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Misraddin A. SADYGOV

CHARACTERIZATION OF n-POSITIVE
HOMOGENEOUS FUNCTIONS

Abstract

In the paper, an n-positive homogeneous function is compared with a sub-
linear function which is determined on tensor product spaces. A series of prop-
erties of sublinear functions determined on tensor product spaces is studied.
A link between an n-positive homogeneous function and a sublinear function
determined on tensor product spaces is also studied.

1. Introduction

The paper consists of five paragraphs. In the second paragraph, the formulation
of the basic results of the paper is given. In the third paragraph, some properties
of the representation of an element of tensor product spaces and the properties of
convergence on tensor product spaces are studied. In case of tensor product of two
spaces, such kind of questions are studied in [1].

In the third paragraph, the convex hull of a function is also considered. The
convex hull of a function in a finite-dimensional space is considered in the works [3,
4]. Asusual, the convex hull of a function in a finite dimensional space is investigated
with the use of Caratheodory theorem. In an infinite dimensional space, such a
question is considered in the works [1],[2]. In the third paragraph, a similar question
is considered in an infinite-dimensional space.

In the fourth and fifth paragraphs, an n-positive homogeneous function is com-
pared with a sublinear function, determined on a tensor product spaces. A series
of properties of sublinear functions determined on tensor product spaces is stud-
ied. A link between an m-positive homogeneous function and a sublinear function
determined on tensor product spaces is also studied. Properties of n-positive homo-
geneous function from X x ... x X in R are studied in the fourth paragraph and those
of n-positive homogeneous function from K x ... x K in R, where K C X is a convex
closed salient cone are studied in the fifth paragraph. Note that corollary 4.5 when
n = 2 and X is a Banach space such that each point x with ||z| = 1 is a strongly
exposed point of the unit ball is an analogue of theorem 6.4 [5], which is proved
by another method for even positive-homogeneous functions of second order in [5].
Such kind of questions are also studied, particularly, for n-sublinear functions in the
works [6], [7], for a bipositively- homogeneous function in [1] and for an n-positively
homogeneous function in [2].

Note that the problem of investigation of n-positive homogeneous functions arises
when one obtains necessary optimality conditions of high order of the solutions to
no n-smooth extreme problems (see corollary 3.5.5 [1]), but such problem is also of
independent interest.

2. Formulation of basic results
Let X be a real Banach space, R = (—00,+00), R = (—00,+00] and ¢q : X x
... x X — R. The function ¢ is called n-positive homogeneous if the functions z; —

63



64 Transactions of NAS of Azerbaijan
[M.A.Sadygov]

q(z1, ..., 4, ..., Tp) are positive homogeneous and q(x1,...,zi—1,0,Zit1,....,x,) = 0
for i = 1,n. The function q is called n-sublinear if ¢ is an n-positive-homogeneous
function and the functions z; — q(z1, ..., zi, ..., T) are convex.

The set of all continuous n-linear functions from X x ... x X in R is denoted by
B(X™, R). An n-linear function from X x ... x X in R is called symmetric if it takes
on the same value at all permutations of its variables. If there exists b € B(X™, R)
such that Q(x) = b(z,...,x), then @ is called n-polynomial. Note that for each
function b € B(X™, R) there exists a symmetric function b; € B(X", R) such that
b(x,...,x) = bi(z,....,z) for z € X. The set of all n-polynomial functions from X
in R is denoted by By(X™). Tensor product of n number spaces X is denoted by
X ®...® X (see[l], [2], [8]). In the paper, we generally use the definition of tensor
product introduced in [8] .

As usual, the set of all linear continuous functions from X in R is denoted by
X*. Note that X*®...® X™* is identified with some subspaces of n-linear continuous
functions on X x ... x X by means of the identity (2] ® ... ® z})(z1,...,Tn) =

xi(x1)..x) (zy). It is easily verified that for each element v € X ® ... ® X the
kl kn . . .
representation v = > ... Y ;. i, ® ... ® 22 holds true, where {z’}
i1=1  ip=1
such that subsets of these elements differ from each other, i.e. they are linearly
independent for s = 1,n acting as sets. Therefore, similar to [8] (see p. 120) it
is verified that for each nonzero element v € X ® ... ® X there exists the function
.. @x € X*®...® X" such that (2] ® ... ®z})(v) # 0, ie. X*®...0X*
separates the elements of space X ® ... ® X.

ks

1s—

1 are

We assume that the space X ®...® X is supplied with a topology generated with
respect to the norm

m m
lv|| = mf{ZHaz’lH e Hx;H v = Zx’l R ... ®wfl, a?; eX, me N},
i=1 i=1
ie. X ®..® X is supplied with a projective topology (see [8]). Next, we shall
identify (see [8,9]) (X ®---® X)* and B(X", R).
Let {E, : a € A} be a family of finite-dimensional subspaces of the space X

directed along the growth and satisfying the condition |J E, = X, where E, # Ej3
a€A
at a # (; Ais a set of indices directed (reflective, transitive, antisymmetric) by

the relation <. Thus, A is directed along the growth o < 3 if E, C Eg. As any
linear system has algebraic basis, then the existence of the given family of finite-
dimensional subspaces E,, a € A, in X follows from Zorn lemma. It is clear that
E., a € A, is aBanach space with respect to the induced topology from the Banach
space X. Assuming

Ey®.QFE,=Lin{z'®. 02" X®..0X: z',... 2" € E,},

we have E, ® ... ® B, C Eg® ... ® Eg for a < 8. It is clear that B, ® ... ® E, is a
Banach space with respect to the norm
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] = mf{lfjl T EAE

m

yszﬁ@...@x;, 20 ®.. 01 € By ®...® Eq, mEN}
i=1

and a subspace in X ® ... ® X.

