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COMMUTATOR OF ANISOTROPIC RIESZ
POTENTIAL IN ANISOTROPIC GENERALIZED
MORREY SPACES

Abstract

In this paper it is proved that, if b € BMO,, then commutator of the
anisotropic Riesz potential operator [b, In |, 0 < o < |o| is bounded on anisotropic

n

generalized Morrey spaces My o, -, where |o| = > o; is the homogeneous di-
i=1

mension of R". We find the conditions on the pair (p;,9,) which ensure the

Spanne-Guliyev type boundedness of [b, 15| from the space My, 5 to M,

;92,07
l<p<g<oo,1/p—1/q=af|o|. We also find the conditions on the @ which
ensure the Adams-Guliyev type boundedness of 1o, from M 1 to M 1

PP 0 a.99,0

forl<p<q<oo.

1. Introduction

In the present paper we will prove the boundedness of the anisotropic Riesz
potential operator in the anisotropic generalized Morrey spaces.

For x € R™ and t > 0, let B(z,t) denote the open ball centered at = of radius ¢ and
B(z,t) = R"\ B(z,t). Let 0<b<1,0= (01, -+ ,0,) witho; >0fori=1,--- n,
lo| =014+ -+ 0y, and t2 = (t7'x1,...,t7"x,) for t > 0. For x € R"™ and t > 0,

n

C

let Eg(x,t) = [] (z; —t7%, x; + t7%) denote the open parallelepiped centered at x of
i=1
side length 2t for i =1, -+ | n.

n

By [3, 11], the function F(x,p) = > 2?p~29, considered for any fixed x € R",
i=1

is a decreasing one with respect to p > 0 and the equation F'(x,p) = 1 is uniquely

solvable. This unique positive solution will be denoted by p(x). Define p(x) = p and
p(0) = 0. It is a simple matter to check that p(x —y) defines a distance between any
two points z, y € R®. Thus R", endowed with the metric p, defines a homogeineous
metric space ([3, 5, 11]). Note that p(x) is equivalent to |z|, = 121?<>%|:r2|"7 and

1 4
2+ ylo < o (2o + [yls), where co = max {1, 27w '},
One of the most important variants of the anisotropic maximal function is the
so-called anisotropic fractional maximal function defined by the formula

Moo f(x) = sup | Eq(z, t)| = +/1°] [fW)ldy, 0<a<lol,
t>0 Es(z,t)

where |E,(z,t)| = 2"t/ is the Lebesgue measure of the parallelepiped E,(z, ).
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It coincides with the anisotropic maximal function M,f = My, f and is inti-
mately related to the anisotropic Riesz potential

IW,-J”(:IU):/R _ Sy 0<a<|aol.

e —yly ™

If o =1, then M, = M, and I, = I, is the fractional maximal operator and
Riesz potential, respectively. The operators My, M, +, I, and I, , play important
role in real and harmonic analysis (see, for example [4] and [26]).

Definition 1.1. Let0 < b <1 and1l < p < oco. Wedenote by Lpp s = Lppo(R"™)
anisotropic Morrey space, the set of locally integrable functions f(z), © € R™, with

the finite norm

1/p
I£1l,,, = sup (tb"" () !pdy> :
z€R™, >0 Eo(a.t)

Remark 1.1. Note that L,o, = Lp(R") and L1, = Loo(R™). If b < 0
or b > 1, then L,;, = ©, where © is the set of all functions equivalent to 0 on
R™. In the case 0 =1 = (1,...,1) and b = % we get the classical Morrey space
Ly \(R") = Lp’%’I(R”), 0<A<n.

In the theory of partial differential equations, together with weighted L, ,,(R™)
spaces, Morrey spaces L, x(R") play an important role. Morrey spaces were intro-
duced by C. B. Morrey in 1938 in connection with certain problems in elliptic partial
differential equations and calculus of variations (see [20]).

