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Abstract

In the paper we study the issues of finiteness of overshoot moments and
also identical integrability of a family of boundary functional associated with
nonlinear boundaries crossing by a random walk.

1. Introduction
Let ξn, n ≥ 1 be a sequence of independent identically distributed random

variables determined on some probability space (Ω, F, P ).
Assume

S0 = 0, Sn =
n∑

k=1

ξk, n ≥ 1.

Consider a family of the first passage time

τa = inf {n ≥ 1 : Sn > fa(n)} , (1)

where fa(t), t ≥ 0 is a family of positive nonlinear (non-random) functions (bound-
aries) from the growing parameter a > 0. We ‘ll assume that inf {∅} =
= ∞.

Study of the issue of uniformly integrability of a family of boundary function-
als associated with the first passage time τa of the form (1) was always of great
theoretical and practical interest. This direction was investigated in ([1]-[9]).

In the present paper we study the issues of finiteness of the mean value of the
overshoot Ra = Sτa − fa(τa) and also uniformly integrability of a family of bound-
ary functionals associated with the passage of the random walk Sn for a nonlinear
boundary fa(t).

Note that such problems under different suppositions for the boundary fa(t) were
studied in [1-9].

2. Conditions and statement of the main results
We’ll assume that 0 < µ = Eξ1 < ∞, and for nonlinear boundary fa(t) the

following regularity conditions are fulfilled:
1) For each a the function fa(t) is convex downwards and continuously-differentiable,

and fa(1) ↑ ∞ as a →∞ and f ′a(t) ≥ 0 for all t > 0.

2) For all a the function
fa(t)

t
monotonically decreases to zero as t →∞.

Denote by Na = Na(µ) the solution of the equation fa(n) = nµ with respect to
n, that exists and is unique by the made assumptions.

Assume
ξ+ = max(0, ξ) and ξ− = max(0,−ξ).




