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BEST APPROXIMATION OF LIPSCHITZ CLASS
FUNCTIONS

Abstract

In the paper we establish the best approximation order of the Lipschitz class
functions of many groups of variables by the sums of a fewer number variables
functions in the parallelepiped Π(a, h) by means of the least upper bound of the
modulus of finite mixed differences ∆τ1...τm

f with appropriate constants Am

and Bm.

Following [1] we introduce the following class of monotone functions of many
groups of variables.

Consider an n-dimensional parallelepid

Π = Π (a, h) =
{

x ∈ Rn| ai ≤ xi ≤ ai + hi, i = 1, n
}

.

Having chosen the numbers 0 = k0 < k1 < ... < km denote K = (k0, ..., km) ,
|K| = m.

Assume
t = (t1, ..., tm) , tj =

(
xkj−1+1, ..., xkj

)
, j = 1,m.

Further, let

Dm =
{
ε = (ε1, ..., εm) , εj = 0, 1; j = 1,m

}

be a set of vertices of an m-dimensional unit cube; denote

δ (ε) =
m∑

j=1

(1− εj) .

Consider the mapping δ(ξ,τ) : Dm → Π(ξ, τ) of the set Dm into the set of vertices
of n-dimensional parallelepiped Π (ξ, τ)

g(ξ,τ) (ε) =
(
ξ1 + ε1τ1, ..., ξk1

+ ε1τk1 , ..., ξkm−1+1 + εmτkm−1+1, ..., ξkm
+ εmτkm

)
.

Denote by MK = MK (Π (a, h)) the class of functions f = f (x) : Rn → R, x ∈
Π (a, h) for an arbitrary parallelepiped Π (ξ, τ) ⊂ Π(a, h) satisfying the condition

LK (f, Π(ξ, τ))
df
= 2−|K|

∑

ε∈D|K|
(−1)δ(ε) f

(
g(ξ,τ) (ε)

) ≥ 0.

We need the following result.
Theorem 1 [1]. The precise estimations are valid for an arbitrary bounded real

function f :

|LK (f, Π(a, h))| ≤ Ef ≤ 2Sf

m∏

i=1

hi − |LK (f,Π (a, h))| , (1)
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where

Sf = sup
Π(x,∆x)⊂Π(a,h)

|LK (f, Π(x,∆x))|
m∏

i=1

∑

j∈kj

∆xj

.

Define the class

Lipk1 = {f = f (x, y)| |∆hτf | ≤ K |∆hτxy|} ,

where ∆hτf = |f (x + h, y + τ)− f (x + h, y)− f (x, y + τ) + f (x, y)| .
(Sometimes, when it is clear from the context instead of Lipk1 we’ll write Lip1).
Consider the best approximation

Ef = inf
ϕ(x)+ψ(y)

sup
(x,y)∈T

|f (x, y)− ϕ (x)− ψ (y)| , T = [0, 1; 0, 1] .

Lemma 1. f ∈ Lip 1 =⇒ Ef ≤ C sup
0≤h,τ≤1

0≤x+h, y+τ≤1

|∆hτf | .

Proof. The right inequality of relation (1) in the case m = n = 2, Π(a, h) = T
allows to write

Ef ≤ 1
2
Sf − |∆11f | . (2)

Further we have f ∈ Lip 1 =⇒ f is continuous on T =⇒ f bounded on T =⇒
sup
h,τ

|∆hτf | df
= K1 < ∞.

Sf = sup
0≤h,τ≤1

|∆hτf |
hτ

f ∈ Lip 1 =⇒ Sf = sup
h,τ

|∆hτf |
hτ

df
= K2 ≤ K.

Now, using (2) we get

Ef ≤ 1
2
Sf − |∆11f | = K

(
Sf

2K
− |∆11f |

K1

)

︸ ︷︷ ︸
C

df
= C1 sup

h,τ
|∆hτf | .

Consider the general case. Define the class of functions f = f (x1, ..., xn) = f (x)
determined on the parallelepiped

Π (a, h) =
{

x ∈ Rn| ai ≤ xi ≤ ai + hi, i = 1, n
}

Lipk 1 =

{
f
∣∣∣ |∆τ1...τnf | ≤ K

∣∣∣∣∣∆τ1...τn

n∏

i=1

xi

∣∣∣∣∣

}
.

Consider the best approximation

Ef = inf
m
Σ

ν=1
ϕν(x\xν )

sup
x∈Π(a,h)

∣∣∣∣∣f (x)−
m∑

ν=1

ϕν (x \xν )

∣∣∣∣∣ .



Transactions of NAS of Azerbaijan
[Best approximation of Lipschitz class...]