Definition 1.2. [6/ Let 1 < p < oo and 0 < b < 1. We denote by WLy, =
W Lppo(R™) the weak anisotropic Morrey space as the set of locally integrable func-
tions f(x), x € R™ with finite norm

_ 1/p
1 lhwe,,, =swr sw (9 [fy € Byw,0): |f)] >r}) "
o r>0 xeR™,t>0
Note that
WL(R") = WLy (R"),

Lppo(R") CWhppo®R") and || fllwy,,, <IflL

The anisotropic result by Hardy-Littlewood-Sobolev states that if 1 < p < g <
oo, then I, is bounded from L,(R"™) to Ly(R") if and only if o = |o] (}9 - %)
and for p = 1 < ¢ < o0, Iy, is bounded from L;(R"™) to WL4(R™) if and only
if « = |o] (1 - %) Spanne (see [25]) and Adams [1] studied boundedness of the

Riesz potential I, for 0 < a < n in Morrey spaces L, . Later on Chiarenza and

p,b,o p.b,o’

Frasca [10] was reproved boundedness of the Riesz potential I, in these spaces. By
more general results of Guliyev [12] (see also [13, 14]) one can obtain the following
generalization of the results in [1, 10, 25] to the anisotropic case.

Theorem A. Let 0 < a < |o| and 0 < b < 1, 1§p<%.
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1)Ifl<p< %, then condition % — % = ﬁ is mecessary and sufficient
for the boundedness of the operators My s and Io s from Ly o(R™) to Lgp o (R™).

2) If p = 1, then condition 1 — % = m 1s necessary and sufficient for the
boundedness of the operators My o and 1o, from Ly o(R™) to WLgp o (R™).

It is known that the anisotropic maximal operator M, is also bounded from
Lppo to Lyps foralll < p <ooand0<b <1 (see, for example [12, 13]), which
isotropic case proved by F. Chiarenza and M. Frasca [10].

In this work, in the case b € BM O we prove the boundedness of commutator of
the anisotropic Riesz potential operator [b, I, 5], 0 < @ < |o| from one generalized
Morrey space My, o to Mgy, 0, 1 < p < q < 00, 1/p—1/q = a/|o|, and from
M, ,, - to the weak space WM, ,, -, 1 < g < oo, 1—1/q= a/|o|. We also prove

the Adams-Guliyev type boundedness of the operator I, , from M to M
p7 q7

1 1
pPo pd,0

for 1 < p < ¢ < oo and from M, , to WM 1 for 1 < g < o0.
q?‘P 70.
By A < B we mean that A < C'B with some positive constant C independent of
appropriate quantities. If A < B and B < A, we write A & B and say that A and

B are equivalent.
2. Notations

Everywhere in the sequel the functions ¢(x, ), ¢;(z,7) and ¢, (z,r) used in the
body of the paper, are non-negative measurable function on R™ x (0, c0).

We find it convenient to define the generalized Morrey spaces in the form as
follows.

Definition 2.3. Let 1 < p < oo. The anisotropic generalized Morrey space
M, .0 is defined of all functions f € LéOC(R") by the finite norm

_1
1ty pr = sUD_ (1) Yo (@)% (Nl Ly (B ()

(b—1)|o|
According to this definition, when ¢(z,r) =7 » | we can see that

Mp,@,a(Rn) = Lp,b,o(Rn)-

There are many papers discussed the conditions on ¢ to obtain the boundedness
of integral operators on the generalized Morrey spaces, see [12], [13], [14], [21], [22],
(23], [24].
In [23] the following statements were proved.
lo]

Theorem 2.1. Let 1 < p < 00,0 < a < &

1 _ a
p’ g

% o] and p(z,T) satisfy

conditions
c_lgo(m,r) <z, 1) < cp(x,r), (2.1)

whenever r < 17 < 2r, where ¢ > 1 does not depend on r,7 and x € R",

o0 d
/ Pz, T)PEL < CroPyp(x, 1)P. (2.2)
r T
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Then for p > 1 the operator M, , is bounded from My, s to My, s and for p =1
M5 is bounded from My , o to WMy, o.
The following statements, containing results obtained in [23] was proved in [12]
(see also [13, 14, 16, 17]).
lo| 1

Theorem 2.2. Let 1 <p<oo,0<a< & 2= =

o g = % — 191 and (¢, pq) satisfy the

condition -
| e ot < Coann), (2.3)

where C' does not depend on x and r. Then the operator Iy is bounded from M, o, »
to My p,.0 for p>1 and from My, - to WMy ,, o for p=1.

