, that

Ry (i&y;p) > (62 +p?) p* (1—vpl2> > 0.

Thus, for v € [0,79) (7o =p*) the polynomial Ry (\;~; ) has no roots on the
imaginary axis. Then its roots are symmetric with respect to the real axis and origin
of coordinates. Therefore

Ry (Nysp) = Fr (N vsp) - Fr (=X vip) (13)
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where
Fr(syip) = A+ p) - A —wn (M) A —wiz (V) p), (14)
where
Rewi1(7) <0, Rewia(y)<0.
Assuming

Fr (v p) =X + a1 () Mp+ arg () A+ aon () 12,

by comparing the coefficients in equality (13), we find the coefficients az; (), a1,1 (),
a1o (7)-

The proof is obtained from equality (13) by using the spectral expansion of the
operator A. The theorem is proved.

Lemma 1. Let u € W3 (Ry; H). Then

5 d3u||? ( 9 ) d*u ||
HPouH 1 iy = ‘ = + (P +1-2¢q HA +
Wa ) dt? La(RysH) dt? Ly (Ry;H)
T (¢ +p* - 20) HAC;U eV ——
t La(R4:H) o
where p = AY24" (0).
Proof. It is obvious that
dBu  dPu du
P 2 = A A2
|| Ou”WQI(R+;H) ‘ dtSp dtQ q dt L2(R+;H)+
2
PR +p + gA%u =
H dt? La(Ry;H)
d3u||? 9 d2u||? Qdu
=73 +p° || A= +q° |A +
’ At ||, (ry ) dt? ||, (r ) At || 1y (R )

d? d? d? d
+2pRe (g,Ag) +q22Re< ?,AQ u> +
dt? A ) 1o (reom) dt® At 1y

d“u du d’*u
+pg2 Re <A, A% ) - HA
dt? dt ) 1, dt2

d*u AQdu) n
dt?” dt ), r. )

+
Lo(Ry;H)

2 || 420v du

2
> +q2HA3UHL2(R+;H)+2pRe <A

Lo(R4;H)

d*u d
g2 Re <A Au > 1 ¢2Re (AQU,A?’U (15)
LQ(R+7 )

dt2’ dt > Lo(RasH)

For u € Wi (Ry: H) (u(0) = ' (0) = 0)

Bu d*u d?u dBPu
<dt3’ Adt2> =~ (A2 (), 412 (0) - <Adt2’ dt3>
Lo(Ry;H) Ly (Ry;H)
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i.e.

dPu  d*u 2
2Re (G A%z ) == [0 Ol == el (16)
Similarly we have
3 2. 112
<d1;’ 2du> — (Al/Zu// (O) ,A3/2u/ (O)) _ HAdg (17)
and
d? d du d?
(Ag, 2“) = — (4% (0), 42 (0)) - (A”, 3)
dt*=dt ) p,r ) dtdt* ) (k.
i.e. )
2Re (Ad;‘, A2d“> = 0. (18)
dt At ) (R
For u € W3 (R4 ; H) the following equalities are proved similarly
2
Re <Ad1;,A3u> =— HAQdZ (19)
dt dt La(Ry;H)
du 5
2Re( A—,A%u ) =0. (20)
dt
Taking into account equality (16)-(20) in (15), we have:
dBu|? d*u
||P0UH2 1 . = ‘ — + p2 +1—2¢q HA +
WD At ||y ( | ar La(RysH)
+(¢* +p* — 2q) HAd“ i +q2HA3uHiQ(R ) —pllel?.
dt || 1, Ry m) +
The lemma is proved
Lemma 2. For u € W3 (Ry; H) it holds the equality
|1 F1 (d/dt;v; A) UH%Q(R+;H) + (a21 (v) —p) =
du||?
= 1Pl moomny — 7 HA : (21)
Ws (R4;H) dt WA(RasH)

