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ON COMPLETENESS OF SOME SUBSYSTEMS OF
DERIVATIVE CHAINS OF A SECOND ORDER

OPERATOR BUNDLE

Abstract

In the paper we consider on a semi-axis a second order operator-differential
equation with an integral boundary condition, and indicate sufficient conditions
on operator coefficients of the boundary value problem at which it is regular
solvable. Furthermore, we find the completeness conditions of the chain of eigen
and adjoint vectors generated by the considered boundary value problem, and
establish the completeness of descending elementary solutions of the operator-
differential equation under consideration.

Consider in separable Hilbert space H a polynomial operator bundle

P (λ) = −λ2E + λA1 + A2 + A2 (1)

and the appropriate boundary value problem

P (d/dt)u = −d2u

dt2
+ A2u + A1

du

dt
+ A2u(t) = 0, t ∈ R+ = (0,∞) (2)

Lu = u(0)−
∞∫

0

K(s)u(s)ds−
∞∫

0

K1(s)u′(s)ds = ϕ, (3)

where u(t) is a vector-function with the values in H, ϕ ∈ H, A, A1, A2 are linear,
generally speaking, unbounded operators in H, the operators K(s) and K1(s) for
any s ∈ R are linear operators in H, the derivatives are understood in the sense of
distributions theory [1].

Let A be a positive-definite self-adjoint operator in H. Denote by Hγ =
= D(Aγ), γ ≥ 0 the space of Hilbert scales generated by the operator A, i.e. in
space H the scalar derivative is determined as follows (x, y)γ = (Aγx,Aγy).

Denote by L2(R+; H) a Hilbert space of vector-functions f(t) with the values in
H, for which the norm is finite [1]

‖f‖L2(R+;H) =




∞∫

0

‖f(t)‖2 dt




1/2

.

Then the linear space [1]

W l
2(R+;H) =

{
u : u(l), A(l)u ∈ L2(R+; H)

}
, l = 1, 2.

is a complete Hilbert space with respect to the norm

‖u‖W l
2(R+;H) =

(∥∥∥u(l)
∥∥∥

2

L2(R+;H)
+

∥∥∥A(l)u
∥∥∥

2

L2(R+;H)

)1/2

, l = 1, 2.
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In the sequel, we assume that the following conditions are fulfilled:
1) A is a positive-definite self-adjoint operator;
2) The operators Bj = AjA

−j(j = 1, 2) are bounded in H:
3) K and K1 generated by the integral operators

Ku =

∞∫

0

K(s)u(s)ds, L1ϑ =

∞∫

0

K1(s)ϑ(s)ds,

are bounded operators from W 2
2 (R+; H) to H3/2 and from W 1

2 (R+; H) to H3/2,
respectively

Definition 1. It the vector-function u(t) ∈ W 2
2 (R+; H)satisfies the equation (1)

almost everywhere in R+, we’ll call it a regular solution of the equation (2).
Definition 2. If for any ϕ ∈ H3/2 there exists the regular solution u(t) of the

equation (2) that satisfies the boundary condition (3) in the sense

lim
t→0

∥∥∥∥∥∥
u(t)−

∞∫

0

K(s)u(s)ds−
∞∫

0

K1(s)u′(s)ds− ϕ

∥∥∥∥∥∥
3/2

= 0,

and the following estimation

‖u‖W 2
2 (R+;H) ≤ const ‖ϕ‖3/2 ,

the problem (2),(3) is said to be regularly solvable.
Definition 3. If the non-zero element ϕ0 is the solution of the equation

P (λ0)ϕ0 = 0,

then λ0 is said to be an eigen value of the operator bundle P (λ), and ϕ0 an eigen
vector responding to the number λ0. The system of elements ϕ1, ϕ2, ..., ϕm is called
the chain of vectors adjoint to ϕ0 if these elements satisfy the equations

P (λ0)ϕ1 +
1
1!

P ′(λ0)ϕ0 = 0

P (λ0)ϕ2 +
1
1!

P ′(λ0)ϕ1 +
1
2!

P ′′(λ0)ϕ0 = 0

−−−−−−−−−−−−−−−−−−−−−−−−
P (λ0)ϕk +

1
1!

P ′(λ0)ϕk−1 +
1
2!

P ′′(λ0)ϕk−2 = 0, k = 1, m,

where
P ′(λ0) = −2λ0E + A1,

P ′′(λ0) = −2E.

