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BEST APPROXIMATION OF LIPSCHITZ CLASS
FUNCTIONS

Abstract

In the paper we establish the best approximation order of the Lipschitz class
functions of many groups of variables by the sums of a fewer number variables
functions in the parallelepiped Π(a, h) by means of the least upper bound of the
modulus of finite mixed differences ∆τ1...τm

f with appropriate constants Am

and Bm.

Following [1] we introduce the following class of monotone functions of many
groups of variables.

Consider an n-dimensional parallelepid

Π = Π (a, h) =
{

x ∈ Rn| ai ≤ xi ≤ ai + hi, i = 1, n
}

.

Having chosen the numbers 0 = k0 < k1 < ... < km denote K = (k0, ..., km) ,
|K| = m.

Assume
t = (t1, ..., tm) , tj =

(
xkj−1+1, ..., xkj

)
, j = 1,m.

Further, let

Dm =
{
ε = (ε1, ..., εm) , εj = 0, 1; j = 1,m

}

be a set of vertices of an m-dimensional unit cube; denote

δ (ε) =
m∑

j=1

(1− εj) .

Consider the mapping δ(ξ,τ) : Dm → Π(ξ, τ) of the set Dm into the set of vertices
of n-dimensional parallelepiped Π (ξ, τ)

g(ξ,τ) (ε) =
(
ξ1 + ε1τ1, ..., ξk1

+ ε1τk1 , ..., ξkm−1+1 + εmτkm−1+1, ..., ξkm
+ εmτkm

)
.

Denote by MK = MK (Π (a, h)) the class of functions f = f (x) : Rn → R, x ∈
Π (a, h) for an arbitrary parallelepiped Π (ξ, τ) ⊂ Π(a, h) satisfying the condition

LK (f, Π(ξ, τ))
df
= 2−|K|

∑

ε∈D|K|
(−1)δ(ε) f

(
g(ξ,τ) (ε)

) ≥ 0.

We need the following result.
Theorem 1 [1]. The precise estimations are valid for an arbitrary bounded real

function f :

|LK (f, Π(a, h))| ≤ Ef ≤ 2Sf

m∏

i=1

hi − |LK (f,Π (a, h))| , (1)