Proof. For u € W3 (Ry; H) it holds the following equality

1Py (d/dt; v; A) ull ]y m, oy =

2

d3u d?u du
= |55 +a21 (1) A= +a11 (7) A2 + a1 () A%u =
' dt? dt? dt Lo(Ry3H)
d3u 2 d2u
= ' i + a%,1 ("7) HAdﬁ T
Lo(Ry;H) La(R+;H)
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du ||? 2
2 2 2 3
A La(Ry:H) + o [ Ay i +
By du d3u du
+2Reag 1 (7v) (, A) +2Reay; () <, A2> +
dt* " dt? ) 1, ry ) dt* " dt ) 1y (rym)
d3u d*u du
+2Reao (v) < 3 =, Ay > + 2az2,1 (7) a1,1 (7) <A27A2> +
dt Lo(RasH) dt* " dt ) 1 (rasm)
*u g odu 3
+2a2,1 (7) a0 (7) Aﬁw‘l u +2a1,1 (7)-ao1 (7) | A o Au .
t Lo(Ry3H) L Lo(Ry3H)
Taking into account u (0) = «’ (0) and (16)-(20), we get:
B ||? a2u ||
I @75 )l i, = | +ad ()4 +
S Lt | sy At ||y (ry o)
dul|? 2 2
+ai; (7) HAth +ag, HA3“HL2(R+-H) —az1 () llal” ~
Lo(Ry;H) 7
d?u du ||?
—2a1,1 () HAd? —2a21 (7) ao1 (7) HAzd =
N Lo (RosH) Ul LRy
d3u||? d2u||?
= ‘ s + (a1 () = 2a1,1 (7)) HAdtz +
Lo(Ry;H) Lo(Ry;H)
2 2du 2
+ (aiy (7) = 2a21 (7) a10 (7)) || A —az1 () llelly)s-
Ly (Ry;H)
Taking into account ag (v) = 1++/p> =7 a11 (v) = VP> —v+¢, aio(y) =4q,
we get:
) dBu|? ) d*u
1F1 (d/dts v A) ull Ly mym = || g5 + (L+p° —2q) Aﬁ +
2 Lo (RysH) P Lo (R 1)
2 2 du|? 2
+(P*+¢*—2q) | A= +az21 () [lelli )2 —
dt /
La(R4;H)
2 2
— (HAdu + ’A2du ) :
At ||y (ry i) ALy (R
d’LL . .
Since H T La(RusH) + H A? HL2 (Ry:H H EHW%(R%H) then taking into ac-

count the lemma in the last equahty, we get:

1Py (d/dt; v A) ], m, o + (21 () = ) llell3 5 =

dfuz
dt

2
= HPOU‘|W21(R+;H)_7HA .
W3 (R ;H)

Similarly we prove
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Lemma 3. For u € W3 (Ry; H) it holds the equality
1Fo (d/dt; 55 A) ull gy oy + (21 (B) = B) el o =
2 2,12
= ”P0u||W21(R+;H) -p HA “HWZ}(RJF;H) : (22)

Note that it follows from theorem 1 that in space W3 (Ry;H) the norms
||P0u||W21(R+;H) and ||u||W23(R+;H) are equivalent, therefore the following norms are
finite

-1
Ny = H HPOU’HWQ(PH_;H) (23)

07éu€W3 (R+;H

Wl R+7 )

and
No = sup ||A2uHW21(R+;H) : HP()U|";/121(R+;H) (24)
0£uEWS (R4 H)
Further, by obtaining the solvability conditions of problem (1), (2), the norms
N7 and Ny are very important.
Theorem 3. The norm

b 0<p<l
Ny = N
(&) p>1
Proof. Carrying out similar reasonings of the paper [6] we get that if the
equation (a1 (y) —p) = 0 (see formula (21)) has no solution from the interval
(0,70) (’yo :p2), then Ny = 'yal/Z = %. If the equation (ag1(y) —p) = 0 has a

solution from the integral (0,7,), then Nj is the inverse of the square root of the
least of these solutions. Therefore, we should solve the equation as; (y) —p = 0.
Consequently,

I+Vp?=y-p=0 (25)
or

pP-y=p-1L

It is obvious that for p < 1 this equation has no solution from the interval (0, p).
Therefore Ny = %, for 0 < p < 1. And for p > 1 the equation (25) has the solution

v, =2p—1¢€ (0,p). Therefore Ny = <T171>1/2 for p > 1. The theorem is proved.
The following theoprem is proved in the same way.
Theorem 4. The norm
B Pp<t; p>1, q<p-1
No = 2 2\2 1
<q —(2¢—2p+1) ) , p>1, g>p—3

Proof. In order to find the number Ny we should solve the equation ¢11 (6)—p =
0 (see formula (22)). Then

1—1—\/2 P—-p+p*P—2q=p
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i.e.

