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MECHANICS

Ismail A. AMIRASLANOV, Nigar I. AMIRASLANOVA

CONTACT FILTRATION UNDER A DAM.
ANALYTIC SOLUTION OF BOUNDARY VALUE

PROBLEM.

Abstract

Theory of contact filtration generated under a dam is investigated on an
example. The stated problem is solved analytically.

Very often the contact filtration holds along the foundation of a dam when there
is a thin water layer between the soil and the dam. Examine this phenomenon on
an example.

Let the soil occupy the half-space y < 0, the impermeable dam (apron) the layer
y > 0, |x| < `, water under pressure P+ the domain y > 0, x < −`, water under
pressure P− the domain y > 0, x > +`. For definiteness we’ll assume that P+ > P−;
therewith the water leaks under the dam from left to right (fig. 1).

Fig.1.

The problem is assumed to be plane. The main equations of the plane problem,
by means of the complex potential f (z) according to [1] may be written as follows:

υx + iυy = f ′ (z) , P = −ρg

k
Re f (z)− ρgy. (1)

Here P is fluid’s pressure, k is filtration coefficient, y is directed to an opposite
way to the gravity force direction.

The boundary conditions of the problem under consideration have the following
form. For

|x| < `, y = 0 υy = 0 for |x| > ` ∂P
∂x = 0

(υx + iυy → 0 as z = x + iy →∞) . (2)

Hence, on the basis of (2), for the complex potential we have the following
boundary value problem. For Jmz = 0 |Re z| < ` Jmf ′ (z) = 0

for |Re z| > ` Re f ′ (z) = 0, f ′ (z) → 0 as z →∞. (3)
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The solution of this boundary value problem is

f ′ (z) =
c√

z2 − `2
,

(√
z2 + `2 → z as z →∞

)
. (4)

The real constant c is determined from the additional condition

for y = 0

e∫

−e

dP

dx
dx = ∆p (∆p = P+ − P−) . (5)

Substituting in (5) solution (4), according (1) we get

c = −k∆p

πρg
. (6)

Near the singular point z = ` solution (4), (6) behaves as

f ′ (z) =
K√
2πε

, υx = −K sin ϕ
2√

2π |ε|

υy = −K cos ϕ
2√

2π |ε|
(
ε = z − ` = |ε| `iϕ, ε << `

)
. (7)

Here
K =

k∆p

pg
√

π`
. (8)

By means of (7) we calculate the invariant characteristics of the singular point

Γ1 =
ρ

2ε2
K2, Γ2 = Γ3 = 0. (9)

In the present problem, according to (8) we have

Γ1 =
k2 (∆ρ)2

2ρε2g2π`
. (10)

The quantity Γ1 is a configuration force of filtration flow acting on soil at the
singular point z = ` and causing all possible critical phenomena near this point (for
instance, origin of contact filtration, local cavities in the soil or vice versa bucking
of the soil, break of water stream under a dam).

It is natural that occurance of such critical phenomena falling outside the frames
of the considered filtration, will be characterized with appropriate critical values
of the quantity Γ1. Denote by ΓC a constant characterizing the contact filtration
initiation so that for Γ1 < Γc there is no water under the dam, and for ΓI > Γc it is
form a water layer is generated under the dam and contact filtration occurs.

Hence, by means of (10) we find critical pressure differential in the dam

(∆p)c =
εg

k

√
2πρΓc`. (11)

The solution constructed above is suitable only for ∆p < (∆p)c. For ∆p > (∆p)c
it is necessary to take into account the filtration variation condition because of local
wash-out of soil particles. The suggested theory of break of water under a dam
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refers only the problems having singular points. Such points with trivial exceptions
will be for instance the extreme points of an apron (at arbitrary curvilinear outlines
of an apron and channel’s bottom). According to the principle of microscope [2],
a filtration field in the vicinity of these points is always described by formula (7),
and the intensity coefficient of the field K will be some function of geometrical and
physical parameters of the appropriate boundary value problem of filtration theory.

The end of a sheet piling has the similar singularity, however, physically this case
is less interesting since in this case the soil particles can’t carried away by the flow
and therefore a comparatively stable nonlinear filtration area in which the structure
of soil particles differ from the initial one, is generated near the sheet piling end.

Accept the following natural physical assumption: wash-out of soil particles at
some point of its surface is determined by filtration velocity at this point. From
this assumption it follows that the wash-out of particles begins always at singular
points where the filtration velocity in infinitely great. It is obvious that according
to this general assumption, the initiation of wash-out of particles near the singular
point is characterized by some critical value of field intensity factor at this point
K > KC (for K < KC the particles wash-out doesn’t happen). The quantity KC

depends on the strength of coupling of soil particles one with another, on the form of
their sizes and physical properties of liquid, but is independent of macro parameters
of the problem (the dam’s weight, pressure differential, geometry of the apron and
etc.). Therefore, for the given pair of soil-liquid, the quantity KC may be determined
experimentally (for example on a model).

According to universal model (9), the constants ΓC and KC are connected in the
following way

2ε2ΓC = ρK2
C (12)

Thus, the theory KC based on natural physical assumptions and theory ΓC

following from the general theory of motion of singularities of physical field reduces
to identical results.

The issues of force interaction of filtrational flow and soil skeleton are of great
value. It should be underlined that the process of breaking off a separate particle
from the soil surface weakly depends on macrostresses in the skeleton, it may happen
also at very great compression macrostresses. Physically, it completely differs from
the process of macro-failure of the soil skeleton.

Fig.2.

Break of water under a dam, obviously begins from wash-out of soil particles
near the right singularities of the point (for x = ` on fig. 2).

Here, the further development of the process is not considered. However, if it
is assumed that the lateral size of the space formed under the dam near the point
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z = ` because of soil wash-out is negligibly small compared with its length, and
pressure change in this space is also negligibly small, then the character of space
development may be estimated by means of relation (11), where the quantity ` should
be assumed as a variable parameter. Obviously, on the base of this relation, having
been initiated the space development will be unstable since irreversible decrease will
be accompanied with decrease of ∆p. Apparently, the velocity d`

dt will depend on the
process of transportation of particles in the space.

Make same calculations proving formula (9). In the present case the contour
∑

in [1] is any closed contour in lower semi-plane y < 0 that covers the point z = `
(denoted by 0 in fig. 2), whose ends lie on a real axis and the whole contour is
arranged in the zone of action of asymptotics (7) and behaves as

2ε2

ρ
Γ1 =

∫

∑
− ((

υ2
x + υ2

y

)
nz + 2υnυx

)
d

∑
.

Invariance of Γ1 relative to the indicated non-closed contour
∑

follows owing to
the fact that on the real axis nx = 0 and in addition on the axis x we have υy = 0
for x < 0 and υx = 0 for x > 0 .

We use a narrow rectangular contour
∑

(fig. 2. ( π
L → 0 as ` → ∞)). From

the previous one, from (7) and from nx = 0 on
∑

we have:

2ε2

ρ
Γ1 = 2

L∫

−L

υxυy

∣∣∣∣∣∣
y=−δ

dx =
K2

π

L∫

−L

sinϕ√
x2 + δ2

dx =
K2

π

L∫

−L

δ

x2 + δ2 dx =

=
K2

π

∞∫

−∞

dt

t2 + 1
= K2

sinϕ =
y

ε
ε2 = x2 + δ2.

Thus, the first formula of (9) is proved. It is proved similarly that Γ2 = Γ3 = 0
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