Definition 4. Let {ϕ0, ϕ1, ..., ϕm} be a chain of eigen and adjoint vectors re-
sponding to the eigen value λ0 ∈

∏
= {λ : Re λ < 0} .. Then the vector-functions

ϕh(t) = eλ0t

(
ϕn +

t

1!
ϕn−1 + ... +

tn

n!
ϕ0

)
∈ W 2

2 (R+;H),
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satisfy the equation P (d/dt)u(t) = 0. These vector-functions are called the descend-
ing elementary solutions of the equation P (d/dt)u(t) = 0, responding to the eigen
value λ0.

If λi(i = 1, 2, 3, ...0 are the eigen values of the bundle P (λ), and{
ϕ

(l)
i,0, ϕ

(l)
i,1, ..., ϕ

(l)
i,mil

}
a chain of eigen and adjoint vectors responding to the eigen

value λi(Reλi < 0), then the descending elementary solutions

ϕ
(l)
i,h(t) = eλit

(
ϕ

(l)
i,h +

t

1!
ϕ

(l)
i,h−1 + ... +

tn

n!
ϕ

(l)
i,0

)
, h = 0,mi,l, l = 1, 2, 3, ...,

in zero satisfy the following condition

ϕ
(l)
i,h(0)−

∞∫

0

K(s)ϕ(l)
i,h(s)ds−

∞∫

0

K1(s)
d

ds
ϕ

(l)
i,h(s)ds ≡ ψ

(l)
i,h, h = 0,mi,l, l = 1, 2, ...,

Obviously,
ϕ

(l)
i,h(0) = ϕ

(l)
i,h.

Definition 5. It the system
{

ψ
(l)
i,h

}
h=0,mi,l,l=1,2,...

is complete in the space H3/2,

we say that the system K (
∏

) is the system of derivative chains of eigen and
adjoint vectors responding to eigen values from the left half plane corresponding to
the problem (1), (2), is complete in the space of traces. In the present paper, we
find the conditions providing the completeness of the system K (

∏
) in the space

H3/2 and completeness of descending elementary solutions in the space of regular
solutions of problem (2), (3). Notice that for K(s) = K1(s) = 0 the appropriate
results where obtained in [2,3].

In order to obtain main results, we’ll use the following theorem from the papers
[4,5].

Theorem 1. Let conditions 1)-3) be fulfilled, and the norms

χ0 = ‖K‖W 2
2 (R+;H)→H3/2

, χ1 = ‖K1‖W 1
2 (R+;H)→H3/2

,

satisfy the condition: χ = χ0 + χ1 < 1/2, and

q(x) =
1
2

(
1 + 2χ

1− 2χ

)1/2

‖B1‖+
(

1
1− 2χ

)1/2

‖B2‖ < 1.

Then for any f(t) ∈ L2(R+;H) there exists the vector-function u(t) ∈ W 2
2 (R+; H)

that satisfies the equation,

P (d/dt)u(t) = f(t), t ∈ R+, (4)

and and the boundary condition

L0u = u(0)−
∞∫

0

K(s)u(s)ds−
∞∫

0

K1(s)u′(s)ds = 0, (5)
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in the sense of convergence of H3/2, and

‖u‖W 2
2 (R+;H) ≤ const ‖f‖L2(R+;H) .

Show that subject to the conditions of theorem 1, problem (2), (3) is regularly
solvable.

Theorem 2. Let the conditions of theorem 1 be fulfilled. Then the problem (2),
(3) is regularly solvable.

Proof. For A1 = A2 = 0 the problem

P0(d/dt)u = −d2u

dt2
+ A2u = 0, t ∈ R+, (6)

Lu = u(0)−
∞∫

0

K(s)u(s)ds−
∞∫

0

K1(s)u′(s)ds = ϕ, (7)

for ϕ ∈ H3/2 is regularly solvable. Indeed, the general solution of the equation (6)
from the space W 2

2 (R+;H) is of the form

u0(t) = e−tAθ, θ ∈ H3/2.

Then from (7), to determine the vector θ we get:

θ −
∞∫

0

K(s)e−sAθds +

∞∫

0

K1(s)Ae−sAθds = ϕ

or (E −Q)θ = ϕ, where Q =

∞∫

0

K(s)e−sAds−
∞∫

0

K1(s)Ae−sAds.