In [14], V.S. Guliyev obtained sufficient conditions on the pair (¢, p,) for the
boundedness of I, from M, 1 to Mg, 1, where % = % — o

3. Anisotropic Riesz potential in the spaces M, »

3.1. Spanne-Guliyev type result

Sufficient conditions on ¢ for the boundedness of I, and I,, in generalized
Morrey spaces M), , » have been obtained in [2], [7], [14], [16], [17], [23].

The following lemma is true.

Lemma 3.1. Let1§p<oo,0<a<|%|, %:%—ﬁ. Then for p > 1 and any
ball E, = E,(x,r) the inequality

lel  [©° el
nupﬂ%wwm»swm%wwﬂww+rqé 1l et 5 dt (31)

cor

holds for all f € L;)OC(]R").
Moreover for p =1 the inequality

lo|  [° 1 el
HaﬁmW%wﬂm»swmhwme”+rq/ eyt T dt (3.2)

2co
holds for all f € LY¢(R™).
Proof. Let 1 < p < ¢ < oo and % — % = ﬁ For arbitrary ball E, = E,(z,r)

let f = f1+ f2, where fi = fXE, (22¢r) and f2 = an(Ea(MCOT))-

oo fllzyE.) < HawofillLyE,) + HaofollL,&,)-
By the continuity of the operator I, : Ly(R™) — Ly(R™) we have
||Ia70f1||Lq(EU) 5 HfHLp(EU(;U,Qcm"))'

Let y be an arbitrary point from F,, and z be an arbitrary point from C(E(7 (z, 2007")),
then

1
2700|x72|0 <ly—zlo <
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We get

(Eo(z,2c0m) |z — 2|l

o dt o dt
< N e FElde e S
C(EO-(IL',ZC()T)) |z—2|o tlol—a+1 2¢o J2co<|z—2|s<t tlol—atl

Tnaf2) 5 || F@l g, <

o dt o0 1 lal
< 12 (0 2.00) Jo1=art S | fllLy(Ey @t ¢ dt. (3.3)
2co 2co
Therefore, for all 1 < p < ¢ < oo and % = % — % we get
lol [ _1_lal
oo foll L2,y ST ° ) 1 fll 2By @ent @ dt. (3.4)
co
Thus
lol [ _1_lal
Moo Fllzgzo) S WM lzyeern + 77 | My @t 7 dt S
0
lol [ _1_lal
Sre 1fll oy By eyt 7 dt.
2co

Let p = 1. It is obvious that for any ball E, = E,(x,r)

oo fllwryE.) < Haofillwey ez, + Hao f2llwe,(2,)-

By the continuity of the operator I, : L1(R") — WL, (R") we have

oo fillwry ) S NIy (B @200m))-

Then by (3.4) we get the inequality (3.2).
Theorem 3.3. Let 1 <p < oo, 0 < a<

the condition

lel

1_1_ o
p’q P

lo]

, and (@1, py) satisfies

/ 157 o (2, )t < C (7). (3.5)

where C' does not depend on x and r. Then for p > 1, I, is bounded from M, , »
to My p,.0 and for p=1, Iy, is bounded from M , o to WMy, o-

Proof. By Lemma 4.3 we get

[ee]

B _q_lel

oo fllMrg e S SUP  @o(z,7) 1/ t LBt S
zeR™,r>0 r

o
S litore s ea@n)™ [ it S
5 T

if p € (1,00) and

o0

~ el

HaofllWMy pyo S SUD o, 7) 1/ t oy (B @) dt S
zeR™,r>0 r
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o0
S latsp %mml/“ﬁlw@wﬁsmmmﬁ
€T n

>0 r
if p=1.
Corollary 3.1. Let 1 <p< o0, 0 < a< %, é = % — I%I’ and (1) satisfies the
condition

/ ot p(t)dt < Cr%o(r),
'

where C' does not depend on r. Then for p > 1, I,, is bounded from M, ,, to

M

arep(r),e and forp =1, I 5 is bounded from My 5 to WMy ap(r) o

3.2. Adams-Guliyev type result
In [18] the following Lemma was proven.
Lemma 3.2. Let 1 <p < oo and (¢, py) satisfies the condition

sup (pl(.T, t) S C @2($7 T’), (3'6)
r<t<oo

where C does not depend on x and r. Then for p > 1, M, is bounded from My ;. -
to My ,.o and for p =1, My is bounded from M , o to WM 4, o

The following is a result of Adams-Guliyev type for the anisotropic Riesz poten-
tial.

