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OSCILLATIONS OF A NONHOMOGENEOUS
DIFFERENT MODULUS BEAM WITH A LOAD

MOVING ON IT SITUATED ON
NONHOMOGENEOUS VISCOELASTIC

FOUNDATION

Abstract

In the paper it is supposed that the material of the beam is inhomogeneous
in height and length of the beam. The equation of motion is a fourth order
differentiable equation with variable coefficients.

Influence of environment created by a non-homogeneous viscoelastic founda-
tion is simulated by the viscoelastic variant of the Winkler scheme. The solution
is constructed on the base of combination of approximate analytic methods. The
numerical analysi is conducted for concrete values of typical parameters.

As is known, at present, natural and composite materials having non-homoge-
neous properties and differently resisting to tension and compression [1,3] are widely
used in civil engineering, machine-building and a number of other fields of engineer-
ing.

In the present paper, it is supposed that the beam is continuously non-homoge-
neous in length and height and differently resists to compression-tension and lies an
a viscoelastic foundation. It is accepted that the modulus of elasticity and specific
density depend on spatial coordinates in the following way:

at tension
E+ = E+

0 f1 (x) · f2 (z)

at compression
E− = E−

0 f1 (x) · f2 (z)

ρ = ρ0ψ1 (x) · f2 (z) (1)

E+
0 , E−

0 , ρ0 corresponds to a homogeneous different modulus medium, the function
f1 (x) with its derivatives to the second order is a continuous function, f2 (z) , ψ2 (x) ,
ψ1 (x) are continuous functions.
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Fig. 1.

Let’s consider a problem on motion of a load of weight P that moves on a
continuously non-homodeneous beam differently resistung to tension-compression
and lying on a visco-elastic foundation.
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It is supposed that the load along the beam moves with considerable velocity,
and the load’s mass is very small compared with the beam’s mass.Denote by V the
velocity of motion, P is the weight of the moving load. Assume that for t = 0 the
load enters into the beam, and at time t it will be at the distance a = V t (fig.1).

In order to compose the motion equation it is necessary to determine the value
of the bending moment through the curvature of the central line (the cross section
of the beam has two symmetry axes).

As the beam’s material is of different modulus, the neutral line doesn’t coinside
with the central line. Teh stress distribution on the cross section changes by the
principle

σ+ = E+
0 f1 (x) f2 (z) · (l + Ωz)

in contrative zones
σ− = E−

0 f1 (x) f2 (z) · (l + Ωz) (2)

Here l is relative deformation of the central line, Ω is curvature. Between l,Ω
the boundaries of the central line with the bending moment are connected with the
following relations:

+h∫

−h

σds =
∫

S1

σ+ds +
∫

S2

σ−ds = 0 (3)

M =
∫

S

zσds =
∫

S1

zσ+dz +
∫

S2

zσ−dz. (4)

From the first two equations we can get the following relation:

e = µ · Ω (5)

Here we introduce the denotation

µ = −

∫

S1

f2 (z) b (z) dz + α

∫

S2

f2 (z) b (z) dz

∫

S1

zb (z) · f2 (z) dz + α

∫

S2

zb (z) · f2 (z) dz

(6)

where S1 and S2 are the zones of tensile and compressive stresses on the beam’s cross
section. Removing (4) and taking into account (6), we get the following expression
for the bending moment:

M = J0E
+
0 K (ρ, α) f1 (x)

∂2w

∂x2
. (7)

Here we accept the following denotation:

ρ = z0 · h−1; α =
E−

0

E+
0

(8)

The equation of motion of a beam with regard to visco-elastic resistance of the
material will take the following form:

∂2

∂x2

[
f1 (x)

∂2w

∂x2

]
+ k1 (x) + k2 (x)

∂2w

∂t2
+
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+m2ψ1 (x)
∂2w

∂t2
=

(
E+J0K

)−1 · P (x, t) . (9)

Here we introduce the denotation:

k1 (x) = k1 (x)
(
E+J0K

)−1 ; k2 (x) = k2 (x)
(
E+J0K

)−1

ρ =
ρ0

2h

+1∫

−1

ψ2 (ρ) dρ; m2 = ρ (E0J0K)−1 (10)

E+
0 · J0 is the rigidity of the homogeneous beam identically resisting to tension and

compression.
In order to represent P (x, t) in the expanded form expand it in Fourier series in

sines assuming that the load is uniformly distributed on the small area of the bar’s
length from a− δ to a + δ. Then we get:

for a− δ < x; P (x, t) = 0

for a− δ ≤ a + δ; P (x, t) =
p0

2δ
,

for a + δ < x; P (x, t) = 0 (11)

The coefficients Am of the Fourier series of the expansion of the function P (x, t)

P (x, t) =
∞∑

m=1

Am (t) sin
mπx

l
(12)

are the limiting values

Am =
2P0

mπδ
sin

mπt

l
· sin mπt

l
(13)

as δ → 0 that gives

Am =
2P0

l
sin

mπa

l
(14)