Since ∥∥∥∥∥∥




∞∫

0

K(s)e−sAds−
∞∫

0

K1(s)Ae−sAds


 θ

∥∥∥∥∥∥
3/2

≤

≤
∥∥K(e−sAθ)3/2

∥∥ +
∥∥K1(Ae−sAθ)

∥∥
3/2

≤

≤ χ0

∥∥e−sAθ
∥∥

W 2
2 (R+;H)

+ χ1

∥∥Ae−sAθ
∥∥

W 1
2 (R+;H)

≤

≤ χ0

(
2

∥∥A2e−sAθ
∥∥2

L2(R+;H)

)1/2
+ χ1

(
2

∥∥A2e−sAθ
∥∥2

L2(R+;H)

)1/2
=

=
√

2(χ0 + χ1)
∥∥A2e−sAθ

∥∥
L2(R+;H)

≤

≤
√

2 (χ0 + χ1) ·
1√
2
‖θ‖3/2 = (χ0 + χ1) ‖θ‖3/2

i.e. the operator E −Q is invertible in H3/2. Then θ = (E −Q)−1ϕ and

‖θ‖3/2 ≤
∥∥∥(E −Q)−1

∥∥∥
H3/2→H3/2

· ‖ϕ‖3/2 = const ‖ϕ‖3/2
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i.e.
‖u0(t)‖W 2

2 (R+;H) =
∥∥e−tAθ

∥∥
W 2

2 (R+;H)
=
√

2
∥∥A2e−tAθ

∥∥
L2(R+;H)

≤

≤
√

2 · 1√
2
‖θ‖3/2 = ‖θ‖3/2 ≤ const ‖ϕ‖3/2 .

Notice that here we used the estimation [2,6]

∥∥A2e−tAθ
∥∥

L2(R+;H)
≤ 1√

2
‖θ‖3/2 .

Now suppose that A1, A2 6= 0. Then the regular solution of problem (2), (3) will
be found in the form

u(t) = u0(t) + u1(t),

where
u0(t) = e−tAθ.

Here θ ∈ H3/2 is an unknown vector, u1(t) is to be determined. Then from problem
(2), (3) we get

P (u0 + u1) = 0,

θ + u1(t)−
∞∫

0

K(s)e−sAθds−
∞∫

0

K0(s)e−sAu1(s)ds−

−
∞∫

0

K1(s)Ae−sAθds−
∞∫

0

K1(s)u′1(s)ds = ϕ,

or
P1u0 + Pu1 = 0, (8)

u0(0)−
∞∫

0

K(s)u1(s)ds−
∞∫

0

K1(s)u1(s)ds = (E −Q)θ + ϕ, (9)

where
P1(d/dt)u = P1u = A1

du

dt
+ A2u.

Hence we get
Pu1(t) = −P1u0(t) ≡ f(t), (10)

u1(0)−
∞∫

0

K(s)u1(s)ds−
∞∫

0

K1(s)u1(s)ds = (E −Q)θ + ϕ. (11)

Choose θ so that ϕ = −(E −Q)θ, i.e. θ = −(E −Q)−1ϕ ∈ H3/2.
Since

‖f‖L2(R+;H) = ‖P1u0(t)‖L2(R+;H) =
∥∥A1u

′
0(t)

∥∥
L2(R+;H)

+ ‖A2u0(t)‖L2(R+;H) ≤

≤ ‖B1‖
∥∥Au′0

∥∥
L2(R+;H)

+ ‖B2‖
∥∥A2u0

∥∥
L2(R+;H)

≤

≤ (‖B1‖+ ‖B2‖)
∥∥A2e−tA

∥∥
L2(R+;H)

≤ const · ‖θ‖3/2 ≤ const · ‖ϕ‖3/2 ,
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then f ∈ L2(R+; h).
Thus, by theorem 1, problem (10), (11) has the solution u1 ∈ W 2

2 (R+;H), and

‖u1(t)‖W 2
2 (R+;H) ≤ const ‖P1u0(t)‖ ≤ const ‖ϕ‖3/2 .

Thus, u(t) = u0(t) + u1(t) ∈ W 2
2 (R+;H) is the regular solution of problem (2), (3),

and
‖u‖W 2

2 (R+;H) ≤ ‖u0‖W 2
2 (R+;H) + ‖u1‖W 2

2 (R+;H) ≤ const ‖ϕ‖3/2 .

The problem is proved.
Now we’ll use the following theorem from [2,3].
Theorem 3. Let A be a positive-definite self-adjoint operator. The operators

Bj = AjA
−j(j = 1, 2) be bounded in H, moreover

1
2
‖B1‖+ ‖B‖ < 1.