Theorem 3.4. Let 1 < p<g< o0, 0 < a< ‘%‘ and let p(x,t) satisfy the
condition (4.6) and

/ 19 Lo (z, t)rdt < Cr~aor, (3.7)

where C' does not depend on x € R™ and r > 0.

Then the operator I, is bounded from M 1 to M 1 forp>1 and from
PP .o 9.0
ML@,U to WM 1 .
4990
Proof. Let1§p<q<oo,0<oz<|%|andeM 1 Write f = f1 + fo,
PP,

where B, = EU($7T)7 Ji= fXEU(:E,Qcor) and fy = fXB(Eo(
For I, fo(x) for all y € E, from (4.3) we have

z,2cor))’

upua@w=ﬂ ly — 2271 £ ()| dz <

Eo(z,2¢cor)

< £ [ el g
EEg(x,2cor) |lz—2|o

o0 o0 -~ _m
< | (/ u@wﬂﬂ%M*ﬁﬁj'th\m%@@mﬁ.@&
2cor 2cor<|z—z|s <t 2cor
Then from conditions (4.7) and (3.8) for all y € E, we get

[e.e]

ool
uﬁ@5ﬂMﬁ@+/ TN o ey <

2r
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[eS) 1 N _ ap
<r*Myf(y) + I fllve /2 t* Yo, t)yrdt S v Mo f(y) +1 a7 || flla
P

49

1
PP o r P o
a—p
||f||Mle/p!Gr

Hence choose r = (W) 7 for every y € F,, we have

P
q

o ) < (Mo F ) 1 £]1h

=

p o

Hence the statement of the theorem follows in view of the boundedness of the
anisotropic maximal operator M, in M

3 provided by Lemma 4.4 in virtue of
p7(P 70
condition (4.6).
_1 _lal
oo f |01 1 — sup p(x,t) at « ”Ia,UfHLq(Ea(x,t)) S
q,09,0 z€R™, t>0

1-2 1 lo] P
Sl sup  @(z,t)"at” a | M, f]|¢ _
Mzmp%,a z€R™, >0 ’ I WLy (Eo (2,1))

1-2 1 ol %
— q — 5t _
= fllar sup  o(z,t) Pt P (| Mo fllr,(Ba@e) | =
P .o \TER™, t>0
1—RB r
= Ifllar® . IMoflly S I llar
1 1
PP o poP o p,pP o

ifl<p<gqg<ooand

_1 _lal
Haofllwy 1 = sup @(@,t) 1t @ |[laofllwLy(Bo () S
4,9 9,0 z€R™ t>0

1-1 _1 gl 1
S A, Ieﬂiggww(m,t) it Mol Ly (5 @y =

S

1-1 o
= [Ifllar? < sup  p(a,t) 1t HMUfHWLl(Eg(x,t)))
2E€R™, £50

1 1
= 1y WMo f sy S 1 st
if 1 <q<oo0.
In the case p(z,t) = t(b_l)%‘, 0 < b < 1 from Theorem 4.6 we get the following
Adams type result for the anisotropic Riesz potential.
Corollary 3.2. Let0 < a < o], 1 <p< |Z—|, 0 <A< |o|—ap and %— -

1
q
Then for p > 1, the operator 1, o is bounded from Ly} 5 to Ly o and forp =1, 1, 4
is bounded from L1y, to WLgpo.
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4. Commutator of anisotropic Riesz potential in the spaces M, , ,
4.1. Spanne-Guliyev type result

The theory of commutator was originally studied by Coifman, Rochberg and
Weiss in [9]. Since then, many authors have been interested in studying this theory.
When 1 <p<oo,0<a< % and % = %— &, Canillo [8] proved that the commutator
operator [b,I,]f = blof — Io(bf) is bounded from L,(R") to L,(R™) whenever
be BMO(R").

Locally integrable function b is said to be in BMO,(R") if

1
I fllBmo, =  sup

IE Y fy_faa;r dy<OO,
z€R™ r>0 |Eg(l‘,’f’)| Eg(:c,'r)‘ ( ) Eo (@, )|

where
1

—— fy)dy.
AT AA

ng (z,r) —

The following lemma is true.

