Arzu M-B. BABAYEV

BEST APPROXIMATION OF LIPSCHITZ CLASS FUNCTIONS

Abstract

In the paper we establish the best approximation order of the Lipschitz class functions of many groups of variables by the sums of a fewer number variables functions in the parallelepiped $\Pi(a, h)$ by means of the least upper bound of the modulus of finite mixed differences $\Delta_{\tau_1...\tau_m} f$ with appropriate constants A_m and B_m .

Following [1] we introduce the following class of monotone functions of many groups of variables.

Consider an n-dimensional parallelepid

$$\Pi = \Pi (a, h) = \{ x \in \mathbb{R}^n | a_i \le x_i \le a_i + h_i, \ i = \overline{1, n} \}.$$

Having chosen the numbers $0 = k_0 < k_1 < ... < k_m$ denote $\mathcal{K} = (k_0, ..., k_m)$, $|\mathcal{K}| = m$.

Assume

$$t = (t_1, ..., t_m), \quad t_j = (x_{k_{j-1}+1}, ..., x_{k_j}), \quad j = \overline{1, m}.$$

Further, let

$$\mathcal{D}^m = \left\{ \varepsilon = (\varepsilon_1, ..., \varepsilon_m), \ \varepsilon_j = 0, 1; \ j = \overline{1, m} \right\}$$

be a set of vertices of an *m*-dimensional unit cube; denote

$$\delta\left(\varepsilon\right) = \sum_{j=1}^{m} \left(1 - \varepsilon_{j}\right).$$

Consider the mapping $\delta_{(\xi,\tau)} : \mathcal{D}^m \to \Pi(\xi,\tau)$ of the set \mathcal{D}^m into the set of vertices of *n*-dimensional parallelepiped $\Pi(\xi,\tau)$

$$g_{(\xi,\tau)}\left(\varepsilon\right) = \left(\xi_1 + \varepsilon_1\tau_1, \dots, \xi_{k_1} + \varepsilon_1\tau_{k_1}, \dots, \xi_{k_{m-1}+1} + \varepsilon_m\tau_{k_{m-1}+1}, \dots, \xi_{k_m} + \varepsilon_m\tau_{k_m}\right).$$

Denote by $M_{\mathcal{K}} = M_{\mathcal{K}} (\Pi (a, h))$ the class of functions $f = f(x) : \mathbb{R}^n \to \mathbb{R}, x \in \Pi (a, h)$ for an arbitrary parallelepiped $\Pi (\xi, \tau) \subset \Pi (a, h)$ satisfying the condition

$$\mathcal{L}_{\mathcal{K}}\left(f,\Pi\left(\xi,\tau\right)\right) \stackrel{df}{=} 2^{-|\mathcal{K}|} \sum_{\varepsilon \in \mathcal{D}^{|\mathcal{K}|}} \left(-1\right)^{\delta(\varepsilon)} f\left(g_{\left(\xi,\tau\right)}\left(\varepsilon\right)\right) \ge 0$$

We need the following result.

Theorem 1 [1]. The precise estimations are valid for an arbitrary bounded real function f:

$$\left|\mathcal{L}_{\mathcal{K}}\left(f,\Pi\left(a,h\right)\right)\right| \leq E_{f} \leq 2S_{f} \prod_{i=1}^{m} h_{i} - \left|\mathcal{L}_{\mathcal{K}}\left(f,\Pi\left(a,h\right)\right)\right|,\tag{1}$$

10 _____[A.M-B.Babayev]

where

$$S_{f} = \sup_{\Pi(x,\Delta x)\subset\Pi(a,h)} \frac{\left|\mathcal{L}_{\mathcal{K}}\left(f,\Pi\left(x,\Delta x\right)\right)\right|}{\prod_{i=1}^{m}\sum_{j\in\overline{k_{j}}}\Delta x_{j}}$$

Define the class

$$Lip_k 1 = \{ f = f(x, y) | |\Delta_{h\tau} f| \le K |\Delta_{h\tau} x y| \},\$$

where $\Delta_{h\tau} f = |f(x+h, y+\tau) - f(x+h, y) - f(x, y+\tau) + f(x, y)|$.