Note that all norms are equivalent in a finite-dimensional space. Therefore, it is
possible to take s-norms (see §3) that are independent of the choice of the elements
representations.

Let g, denote a canonical imbedding F, ® ... ® F, in X ® ... ® X. As is known
(see [8]) an inductive topology in X ® ... ® X with respect to the family (E, ®
. ® Ey, go, o € A) is a local convex space. We denote by (X ® ... ® X), a space
X ® ... ® X supplied with the topology introduced. Similarly, from 2.6.4 and 2.6.5
[8], we have that {v;} C X ®...® X converges to v with respect to the topology in
(X ®...® X); if and only if {vy} converges to {v} in B, ® ... ® E, for some a € A
. Therefore, the topology in (X ® ... ® X); is stronger than the one in X ® ... ® X.
Then we have that (X ® ... ® X)s is a Hausdorff space.

From the definition of the topology in (X ® ... ® X) it follows that B(X", R) C
C(X®..®X):. We denote by cIlB(X™, R) a closure B(X™, R) in the topology
o(X®..0X): X®..0X). AsclB(X", R) is closed in (X ®...®X)? with respect to
the topology o((X ®...0 X)i, X ®...® X) and B(X", R) separates the points of the
set X ®...® X, then, using separation theorems (see theorems 3.4 [10]), we have that
cdB(X™ R) = (X®...®X)% And vice versa, if z* € (X ®...® X)% , then, it is easily
verified that b(x1,...,x,) = 2" (21 ® ... ® zp,) is an n-linear function. Besides, from
2.6.1 [8] it follows thatx € (X®@..@X)iifandonly if %[5 o op € (Ea®..@FE)".
Therefore b|, € B(E}, R), where E}} = E, X ... X E,.

Besides if X is a seperabel space, having chosen the denumerable system of
elements zi,xs, ..., Tk, ... generating all X and having put Ey = Lin{xy, z9, ...,z },

Ey®..9FE,=Lin{z'® - @a": o', ....2" € B}, we have |J Ex ® ... ® By =
keN
=X®..®X and A= N. It is known that (see 2.6.6 [8]) the inductive topology

in X ®...® X with respect to family (Ey ® ... ® E, gk, k € N) is a complete local
convex space. As Ej is reflexive, from 4.5.8 [8] it follows that (X ® ... ® X), is
reflexive.

If f: Xx..xX — Rand f(-z,...,—2) = f(x,...,x), then f is called even.
Assume that By(X") = {Q Q( ) z*(z,...,x),z" € B(X", R)}, Bi(X") =
={Q : Qz) = z*(x,....,z),2* € clB(X" R) = (X®..0X):}, O =1{Q €

€ Bi(X™): () > Qx) for x € X}, where o(x) = f(z,--- ,z) (see the details in
paragraphs 4 and 5 ). Next, we assume that the number X in X X ... x X equals n
and n > 2.

Theorem 1. Let n be even, f : X x ... x X — R an n-positive-homogeneous
even and lower semicontinuous function in each finite-dimensional subspace of space
X X ... x X, there exist « > 0 such that o||z||" < f(z,...,x) for x € X. Then
f(z,....,z) =sup {Q(m) : Qegngo} forx e X. )

Theorem 2. Let X be a real Banach space, n even, f : X x...x X — R a lower
semicontinuous n-positive homogeneous even function, there existb € (X ®...® X)*
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and o > 0 such that ||z||" < b(z,...,z) and —ab(x,...,x) < f(z,...,z) for z € X.
Then f(z,...,x) = sup{Q(x) Qe 5n<p} forxz e X.

If X is a Hilbert space, then in theorem 2, we can assume b(x, ..., z) = ||z||

Corollary 1. Let X be a real Banach space, n be even, f: X x...x X — R a
lower semicontinuous n-positive homogeneous even function, there exist b € (X ®
.. ®X)% such that [|z|" < b(z,...,x). Then f(z,..,z) =sup{Q(z) : Q € Oy} for
zeX.

Ifqg: X — R, we assume dpq = {Q € Bo(X™) : q(z) > Q(z) for z € X}.

Theorem 3. Let X = R*, n be even, f : R¥x...x R¥ — R an n-positive homoge-
neous lower semicontinuous even function. Then f(z,...,x) =sup{Q(z) : Q € dnp}
for x € RF.