Lemma 4.3. Let1<p<oo,0<a<%,é:%—ﬁandbeBMOU. Then

for any ball E, = Eq(x,r) the inequality
lol
q

& t _q_lal
116, Tevo) Py o) S IO, ™ / (10 ) 1l ot 7t (4.1)

cor

holds for all f € L;;’C(R").

Proof. Let 1 < p < ¢ < o0, }3 — % = ﬁ and b € BMO,. For arbitrary ball

Ey = Es(z,7) let f = fi1 + f2, where fi = fXg, (z,2¢r) a0d f2 = fXB(Ea(

z,2cor))’
116, oo fll Ly (o) < b Laol fill L, (2,) + 105 Lao) f2ll Ly ()
By the continuity of the operator [b, 1o 4] : Lp(R™) — L4 (R™) we have
16, T o) fill Ly () S 1flB3O, 1f 1], (2,200m)) -
Let b € BMO,(R"™). Then there is a constant C' > 0 such that
t
‘bEa(x,r) — bEa(w,t)} < CHbHBMOU ln; for 0 <2r <t, (4.2)

where C'is independent of b, z, r and ¢ (see, for example, [23]). The John-Nirenberg
inequality implies that

1 P
b BMO, =~ sup I b y) — b > (x,r pdy 4.3
H H z€R™,r>0 ’EU(I,T)‘ E(,(x,r)‘ ( ) Eo (. )‘ ( )

for 1 < p < o0.
For y € E, we get

by) ~ bS]

(Eg(x,200r)) |z — z|‘(,—a‘_a

b, Lol f2(y) < (2¢0)717 /:
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Then

16, Lol follL, (£, S </E (/“(E (w,2007)) WV(Z)I@) dy> 4 .
b(y) — bg, | ¢\
S (/g (/“(Eg(xgcor)) \JI—TU( )|dz> dy) +
b(2) — b, | I 5_
+</U<A@mmwﬂpFwM|’ﬂ)W% @) = Dy + Do.

At first estmiate D;y.

1
D= ([ )~ ray)” | )
Ey (Eg(x,2cor)) |.CC — Z|g’

By (4.3) and (3.3), we get

Lol Z
Dy 5 [blmaro, 7 |, N, <
(Eg(x,2cor)) |x — Z|g

o0

_1_1lal
< (jo| = @)2"2e0) " llmaro, | 1y coeant™' 7 .

2co

Let us estimate Ds.

Dy=r4 [b=) = Bl 11,
c lo|—c
(EU($,2007’)) — Z’o’

|z

lo| / o dt
AT [b(2) = bE, || £(2)] Tolrisa &
E(Eg(ac,Qcor)) P tlol+1—a

lol [ dt
2r /200r<|a: z|d<t | ( ) EUHf( )‘ t|0'|+1 a Y

lo| dt
<r —b d
~ /2007" /g x,t) Eon( )| zt‘UH'l —a’

Applying Hoélder’s inequality and by (4.2), (4.3), we get

ol dt
Do <7« 4 /QCOT/ —bp, @yl f(z )’dzﬂa'l—f—l ot

o]

lol [° dt
+ra / 1V, () — OB, (x,0)
2cor

e L @l S
Es(z,t)

L

S B AR UC R M T at_,
= o Eo(x,t) R Lp(Bo (.0)) {lo+1-a
el [ dt
+ra 108, (@) — VB, (et) | fI L (B (2,0)) T <
2cor t7+1_a
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lo]

lol [©° t _q_lal
S lbllsao, 7 /2 (1 +In ;)IIfIILp(Eo(x,t»t Tt
cor

Summing up D; and Dy, for all p € (1,00) we get

lo| [*°

ol t el
165 Loo) f2ll Ly (2, S IOl BAMO, T /2 (1 +1In ;)HfHLp(Ea(x,t))t adt. (4.4)

coT

Finally,
116 T o] f I Ly(E0) S 110l BMO, 11|, (B, (2,200m)) +

Io'il oo
lbllsaro, 7 /

2cor

t Lol
(1 +In ;)Hf”Lp(Eo—(x,t))t Taat <

lel [ t el

S Wllawo, % [ (L4 )Uflayim eant™ "

2cor r

Theorem 4.5. Letl<p<oo,0<a<%,%:%—ﬁ, b e BMO,, and
(p1,9) satisfies the condition

& t
/ o1 (1 +In ;) o1z, t)dt < Cpq(x,r), (4.5)
where C does not depend on x and r. Then [b,1, ] is bounded from My, 0 to
MQ730270—'