Here it is taken into account:

lim
δ→0

sin
mπδ

l
mπδ

l

= 1 (15)

Taking into account (14) in (13) and taking into attention v · t = a, we get

P (x, t) =
∞∑

m=1

2P0

l
· sin mπv

l
· sin mπx

l
(16)

Having been restricted by one member of the series, with regard to viscoelastic
ressistance [3] we get the equation of motion in the following form:

A1 (x)
∂2w

∂x4
+ A2 (x)

∂3w

∂x3
+ A3 (x)

∂2w

∂x2
+ k1 (x) w+
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+k2 (x)
∂2w

∂t2
+ m2

0ψ1 (x)
∂2w

∂t2
= P sinβt · sin mπx

l
(17)

where the following denotation are introduced:

A1 (x) = f1 (x) ; A2 (x) =
df1

dx
; A3 (x) =

d2f1

dx2

m2
0 = ρ (E0J0K)−1 ; p =

2P0

l
(
E+

0 JK
) ;

(
β =

mπ

l
V

)
(18)

Equation (17) is complicated and definition of its exact solution is difficult.
Therefore, by solving the problem we’ll use the combined approximate-analytic
method whose essence is the following. In step I assuming that the motion hap-
pens acoording to harmonic law, the method of separation of variables is applied, in
step 2 the Bubnov-Galerkin method of orthogonalization is used.

In step I we accept
w = w0 (x) sin β · t (19)

Here w0 (x) should satisfy the following boundary conditions. Substituting (19) in
(17), we get:

A1 (x)
d4w0

dx4
+ A2 (x)

d3w0

dx3
+ A3 (x)

d2w0

dx2
+ k1 (x) w0−

−β2 · (k2 (x)−m2
0ψ1 (x)

)
w0 = P · sin mπ

l
x (20)

In order to find β2 we use the Bubnov and Galerkin method accepting that

w0 =
n∑

i=1

Ci (x) θi (x) (21)

Ci are unknown constants, each θi (x) satisfies the boundary conditions.
In this case the orror function will be:

η (x) =
n∑

i=1

Ci

[
A1

d4θi

dx4
+ A2

d3θ

dx3
+ A3

d2θ

dx2
+ k1θi−

− (
β2

(
k2 (x)−m2

0ψ1 (x)
))

w0 − P sin
mπ

l
x
]
6= 0 (22)

Then based on the Bubnov-Galerkin method we can write

1∫

0

η (x) · θk (x) dx = 0; k = 1, 2, ..., n (23)

For an arbitrary approximation, β2 is determined from the equality to zero of
the basic determinant of the system of homogeneous linear algebraic equations with
respect to the coefficients Ci: ∥∥β2

∥∥ = 0 (24)

However, for practical calculation one can be satisfiied with the first approxima-
tion although for any approximation it is not difficult to find β2.
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For the first approximation we find:

β2 =

l∫

0

[
A1 (x)

d4θ1

dx4
+ A2 (x)

d3θ1

dx3
+ A3 (x)

d2θ1

dx2
+ k1 (x) θ1

]
θ1 (x) dx

l∫

0

[
k2 (x) θ1 + m2

0ψ1 (x)
]
θ2
1dx

(25)

From (25) for k2 (x) = 0, k1 6= 0 we get the solution of the similar problem
for non-homogeneous elastic resistance, k1 = 0; k2 6= 0 is the solution for a pure
viscous resistance.
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Fig. 2.

As it is seen from (25), in order to determine the value of β2, the values of the
functions f1 (x) , ψ1 (x) , f2 (z) , ψ1 (z) and also of k1 (x) and k2 (x) of approximating
function θ1 (x) should be given.

Numerical analysis is carried out for the case

θ1 = sin αnx αn =
mπ

l
; f2 = eα1η; ψ2 = eα2n

(
η = z · h2

)
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x = x · l−1; f1 (x) = 1 + µ1x; ψ1 (x) = 1 + µ2x;

k1 = 1 + cx; k2 = 0 (26)

Making a number of elementary transformations, we get:

β2 =
(1 + 0, 5µ1)α4

n + k1 (1 + 0, 5c)
m2

0 (1 + 0, 5µ2)
(27)

In the case when the beam is non-homogeneous only by modulus of elasticity,
we have:

β2
0 =

(1 + 0, 5µ1) α4
n + k1 (1 + 0, 5c)
m2

0

. (28)

Then from (27) and (28) we get:

β
2 =

(
βi

β0

)
=

1
1 + 0, 5µ2

. (29)

Ignoring the external resistance we get:

β2
2 =

p (µ1, µ2)
m2

0

α4
n; ρ =

1 + 0, 5µ1

1 + 0, 5µ2

(30)

The results of calculations are in fig.2
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