The set K C X is called a cone if \x € K for x € K and A > 0. The cone K 1is
called a salient (or pointed) cone if K (\{—K} = {0}.

If there exists such a convex closed salient cone Ky and number d > 0 is such
that {x € X : ||z — x| < d||zol|} € K1 for each point xy € K, then it is said that
the convex closed salient cone K allows plastering (see [11], p.40), where the number
d is independent of xo € K.

Let K C X be a convex closed cone, f: K x ... x K — R an n-positive homoge-
flz,..,z): z €K,

+o0: x ¢ K.

Theorem 4. Let X be a real Banach space, K C X a convez closed salient

cone (cone K allows plastering cone if n is odd), f : K x ... x K — R a lower

neous function. Assume p(z) = {

semicontinuous n-positive homogeneous function, there exist b € (X ®...® X)* and
a > 0 such that ||z||" < b(z,...,z) and —ab(z,...,x) < f(z,...,z) forx € K. Then
f(z,...,z) =sup{Q(z) : Q € Opp} forz € K.

A linear function z* € X* is called uniformly positive if there exists such a > 0
that z*(z) > a||z|| for x € K (see [11], p. 40). A convex closed salient cone K allows
plastering cone if and only if there exists a uniform positive function z* € X* (see
[11], p. 40). Therefore ||z||" < b(z,...,z) for € K, where ain(x*(m))" =b(z,...,x),
be B(X"™ R),i.e. if K allows plastering cone, then there exist b € B(X"™, R) such
that [|z||" < b(z,...,z) for z € K.

Corollary 2. Let X be a real Banach space, cone K allow plastering, f :
K x..x K — R a lower semicontinuous n-positive homogeneous function. Then
flz,...,z) =sup {Q(m) Q€ 5ng0} forx e K.

Theorem 5. Let X = R, K C RF be a convex closed salient cone, f :
K x ... x K — R an n-positive homogeneous lower semicontinuous function. Then

flz, ... x) =sup{Q(x) : Q € dnp} forxz € K.

3. Some properties of tensor product

In the third paragraph, some properties of the representation of an element and
convergence of a sequence in tensor product spaces are studied.

Let X be a real Banach space and Ry = [0, —00).

Lemmal [2]. Ifz®2®..0x =) ¥y @y ®..RQy" and n is even, then there
i=1
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exists \; € R, i = 1,m, such that y* = \jz and Y A\ = 1.
i=1

m . . .
Corollary 1. If X is a Banach space, n is even, tQx®...Qr = Y r'Qxr'®...Qx"
i=1
and {' ® .... ® 2"}, are linearly independent, where x,x' € X for i =1,m, then
m=1 and ' = +zx.
Lemma 2. If X is a separable Banach space, K C X is a convex closed salient

cone, tRTR..0x = 'R ..z and x, 2" € K at i = 1,m, then there
i=1
. m
exist \j € Ry for i =1,m, such that ' = \jx and > \}' = 1.
i=1
Proof. If n is even, the validity of lemma 2 follows from lemma 1. Let n be odd.
According to theorem 5.9 (see [11], p. 42) there exists z* € X such that z*(z) > 0
for z € K, 2z # 0.
Let z@2z®.0r=>) 2Rz ®.0z" and z, 2* € K fori =1, m.
i=1
The case = 0 is trivial. Let z,2° € K, = # 0, 2 # 0.
If by € B(X" ' R), then b = by ® 2* € B(X", R) and

bi(z,...,z)x"(z) = Z by(xt, ..., a0z ().
i=1
Hence it follows that
x*(a:)x@:c@...@x:Zw*(zi)xi®xi®...®azi (1)
i=1

and 2*(x) > 0. As 2! € K, then z*(2%) > 0. Then from (1) we obtain

m

x®x®...®xzz
=1

2 (o)

z*(x)

'Rr'®..®1" (2)

As the number z in equality (2) is even, assuming that ¢ = "7/ f;((i)) z* according
to lemma 1 we have 7! = §3,x, i.e. 2t =, "7/ ;E:((;i)) x =Nz ati=1,m. Also it is

m m

clear that 2@ ®..Q@x = > ANz @z ®...®z. Hence it follows that > A = 1. As
=1 i=1

z, x* € K, we have \; > 0 for i = 1, m. The lemma is proved.

Corollary 2. If X is a separable Banach space, K C X a convex closed salient
m . . . . .
cone, tRIr®..Q0x =y 'z ..z and {z'® ... @'}, are linearly
i=1
independent, where z,2' € K fori=1,m, then m =1 and 2" = z.

Let K be a convex closed salient cone. A linear function xz* € X* is called
uniformly positive if there exists a > 0 such that z*(z) > a||z|| for z € K. A convex
closed salient cone K allows plastering if and only if there exists a uniformly positive
function z* € X* (see [11], p. 40).
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Remark 1. If X is a Banach space, K C X is a convex closed salient cone and
cone K allows plastering, @z ® ..z = Y ' ®@z'® .. ®2" and z, ' € K for
i=1
. m
i = 1, m, then there exist \; € R4 for i = 1, m, such that 2" = \;jz and Y AI' =1
i=1
Lemma 3 [2]. If x,, € X weakly converges to x and x,, ® .... ® x,, weakly
convergestov € X ® .. X, thenrv =2® ....® x.