\/2\/q2—5+p2—2q:p—1. (26)

Then for p < 1 the equation ¢; ;1 () —p = 0 has no solution from the interval (0, 3).
Therefore for p < 1, Ng = ﬁalﬂ. Let p > 1. Then

2V —B+p*—2¢=(p—-1)?%, 2V/¢*—B=2¢—2p+1.

Obviously, for ¢ < p — %(p > 1) the equation (26) has no solution from the
interval (0, 3). Therefore Ny = 651. Ifg>p-— %, then for ¢ < % the equation (25)
has the solution 3, = ¢*> — (2¢ — 2p + 1) € (0,,). Therefore Ny = ﬂl_l/Q, and for
q > p* we get p— 5 < q < p*.

Hence we have that (p — 1)2 < 0. And this is impossible.

Therefore, in this case, No = /2 45 well. The theorem is proved.

Now prove the main theorem.
Theorem 5. Let conditions 1)-3) be fulfilled, and

g = Nimax (||A1HH1—>H ) ||A1”H2—>H1) + No max (HA2||HQAH ) ”A2HH3—>H1) <1,
where the numbers N1 and Ny are determined from theorems 8 and 4, respectively.
Then problem (1) (2) is reqularly solvable in W3 (Ry; H).

Proof. By theorem 1, the operator Py isomorphically maps the space W3 (R ; H)

onto Wi (Ry; H). Then for any w € Wi (Ry; H) there exists u € Wi (R4; H) such
that Py 'w = u. Now write the problem (1), (2) in the form of the equation

Pu=Pu+Pu=f, uweWs(RyH), feWy (R H).

After substitution of u = P(;lw we get the equation (E + PlP(;l) w=f in
W4 (Ry; H). Since for any w € W (Ry; H)

B du
o Ut
du
< (|41, + 1 Agullyyy ry iy =
H Aty (ry ;) W)
, ) 1/2
()
N Ly (rosm) Ul Lo (Rysi)
1/2
du 2 9 2 d2u
n HA Al ey | < (A HA +
( At | Loy Falfteith | HH T at? L2(R+;H)
2 1/2
_2)2 2 du -2/|2 2,12
Y e S Rt (L7 AP
La(Ry;H)
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a2 2 1/2 _ _
a7 HAgu\uQ(m;H)) < (A4 A A2 )

9 1/2
(% ) -
Lo(Ry;H)

+max (HAQA* AA?A%HH—»H) x

Qd U
dt?

= max (||A1HH1_>H NA gy, ) X

20U
dt

" HA
Lo(Ry;H)

Mo

1/2
2
+ HA%HMW) _

Ry;H)

du
dt +max (|42l g, » [Aoll gy ) - HA2“HW§(R+;H) ’

X HA
W3 (R4;H)

Applying theorems 3 and 4, we get

HPP()_I“HWQ(R+;H) =

< (Nl max (HA1||H1—>H ) ”A1||H2—>H1) + N max <||A2HH2—>H ) ||A2||H3—>H1)))X
X HPOUHW1 (Ry;H) — 4 HPOUHW1 (Ry;H) = 4 Hwﬂwl (Ry;H) -

Since by the theorem condition ¢ < 1, then the operator F + P1P is invertible in
Wy (Ry; H). Then w = (E+ PPy ) f, andu =Py (E+ PPy )_1 f. Hence
it follows that

||U||W§(R+;H) < const ”fHWQI(R+;H) :

The theorem is proved.
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