Proof. By Lemma 4.3 we get

||[b’ Ia7o-:|fHMq,¢2,G' S

I t\ _q_lal
SPllmvo, sw et [ (14100 Ry it S
z€R™,r>0 r r

_ o t _
S Wlssio, e swp oo™ [ (1410010 gy (o0t <
zER™ - r

S/ HbHBMOo' HfHMp,Lpl,o"

Corollary 4.3. Let 1 <p< oo, 0 < a< %, é = % — ﬁ, be BMO,, and p(r)
satisfies the condition

/ et (1 +In ;) p(t)dt < Cr%p(r),

where C' does not depend on r. Then [b, I s] is bounded from M, , 5 to Mgy rap(r)o-
4.2. Adams-Guliyev type result

In [18] the following Lemma was proven.

Lemma 4.4. Let 1 <p < oo, b€ BMO, and (py,v,) satisfies the condition

t
sup (1 + In ;) @1($,t) S CQOQ(.’E,T'), (46)

r<t<oo
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where C' does not depend on x and r. Then My is bounded from My, ,, 5 to My o, »-
The following is a result of Adams-Guliyev type for the anisotropic Riesz poten-
tial.
Theorem 4.6. Let 1l <p<g< oo, 0<a< %, b € BMO, and let p(z,t)
satisfy the condition (4.6) and

& t 1 _ap
/ <1 +1In 7) taflgo(x,t):’dt < Cr s, (4.7)
, T

where C' does not depend on x € R™ and r > 0.

Then the operator [b, 1o 4] is bounded from M 1 to M 1
p,pP o q,p9,0

Proof. Let 1 <p<g<o0,0<a< beBMO, and f € M L. Write
p?w?o.

f=fi+ fa, where By = Eq(2,7), i = X8, @20r) 304 2 = FXC15 1, 0000
For [b, 1os] f2(z) for all y € E, we have

b(y) — b(z
D) = 2O 42z
Es(z,2cor) ’.’L’ — Zlo

|0, o) (f2) ()| S /c

Analogously section 4.1, for all p € (1,00) and y € E, we get

e}

N\ g lol
0 2512)) S Wlloo, [ (1410 €5 it (48)

2¢cor

Then from conditions (4.7) and (3.8) for all y € E, we get

oo

t\ ool
b tacl$0) S Wlanio, (° Mat @)+ [ (L4100 ) €55 21y it <

2cor

e}

(1 +1In ;) t* o (x, t)%dt> <

Ifllar 3 NS
Hence choose r = (W) for every y € E,, we have

< Ibllssio, (r* Mo )+ s, [
ppP .o J2

cor

__ap
< Ibllmaro, (7 Mo fy) +757 | £l
P

1
P Lo

QI

b, Lao) )] S 1bll a0, (Mo ()7 1115s

Sl

p o

Hence the statement of the theorem follows in view of the boundedness of the

anisotropic maximal operator M, in M provided by Lemma 4.4 in virtue of

p7@% 70.
condition (4.6).

_1 _lal
16 laolfllar = sup o, t) at a |[b, loo]fllLy(Eo @) S
4,09 ,0 zeR", t>0

p

1-¢ 1 o] P
S lbllBao, 11l sup  p(x,t) 9t @ |M,f|¢ _
MW%J zER™, >0 ’ TINLyp(Es(z,t))
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<[

1—
= lollBrro, 1£11
p,p

_1 Lol a
1 < Sup QO(LL‘,t) rt o ||MUfHLp(Ea(:L’,t))> =
P o

z€ER™ t>0

1-2
= [blsaro, [1£lla*
PP

P
1Mo fllz < lbllBao, [1fllae
o p

p,@ﬁ,a

D=
D=

pEL0

(b—1)L2l

In the case (x,t) =t »,0<b<1from Theorem 4.6 we get the following

Adams type result for the commutator of anisotropic Riesz potential.
Corollary 4.4. Let 0 < a < |o|, 1 <p< %, 0< A< |o|—ap, 1% — % = ‘Jﬁ)\
and b € BMO,. Then the operator [b, I, o] is bounded from Lyp » to Lgp .
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