Lemma 4 [2]. If !, strongly converges to x', then vy, = >zl @ ... ® zl,
i=1
ko .
strongly converges to v= "> '® ... z".
i=1
Let Z be a vector space. If S C Z is a nonempty set, then assume

m
coneS:{Zaizi c 2 eSS, a; >0, mEN}.
i=1

Introduce the notation M ={z® ...®@z 12 € X}.
Assuming A -z ® ---®z = e @Y\ for A > 0, we have

m
coM:{Z - Zaz—l e X, a; >0, mGN}:
—1 =1

,—/H
||M3

Y MEX,meN}

m . .
coneM:{Zalx@) A :L'ZEX,aZ-ZO,mGN}:
={Z¢®m®y:yexmeN}
i=1
If n is even, we have that
Lin M = {Z)\Z-:ﬁ@---@:z:’ o 2'e X, \; €R, mGN} =coM — coM.
If n is odd, we also have

m . . .

LinM:{Z)\ix’@)'--@xz 2t e X, \; €R, mEN}:
i=1

m

:{Zyi(@"'@yi: yiEX,mEN}:coM.
i=1

If X = R, from lemma 1.20 [10], it follows that Lin M is closed in space R¥®---@ R¥.
Let X be a real Banach space and B, = {z* € X*: ||[z*|| < 1} a unit ball in X™*.
As is known (see [8], p.153; [9], p.40)

m m
V) = sup {Z zi(z)).ai(zl): v= Z:pzl ® .01, l‘; €X, 21,...,x, € B*} .
1=1

=1
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m . .
is a cross norm (s-norm) on X ®....® X, where Y z7(z})...z} («%) does not depend
i=1
m . .
on the choice of the representation of the element v = > 2} ® ... ® z},.
i=1

If X is a Hulbert space, then using the other definition of a tensor product (see
[12]), we have that Euclidian norm does not depend on the representation of the
element v € X ® ... ® X.

In lemma 5, the convex hull of a function is considered in an infinite-dimensional
space.

Lemma 5 [2]. If X;, i = 1,n, are normalized spaces, P : X1 x ... x X, — R an
n-positive homogeneous function and (conv P)(v) > —oo, then

(conv P)(v) = P(v) =

= inf{ZP(:UZi,...,:E;) V= Zmzl ®.0z, (xi, .., 2)) € X1 x ... Xn} =
i i

= inf {Z P(zi, ... xb):
=1

,
v= Z(le ®.0xh), 2t ®.. @z, i=1r, linindepen., r¢c N} .
i=1
Remark 2. If X is normalized space, n is even, f : X x ... x X — R is an
n-positive homogeneous function, then the solution to problem

m m
Zoz@-f(:vi,...,xi) — inf, a; >0, V:Zaia:i®...®aci (3)
i=1 i=1

ot ®

s

exists (The set (aq,...,q,) € R™ satifying the conditions a; > 0, v =

=1

... ® z' is compact). Therefore

fs(v) = inf{i flzt .. 2% v = i ..o xtc
i=1 '

i=1
€ X,me N} :inf{z flxt . 2 v =
i=1

.. 02, {xz ... ® sz}zl — lin.indepen., z* € X, m € N} ,

s

i=1

where as usually, we assume that inf ) = +oo.
Remark 3. Note that if X is a real separable Banach space, K C X is a convex
closed salient cone, f : K x ... x K — R is an n-positive homogeneous function, then

fs(v) = inf{z f@t, 2 v= Y re.e2 2 c
i=1 i=1
€K, mEN}:inf{Z fl@t .2t v =
i=1

oF

.., {xz ® ... ® xz}:il — lin.indepen., ' € K, m € N} )
1

1



Transactions of NAS of Azerbaijan

0
[M.A.Sadygov]
Remark 4. Note that if X is a real Banach space, K C X is a convex closed

salient cone and cone K allows plastering if n is odd, f : K x ... x K — R is an
n-positive homogeneous function, then

fs(v) = inf{i fl@t . 2 v = f: rR..Qx xt e
i=1 ‘

=1

m . .
€K, meN}:inf{z fla', .., 2" rv=
=1
= Z r'R.. Q" {z’@ ...®1:’}Zl — lin.indepen., 2* € K, m € N}.

=1

4. Properties of n-positive homogeneous functions
Let X be areal Banachspace, M = {r®..Q@x : v € X}and f: Xx..xX — R

be an n-positive homogeneous function. Assume that

fg(y):inf{Zf(a:i,...,xi) : V:Z.Ti@...@l‘i, m € N, aziGX},
i=1

i=1
where as usually, we assume that inf ) = +oo.
A function f: X x ... x X — R is called even if f(—=z,...,—2) = f(x,...,z) for
ze X.