(Sometimes, when it is clear from the context instead of Lip_k1 we'll write Lip_1). Consider the best approximation

$$E_{f} = \inf_{\varphi(x) + \psi(y)} \sup_{(x,y) \in T} \left| f(x,y) - \varphi(x) - \psi(y) \right|, \quad T = [0,1;0,1].$$

Lemma 1. $f \in Lip \ 1 \Longrightarrow E_f \leq C \sup_{\substack{0 \leq h, \tau \leq 1 \\ 0 \leq x+h, \ y+\tau \leq 1}} |\Delta_{h\tau}f|.$

Proof. The right inequality of relation (1) in the case m = n = 2, $\Pi(a, h) = T$ allows to write

$$E_f \le \frac{1}{2}S_f - |\Delta_{11}f|.$$
 (2)

Further we have $f \in Lip \ 1 \Longrightarrow f$ is continuous on $T \Longrightarrow f$ bounded on $T \Longrightarrow$ $\sup_{h,\tau} |\Delta_{h\tau} f| \stackrel{df}{=} K_1 < \infty.$

$$S_f = \sup_{0 \le h, \tau \le 1} \frac{|\Delta_{h\tau} f|}{h\tau}$$

$$\in Lip \ 1 \Longrightarrow S_f = \sup_{h, \tau} \frac{|\Delta_{h\tau} f|}{h\tau} \stackrel{df}{=} K_2 \le K$$

Now, using (2) we get

f

$$E_f \leq \frac{1}{2}S_f - |\Delta_{11}f| = K\underbrace{\left(\frac{S_f}{2K} - \frac{|\Delta_{11}f|}{K_1}\right)}_C \stackrel{df}{=} C_1 \sup_{h,\tau} |\Delta_{h\tau}f|.$$

Consider the general case. Define the class of functions $f = f(x_1, ..., x_n) = f(x)$ determined on the parallelepiped

$$\Pi(a,h) = \left\{ x \in \mathbb{R}^n | a_i \le x_i \le a_i + h_i, \ i = \overline{1,n} \right\}$$
$$Lip_k \ 1 = \left\{ f \left| \left| \Delta_{\tau_1 \dots \tau_n} f \right| \le K \left| \Delta_{\tau_1 \dots \tau_n} \prod_{i=1}^n x_i \right| \right\}.$$

Consider the best approximation

$$E_{f} = \inf_{\substack{\sum \\ \nu=1}^{m} \varphi_{\nu}(x \setminus x_{\nu})^{x \in \Pi(a,h)}} \sup_{x \in \Pi(a,h)} \left| f(x) - \sum_{\nu=1}^{m} \varphi_{\nu}(x \setminus x_{\nu}) \right|.$$

Transactions of NAS of Azerbaijan ______11 [Best approximation of Lipschitz class...]

Lemma 2. $f \in Lip \ 1 \Longrightarrow E_f \leq C \sup_{\substack{a_i \leq \tau_i \leq a_i + h_i \\ a_i \leq x_i + \tau_i \leq a_i + h_i}} |\Delta_{\tau_1 \dots \tau_n} f|.$

Proof: The right inequality in (1) in the case m = n has the form

$$E_f \le 2^{1-n} S_f \prod_{i=1}^n h_i - \frac{1}{2^n} \left| \Delta_{h_1 \dots h_n} f \right|.$$
(3)

Further we have $f \in Lip1 \Longrightarrow 1$ f is continuous on $\Pi(a, h) \Longrightarrow f$ is bounded on $\Pi(a,h) \Longrightarrow \sup_{\tau_1,\ldots,\tau_n} |\Delta_{\tau_1,\ldots,\tau_n} f| \stackrel{df}{=} K_1 < \infty.$

2)
$$S_f = \sup_{\tau_1,\dots,\tau_n} \left| \frac{\Delta_{\tau_1\dots\tau_n} f}{\tau_1,\dots,\tau_n} \right| = K_2 \le K.$$

Using the scheme of the proof of lemma 1, we get

$$E_f \le 2^{1-n} \prod_{i=1}^n h_i S_f \frac{K_1}{K_1} - \frac{1}{2^n} |\Delta_{h_1 \dots h_n} f| \cdot \frac{K_1}{K_1} =$$

$$= K_1 2^{1-n} \left(\frac{S_f \prod_{i=1}^n h_i}{K_1} - \frac{1}{2} \left| \frac{\Delta_{h_1 \dots h_n} f}{K_1} \right| \right) = C \sup_{\tau_i} |\Delta_{\tau_1, \dots, \tau_n} f|.$$

Lemma 3. $f \in Lip \ 1 \Longrightarrow E_f \leq C \sup_{\substack{a_i \leq x_i \leq a_i + h_i \\ a_i \leq x_i + \theta_i \leq a_i + h_i \\ 0 \text{ Denote } \tau_i = (\theta_{k_{j-1}+1}, ..., \theta_{k_j}), \quad j = \overline{1, m} \text{ and consider the difference}$

$$\Delta_{\tau_j} f = f\left(t \setminus t_j, t_j + \tau_j\right) - f\left(t\right)$$
$$\Delta_{\tau_i \tau_j} f = \Delta_{\tau_j} \left(\Delta_{\tau_j} f\right).$$

Introduce the Lipschitz class on the groups of variables \overline{k} ; $\tau_1, ..., \tau_m$

$$Lip \ 1 = \left\{ f | \exists s < \infty; \ |\Delta_{\tau_1, \dots, \tau_m} f| \le s \left| \Delta_{\tau_1, \dots, \tau_m} \prod_{i=1}^n x_i \right| \right\}.$$