If one of the following conditions are fulfilled:
a) A−1 ∈ σp (0 < p ≤ 1);
b) A−1 ∈ σp (0 < p < ∞), Bj ∈ σ∞ (j = 1, 2),

then the system
{

ϕ
(l)
i,h(0)

}
=

{
ϕ

(l)
i,h

}
is complete in H3/2, and the system of

elementary solution of the equation P (d/dt)u(t) = 0 is complete in the space of
regular solutions of the problem

P (d/dt)u(t) = 0, (12)

u(0) = ϕ. (13)

It holds
Theorem 4. Let the conditions of theorem 1 or one of the conditions, either a)

or b) from theorem3 be fulfilled. Then the system K (
∏

) is complete in H3/2.
Proof. It is obvious that subject to the conditions of theorem 1, the conditions

of theorem 3 are also fulfilled.

1
2
‖B1‖+ ‖B2‖ ≤ 1

2

(
1 +

4χ

1− 2χ

)1/2

‖B1‖+
(

1 +
2χ

1− 2χ

)1/2

‖B2‖ =

=
1
2

(
1 + 2χ
1− 2χ

)1/2

‖B1‖+
(

1
1− 2χ

)1/2

‖B2‖ < 1

Thus, the system
{

ϕ
(l)
i,h(0)

}
=

{
ϕ

(l)
i,h

}
is complete in H3/2.

Now let’s construct a bounded invertible operator S acting in H3/2 and mapping{
ϕ

(l)
i,h(0)

}
to the system

{
ψ

(l)
i,h

}
, i.e. Sϕ

(l)
i,h(0) = ψ

(l)
i,h.

This operator is constructed as follows:
Let ϕ ∈ H3/2. Then the problems (2), (3) and (12), (13) have the solutions

u(t) ∈ P0 and ũ(t) ∈ Pk, respectively, moreover

c1 ‖ϕ‖3/2 ≤ ‖u(t)‖ ≤ c ‖ϕ‖3/2 (14)

and
c̃1 ‖ϕ‖3/2 ≤ ‖ũ(t)‖ ≤ c̃ ‖ϕ‖3/2 , (15)
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where Pk is the space of regular solutions of problem (2), (3), P0 is the space of
regular solutions of problem (12), (13). Now determine the operators Γ and Γ̃ as
follows

(
Γ : H3/2 → P0, Γ̃ : H3/2 → Pk

)
:

Γϕ = u(t), Γ̃ϕ = ũ(t).

From (14), ) (15) it follows that the operators Γ and Γ̃ are bounded and invertible
operators. Then it is obvious that

ψ
(l)
i,h = Γ−1u

(l)
i,h(t), ϕ

(l)
i,h(0) = Γ̃−1u

(l)
i,h(t),

i.e.
ψ

(l)
i,h = Γ−1Γ̃ϕ

(l)
i,h(0).

Since Γ−1Γ̃ is an invertible operator, then denoting by S = Γ−1Γ̃ we construct the
operator S that we need. Thus, S is a continuous and invertible operator in H3/2,
and

Sϕ
(l)
i,h(0) = ψ

(l)
i,h.

The completeness of the system
{

ψ
(l)
i,h(0)

}
in H3/2 yields the completeness of the

system
{

ψ
(l)
i,h

}
.

The theorem is proved.
Now prove a theorem on completeness of elementary descending solutions in the

space Pk.
Theorem 5. Let the conditions of theorem 4 be fulfilled. Then the elementary

descending solutions are complete in the space of all regular solutions of problem (2),
(3).

The proof follows from the inequality (15). Indeed, from the completeness of the
system

{
ψ

(l)
i,h

}
, it follows that for any ε > 0 there exists a natural number N(ε) and

the numbers ci,1,h(ε), ..., ci,N,h(ε) such that
∥∥∥∥∥∥
ϕ−

N(ε)∑

i=1

ui,j∑

l=0

ci,j,l(ε)ψ
(l)
i,j,l

∥∥∥∥∥∥
< ε.

Since u(0) = ϕ, u
(l)
i,j(0) = ψ

(l)
i,j we get

∥∥∥∥∥∥
u(t)−

N(ε)∑

i=1

ui,j∑

l=0

ci,j,l(ε)u
(l)
i,j(t)

∥∥∥∥∥∥
W 2

2 (R+;H)

≤ ε1,

where ε1 > 0 is any number. The theorem is proved.
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