Lemma 1 [2]. Ifn is even, f : X X ... x X — R an n-positive homogeneous

even function, then fs(z ® ...Qz) = f(z,...,z) forx € X.
Let f: X x---xX—R, veEX®..®X. Assume

k k
f(v) = inf {Zf(xll, o) v= Z:cll ® .01, a:; €eX, ke N} .
i=1 i=1
Lemma 2[2]. Ifn is even, f1 : X X ... x X — R is an n-positive homogeneous

even function and

| Az, x) o for =z, i=1,n, xe€X,
F@n, ) = { +00 : otherwise,

then f(x ® ... @ x) = f(z,...,x) forz € X.

Ifv =Y 2{®...0x%, we assume r = ridv = max{dim{z¢ }*_,, ..., dim{z¢ }¥_,}.

i=1
k . .
Remark 1. Let v = Y. 2/ ® ... ® 2/, rid v = r and {z!,....,2"} be linearly
j=1
independent. Then there exist «;; € R such that 2' = apzt + ...+ apa” for

i =71+ 1, k. Therefore,

r ) . k ) )
‘ PR+ Y (a4t o) ® .. @2t =

UV =
i=r+1

7j=1
r ) ) k
=Y ¥R.x4+ > (auxl +o ") ® .. (aprt + .+ gz’
j=1 i=r+1
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Lemma 3. Let n be even, f: X x...x X — R an n-positive homogeneous lower
semicontinuous even function, there exist « > 0 such that « HxH < < f(z,...,x) for

x € X. Then there exist {x'}I_, , where r = rid v and v = Z ' ®...®x" such that
1=1

fs(v) = f(at,...,z%) for v € coM.

Proof. It is clear that if v = Z 7' ®...®@12", where {2' ®@...@2*}¥_, are linearly
i=1
independent, then & < 7" (see [16], p 20) Therefore, from lemma 3.5 it follows, that

fs(v) = 1nf{2f( L) V—Zm@ . ® .T}iEX}.
The case fg(v) = 400 is trivial.
Let fs( ) < 400. By definition of fs( ), there exist zi, € X, 1 <14 < r", where
v = Zx ® ... ® z, such that Z flal,,...,xt) < fs(v) + L. By the data we
have that z:loc H:Uian < X:If(:vin, e xl) < fs(v) + 1. Therefore, Z meH
i= i=
fs(v) + 1. Hence ||zi,| < { %

k . .
According to remark 1, the element v = ) 27 ® ... ® 27 has the representation
j=1

roo ) k . ) .
v=Y 2.2+ Y (ayz'+ ..+ a2") @2t @ 2!, where {z'}7_, are
j=1 i=r+1
linearly independent.

r’ . T . . k
From the equality Y 2! ® ...z, = Y /@ .2 + Y (apzt + ... +
i=1 j=1 i=r+1

arz") @ 2t @ 2' it follows that x! € Lin{z', ..,2"}. Suppose the contrary.
Let there exist ¢ € 1,77 such that the set {z',z?,..,2",2%,} are linearly inde-
pendent. Then, according to the lemma of biorthogonal basis (see [4],p.25) there
exist * € X* such that z*(xl)) = 1 and z*(2/) = 0 for j = I,r. Assuming
(" @ ... @ %) (21, .0y xp) = 2 (21)... 2™ (2p) for (z1,...,2,) € X X ... x X we have

r’ .

that Z (2t )" =0. As Y a*(zf,)" > 1, then we have a contradiction, i.e. the set
i=1

{x 2, ..z ,xm} is linearly dependent. Therefore, choosing the convergent subse-

quence {:L‘m } from {xm} { Ty, ® - ®xmk } from {x}ﬂk ®...®£L‘,}nk}, {x?nk }
5

from {a:fnk }, {:L‘fnk ®...®$72nk } from {:U%nk ® .. ®l‘mk } and continuing
S SJl S]l j

the process, it is possible to assume that 2!, converges to ' € X and 2!, ® ... @ x¢
converges to 7' ® ... ® ' ( according to lemma 3.4 it is enough to choose the conver-

gent subsequences {:vm } from {xm} { Lo, } from {xfnk}, {x%ks} from {x?nk }
j s
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rt .
and etc. ). It is clear that v = > 7' ® ... ® ' and
i=1

rn

fs(v) > lim Zf Ty ey Ty >Z lim f(x},,..., m)sz(a?Z,,:E’)

m—00 m—o0 ;
i=1 = i=1

Tn . .
Hence it follows that fs(v) = > f(Z',...,2"). The lemma is proved.

=1

It is known (see [10], p.2?:) that LinM ((Ey ® ... ® E4) is closed for a € A.
Then we have that LinM is closed in (X ® ... ® X)s. Therefore, if n is odd, then
coM = LinM and it is closed in space (X ® ... ® X)s.

Lemma 4. If n is even, then coM is closed in space (X & ... @ X)s.

Proof. It is clear that, E,, a € A is a Banach space with respect to induced
topology from Banach space X (see §2).