Theorem 2.

$$f \in Lip \ 1 \Longrightarrow A_m \sup_{\substack{a_i \le x_i \le x_i + a_i \le a_i + h_i}} |\Delta_{\tau_1 \dots \tau_m} f| \le$$
$$\leq E_f \le B_m \sup_{\substack{a_i \le x_i \le x_i + a_i \le a_i + h_i}} |\Delta_{\tau_1 \dots \tau_m} f| .$$
(4)

Proof. Earlier in [1] it was shown that $\Delta_{\tau_1...\tau_m}$ is an annihilator of the functions of the form $\sum_{\nu=1}^{m} \varphi_{\nu}(t \setminus t_{\nu})$, i.e. for the function f to have the form $\sum_{\nu=1}^{m} \varphi_{\nu}(t \setminus t_{\nu})$ it is necessary and sufficient $\Delta_{\tau_1...\tau_m} f = 0.$

[A.M-B.Babayev]

Then, taking into account the linearity of $\Delta_{\tau_1...\tau_m} f$ we have $\forall 0 \le x_i \le x_i + \theta_i \le a_i + h_i$

$$\begin{aligned} |\Delta_{\tau_1\dots\tau_m} f| &= \left| \Delta_{\tau_1\dots\tau_m} \left(f - \sum \varphi_{\nu} \right) \right| \le 2^m \left\| f - \sum \varphi_{\nu} \right\|_{C(\Pi(a,h))} \Longrightarrow \\ &\implies 2^{-m} \sup_{a_i \le x_i \le x_i + a_i \le a_i + h_i} |\Delta_{\tau_1\dots\tau_n} f| \le E_f. \end{aligned}$$
(5)

Further, $f \in Lip \ 1 \Longrightarrow f$ is continuous on $\Pi(a, h) \Longrightarrow f$ is bounded on $\Pi(a, h) \Longrightarrow$ $\sup_{\substack{a_i \leq x_i \leq a_i + h_i \\ \text{Use extinct in (1) } f \mid \leq +\infty;} |\Delta_{\tau_1 \dots \tau_m} f| \leq +\infty;$

Use estimation (1). It is easy to note that we can write the right relation in (1) in the form

$$E_{f} \leq 2^{1-m} S_{f} \prod_{j=1}^{m} \sum_{i \in k_{j}} h_{i} - \left| \mathcal{L}_{k} \left(f, \Pi \left(a, h \right) \right) \right|, \tag{6}$$

where

$$S_{f} = \sup \left| \frac{\Delta_{\tau_{1},\dots,\tau_{n}} f}{\Delta_{\tau_{1},\dots,\tau_{n}} \prod_{i=1}^{n} x_{i}} \right| \quad \text{and} \quad \mathcal{L}_{k}\left(f,\Pi\left(x,\theta\right)\right) \stackrel{df}{=} 2^{-m} \Delta_{\tau_{1},\dots,\tau_{m}} f.$$

We have

$$\Delta_{\tau_1,...,\tau_m} \prod_{i=1}^n x_i = \prod_{j=1}^m \sum_{i \in k_j} \theta_i, \text{ where } \overline{k}_j = \{k_{j-1} + 1, ..., k_j\}.$$

Therefore

$$f \in Lip \ 1 \Longrightarrow S_f = \sup \left| \frac{\Delta_{\tau_1, \dots, \tau_m} f}{\Delta_{\tau_1, \dots, \tau_n} \prod_{i=1}^n x_i} \right| \le S < +\infty$$

Taking into account what has been said, from relation (6) we get

$$E_f \leq 2^{1-m} S_f \prod_{j=1}^m \sum_{i \in \overline{k}_j} h_i - \left| \mathcal{L}_k \left(f, \Pi \left(a, h \right) \right) \right| = B_m \sup_{a_i \leq x_i \leq x_i + a_i \leq a_i + h_i} \left| \Delta_{\tau_1 \dots \tau_m} f \right|.$$

The last relation with the functions from Lip1 completes the proof of the cited inequality of the theorem.

Using the sheme of the proof of the left inequality (1) in [1] we can establish also the left inequality in (4) that completes the proof of the theorem.

References

[1]. Babayev M-B.A. Estimations of the best uniform approximation by the sums of the function of a few number of variavles. Special Issues of theory of functions. Baku, 1989, pp. 38-46 (Russian).

Arzu M-B. Babayev

m

Institute of Mathematics and Mechanics of NAS of Azerbaijan 9, B.Vahabzade str., AZ1141, Baku, Azerbaijan Tel.: (99412) 538 62 17 (off.) Received: May 21, 2012; Revised: October 08, 2012.

12