11

Lemma 2. f ∈ Lip 1 =⇒ Ef ≤ C sup
ai≤τ i≤ai+hi

ai≤xi+τi≤ai+hi

i=1,n

|∆τ1...τnf | .

Proof: The right inequality in (1) in the case m = n has the form

Ef ≤ 21−nSf

n∏

i=1

hi − 1
2n
|∆h1...hnf | . (3)

Further we have f ∈ Lip1 =⇒1) f is continuous on Π (a, h) =⇒ f is bounded

on Π (a, h) =⇒ sup
τ1,...,τn

|∆τ1,...,τnf | df
= K1 < ∞.

2) Sf = sup
τ1,...,τn

∣∣∣∣
∆τ1...τnf

τ1, ..., τn

∣∣∣∣ = K2 ≤ K.

Using the scheme of the proof of lemma 1, we get

Ef ≤ 21−n
n∏

i=1

hiSf
K1

K1
− 1

2n
|∆h1...hnf | · K1

K1
=

= K121−n




Sf

n∏

i=1

hi

K1
− 1

2

∣∣∣∣
∆h1...hnf

K1

∣∣∣∣




= Csup
τ i

|∆τ1,...,τnf | .

Lemma 3. f ∈ Lip 1 =⇒ Ef ≤ C sup
ai≤xi≤ai+hi

ai≤xi+θi≤ai+hi

|∆τ1...τnf | .

Denote τ i =
(
θkj−1+1, ..., θkj

)
, j = 1, m and consider the difference

∆τ jf = f ( t\ tj , tj + τ j)− f (t)

∆τ iτ jf = ∆τ j

(
∆τ jf

)
.

Introduce the Lipschitz class on the groups of variables k; τ1, ..., τm

Lip 1 =

{
f | ∃s < ∞; |∆τ1,...,τmf | ≤ s

∣∣∣∣∣∆τ1,...,τm

n∏

i=1

xi

∣∣∣∣∣

}
.

Theorem 2.

f ∈ Lip 1 =⇒ Am sup
ai≤xi≤xi+ai≤ai+hi

|∆τ1...τmf | ≤

≤ Ef ≤ Bm sup
ai≤xi≤xi+ai≤ai+hi

|∆τ1...τmf | . (4)

Proof. Earlier in [1] it was shown that ∆τ1...τm is an annihilator of the fanctions

of the form
m∑

ν=1

ϕν (t \tν ), i.e. for the function f to have the form
m∑

ν=1

ϕν (t \tν ) it is

necessary and sufficient ∆τ1...τmf = 0.
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Then, taking into account the linearity of ∆τ1...τmf we have ∀0 ≤ xi ≤ xi + θi ≤
ai + hi

|∆τ1...τmf | =
∣∣∣∆τ1...τm

(
f −

∑
ϕν

)∣∣∣ ≤ 2m
∥∥∥f −

∑
ϕν

∥∥∥
C(Π(a,h))

=⇒

=⇒ 2−m sup
ai≤xi≤xi+ai≤ai+hi

|∆τ1...τnf | ≤ Ef . (5)

Further, f ∈ Lip 1 =⇒ f is continuous on Π (a, h) =⇒ f is bounded on Π (a, h) =⇒
sup

ai≤xi≤xi+ai≤ai+hi

|∆τ1...τmf | ≤ +∞;

Use estimation (1). It is easy to note that we can write the right relation in (1)
in the form

Ef ≤ 21−mSf

m∏

j=1

∑

i∈kj

hi − |Lk (f, Π(a, h))| , (6)

where

Sf = sup
∣∣∣ ∆τ1,...,τnf

∆τ1,...,τn

n∏

i=1

xi

∣∣∣ and Lk (f, Π(x, θ))
df
= 2−m∆τ1,...,τmf.

We have

∆τ1,...,τm

n∏

i=1

xi =
m∏

j=1

∑

i∈kj

θi, where kj = {kj−1 + 1, ..., kj} .

Therefore
f ∈ Lip 1 =⇒ Sf = sup

∣∣∣ ∆τ1,...,τmf

∆τ1,...,τn

n∏

i=1

xi

∣∣∣ ≤ S < +∞

Taking into account what has been said, from relation (6) we get

Ef ≤ 21−mSf

m∏

j=1

∑

i∈kj

hi − |Lk (f, Π(a, h))| = Bm sup
ai≤xi≤xi+ai≤ai+hi

|∆τ1...τmf | .

The last relation with the functions from Lip1 completes the proof of the cited
inequality of the theorem.

Using the sheme of the proof of the left inequality (1) in [1] we can establish also
the left inequality in (4) that completes the proof of the theorem.
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