It is known (see [13], p.9) that this topology is induced by any Euclidian metric
determined by scalar product introduced on F, X E, with the help of positive-
definite symmetric bilinear function b(x,y). Similarly, from 2.6.4 and 2.6.5 [8] we
have that {v;} C X®...® X converges to v with respect to topology in (X ®...0 X ),
iff for some o € A subsequence {v} converges to v in space E,®...Q E,. We assume
|z, = \/b(z, ) and

m m
HVHE:inf{Z‘xﬂe...‘xHe: V:Z:c’i@)...@x;, zh, . xl € B, mEN}.

i=1 =1

It is known that if dim E, = k and v = zs: 2 ® .01 € Ey® ... ® E,, where
{#'® ... ®2'}5_; are linearly independent, tﬁ;; s < k™.

If nis even, v = zl: 78 ®.. @z and b(azl, vy ) = b(x1,22)...b(Tp—1,Ty), then
from Cauchy—Schwarglinequality (see [8] ), it follows that

l

!
b(v) = Zb(m’l,xé)b(x;_l,m;) < Z |a:’1}e ‘x;_l‘e . ‘xme
i=1

i=1

- ! o 4 .
Therefore, b(v) = > b(xf,ah)...b(x},_;,2) < |lv||,. Hence it follows that if v =

n
i=1
Za: ®..®z' then |v|, = Z‘x‘

i=1
Let v,,, € coM and v,,, — V T hen there exists a > 0 such that v,, € E,®...Q F,

and v, — v . Let dimE, = k. If n is even and 2!, € E,,i = 1,k, such that
kn . . _ .
Um =y 2, ®...®x,,, we have |lvy], = > ‘:UMZ As vy, converges to v, there
i=1 =1
k" .
exists A € R, such that [jv,|, < A, ie > ‘xﬁn{g < A. Hence it follows that
i=1

‘xﬁn‘e < /A Therefore, choosing the convergent subsequences {x}nk} from {aj}n},

{x?nkg} from {xfnk}, {xf’nksj} from {azf’nkg} and continuing the process, we can
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assume that x!, converges to z° € E, and 7!, ® ... ® 2!, converges to ' ® ... ® Z* for
i=1,k" Itisclear that v = ) ' ®...® 1", i.e v € coM.
i=1
As the norms |||, s(-) and ||-||, are equivalent in F, ® ... ® E, we obtain that
coM (N Ey ® ... ® E, is closed in space E, ® ... ® E,. Therefore, coM is closed in

space (X ® ... ® X),. The lemma is proved.

Lemma 5. Let f : X x ... x X — R be an n-positive-homogeneous continu-
ous function. Then there exists a > 0 such that |f(z1,...,xn)| < a||zi|| ... |znl| for
(X1yeeyp) € X x o x X .

Proof. As f : X x .. x X — R is an n-positive-homogeneous continu-
ous function, then for e > 0 there exists v > 0 such that |f(z1,...,2,)| < € for

n
l(x1,...,zn)]| = D ||li|| < v. Then

=1
v v v
1, ... T = T LT < e
R T Y PR Tty Py iy P T ACE
for (v1,....25) € X X ... x X , x; # 0. Therefore, |f(21,...,zn)| < e ||z1]| ... || 20|

for (z1,...,2,) € X x ... x X . The lemma is proved.

Lemma 6. Let f: X x ... x X — R be an n-positive-homogeneous lower semi-
continuous function. Then there exists a such that o ||z1]] ... ||zn|| < f(x1, .y 2p)
for (z1,...,2n) € X X ... x X .

Proof. As f: X x ... x X — R is an n-positive-homogeneous lower semicon-
tinuous function, then for ¢ < 0 there exists ¥ > 0 such that ¢ < f(z1,...,zy) for
(1, ...,zp)|| < v. Then

g S f(onlllxly 7n||;n”xn) = 7nn||x1]/||||$n“f(ml, ,.fUn)
for (x1,...,xp) € X x...x X , x; # 0. Therefore, 52—: leil . Nlznll < flz1, ...y zp)
for (z1,....,x,) € X x ... x X . The lemma is proved.

Proposition 1. Let n be even, f: X x ... x X — R an n-positive-homogeneous
lower semicontinuous even function, there exists « > 0 such that o ||z||" < f(z,...,x)
for x € X. Then fs(v) is a lower semicontinuous function in co M with respect to
the topology of space (X @ ... ® X)s.

Proof. We are to show that S(fg,\) ={v €coM : fs(v) < A} is a closed set
for A € Ry. Let vy € S(fs,\) and vy € E, ® ... ® E,, where a € A is a fixed
element, dim F, = r and vy converges to v in space (X ® ... ® X)s. As coM is
closed in space (X ® ... ® X)) we have v € coM. According to lemma 3, there exist

{#} ®@..@aL}, where v} = Z 7t ® ... @i, such that fs(vy) = Z fai, . ab).

Similarly to the proof of lemma 3, we conclude that mk € E, fori= 1, r™. By the
r’ ) r’ . ) r’ )

data, we have that > a||2}]|" < 3 f(ai, ..., z}) < A. Therefore, o 3 ||z " < A.
i=1 i=1 i=1

v g Without loss of generality, we assume that(see the

Hence we have foﬂH <

proof of lemma 3) that x!, converges to 7' € X and z!, ® ... ® x!, converges to
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. . ’I”n . . ,’,,n ) ]
T'®..07". Thenvy =) x} ®..®x) convergestov = Y ' ®...®Z". Therefore,
i=1 i=1
lim fs(vg) = lim Zf ark,..., ) > Z lim f(x )

k—o0 k— —1 k—oo

> f@, 7)) > fs(v).
=1

Hence it follows that fg(v) < A, i.e v € S(fs,\). We obtain that the set S(fg,\) is
closed. The proposition 1 is proved.

From the proof of proposition 1, the validity of the following proposition 2 follows.

Proposition 2. Let n be even, f : X x...x X — R an n-positive-homogeneous
even and lower semicontinuous function in each finite-dimensional subspace of space
X X ... x X, there exist a > 0 such that a||z||" < f(x,...,z) for € X. Then fg(v)
is a lower semicontinuous function in co M with respect to the topology of space
(X®.0X)s.

Remark 2. Let n be even, f : X x ... x X — R an n-positive-homogeneous
even and lower semicontinuous function in each finite-dimensional subspace of space
X X ... x X, there exists ¢ > 0 and function h : Ry — Ry, where h(t) — +oo for
t — 400, such that h(||z]) — ¢ < f(z,...,x) for z € X. Then from the proof of
lemma 3 and proposition 1, it follows that fg(v) is a lower semicontinuous function
in co M with respect to the topology of space (X ® ... ® X)s.

We assume that 0g = (2" € (X ® ... X):: g(v) >z*(v) for e X ®...@ X}.

The proof of theorem 1. Under the condition of proposition 2, fg(v) is a
lower semicontinuous sublinear function in coM. Therefore, under the condition of

fs(v) : vecoM

proposition 2, g(v) = { is a lower semicontinuous sublinear

+oo @ védcoM
function in (X ® ... ® X)s (see [14]). Then, according to Hormander theorem (see
[15]) it follows that g(v) = up{b( ): bedg}. As gz ® ... ® ) = f(z,...,x)
for x € X we have f(z,....,x) = sup {Q(m) Q€ 5n<p} for x € X, where ¢(x) =

T o), B e 10 AR o) 2 0@ fos & ). B = (s ) =
*(x,..,x), z* € cdB(X",R) = (X ®..®X)%}. Theorem 1 is proved.

If f: X x..xX — R is an n-positive-homogeneous lower semicontinu-
ous function, then from lemma 6 it follows that there exists o > 0 such that
—a x| - znl] < f(z1,.yzp) for (z1,...,2,) € X X ... x X . Therefore, if
nis even, f : X x .. x X — R is an n-positive-homogeneous lower semicon-
tinuous even function, then f(z,....,z) + (a +¢€) ||lz||" = sup {Q(z) : Q € Fnep:}
for x € X, where 901( ) = [z, )—I— (a +¢)|z||", € > 0. Tt is clear that,

fla, ... —sup{Q —(a+e¢) ||x|| Q€ Oy} for z € X.

The proof of theorem 2. Assuming f%(z1,...,z,) = f(z1,...,2n) + (+
+1)b(z1, ..., x,), from proposition 1 we have that f§(v) is a lower semicontinu-
ous function in co M with respect to the topology of space (X ® ... ® X)s. As
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f&(v) = fs(v) + (o + 1)bs(v), we have that fgs is also a lower semicontinuous func-
fs(v) - vecoM,
+oo @ védcoM '’
semicontinuous function in space (X ® ... ® X)s. Then, according to Hormander
theorem it follows that g(v) = sup{b(v) : b € Jdg}. As g(z ® ... ® ) = f(z,...,x)
for z € X we have f(z,....,2) = sup{Q(z) : Q € Oy} for & € X. Theorem 2 is
proved.

tion in co M. Assuming g(v) = { we have that g(v) is a lower

Note that if X is a locally convex space, theorem 2 also holds true. Furthermore,
the function b can be taken from B(X", R).

From theorem 2 and lemma 6, the validity of the following corollary 1 follows.

Corollary 1. Let X be a real Banach space, n even, f: X x...x X — R a lower
semicontinuous n-positive homogeneous even function, there exist b € (X ®...Q0X)}
such that |z||" < b(z, ...,x) forx € X. Then f(z,...,z) = =sup{Q(z) : Q € Oy}
forx e X.

Note that in spaces L;, C and C! the inequality ||z||* < b(z,z), where b €
B(X?, R) is symmetric, is not satisfied.

Corollary 2. Let X be a real Hilbert space, n even, f : X x ... x X —
a lower semicontinuous n-positive homogeneous even function. Then f(x,...,z) =
= sup {Q(a:) Qe 5n<p} forx e X.

Let X ® - - - ® X be supplied with a projective topology. Further, we are to
identify (X ® - - - ® X)* and B(X", R)(see [8,9]). Denote by By(X"™) a set of all
n-polynomial functions from X in R. If ¢ : X — R, we take

fno]]

dng ={Q € Bo(X") : q(z) > Q(z) for € X}

The proof of theorem 3. If f: R¥x...x R¥ — Ris an n-positive homogeneous
lower semicontinuous function, then there exist « such that o ||z||" < < f(z,...,x)
for z € RF.

It is clear that (RF @ ... ® R¥): = (R¥ ® ... ® RF)* = B((R*)", R). Therefore, if
X = RF, then d,,o = 0,¢. Then the validity of theorem 3 follows from theorem 2.
Theorem 3 is proved.

Note that if X is a Hilbert space and n = 2, according to Hellinger and Teoplits
theorem (see [10], p.132) it follows that Bo(X?) = B1(X?). Therefore dap = Da¢p.

From lemma 1 and theorem 2 the validity of the following corollary follows.

Corollary 3. If n is even, ¢ : X — R a positive-homogeneous even function of
order n and there exists b € B(X"™, R) such that b(z,...,z) < ¢(z) for x € X and
f@1, e zn) = V(p(x1) —b(x1, ooy 1)) (p(zn) — b(2ny .oy 1)), then fs(z @ ... ®
x) = ¢(x) — b(x,...,x) for x € X.

Corollary 4. If n is even, ¢ : X — R a lower semicontinuous even positive-
homogeneous function of order n and there exists b € B(X™, R) such that ||z||" <
b(z,...,x) for z € X, then o(z) =sup{Q(z) : Q € Onp} forz € X.

Proof. As ¢ : X — R is a lower semicontinuous function, then for £ > 0 there
exists ¥ > 0 such that —e < p(z) for v € X, ||z < v. Then —¢ < ﬁgp(m) for
z € X,z # 0. Therefore, —5 ||z]|" < p(z) for x € X. Then —5b(z, ...,x) < ¢(z).
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Assuming f(z1,...,xn) = ¥/(p(21) + Sb(x1, 1)) (P(@n) + 57 0(@n, .., 2n)) ac-
cording to theorem 2 we have ¢(z) = sup {Q(z) : Q € Onyp} for 2 € X.The corollary
is proved.

Corollary 5. If n is even, ¢ : X — R is a lower semicontinuous even positive-
homogeneous function of order n, then

o(x) =sup{Q(x) + az[|* : ¢(z) > Qz) + af|z]|* ,a <0,Q € By(X")}

forx e X.

Proof. As ¢ : X — R is a lower semicontinuous positive-homogeneous function
of degree n, then ¢ > 0 there exists v > 0 such that —=%; [|z||" < ¢(z) for z € X
(see corollary 4). Assuming

F(@1, ) = ¢ (plan) + (L4 ) ") (o) + (L4 =) all™)

from proposition 1 and the theorem of Hormander we have p(x) + (14 5) ||z|" =
sup{Q(z) : Q € On(p+ (1+ =) ||lz]|™)} for z € X. Therefore,

p(x) = sup{Q(z) + az[|* : ¢(z) 2 Qz) + af|z[|*,a <0,Q € Bi(X")}

for x € X.The corollary is proved.

Corollary 6. Ifn is even, ¢ : X — R is a lower semicontinuous even positive-
homogeneous function of order n and X is a finite-dimensional space, then @(x) =
sup{Q(x) : Q € dpp}. )

Corollary 7. If X is a Hilbert space, v : X — R is a lower semicontinuous
even positive- homogeneous function of second order, then

p(r) =sup{Q(z) : Q € dap}.

5. Properties of n-positive homogeneous functions in a cone

Let X be a real Banach space, X ® - - - ® X supplied with a projective topology,
K C X a convex closed cone, M ={z®..®z :x € K} and f: Kx..xK —R
an n-positive homogeneous function.

It is clear that

coM.,.z{ ar'@---@xt Yy o =1, x’EK,aizO,mGN}:
i=1 i=1

|

{

M3

V.Y ek, mEN},
1

-
I

cone M =

——

ar'®--@r . 2’ e K, aizo,mEN}:

NE

= Y-yt yieK,meN},
=1

m
Lz’nMJr:{Z)\ixi@'--@xi . '€ K, \; €R, mEN}:coM+—coM+.
i=1
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Assume

m m
:inf{Zf(xi,...,xi) : V:in®...®a:i, m € N, xiEK},
i=1

=1

where as usual we assume that inf () = +oco.

Next, we assume that the number K in K x ... x K equals n.

Lemma 1. If n is even, K C X a convex closed salient cone, f : K X ...x
x K — R an n-positive homogeneous function, then fs(r ® ... @ ) = f(x,...,z) for
x e K.

Proof. Using corollary 3.1 and lemma 3.5 we obtain

fs(z®..®@x)=
. . m . . .
(' .,2) 2z ®.Qr=), Q.. x’EK,mEN}—
=1

~

:inf{Zfl(xl,...,a:%) r®..Rz= '®..0 {2e..02}"
i=1 i=1
—lin.indepen. , z* € K,m € N} =

i=1

:inf{f(:rl,..,xl) IR.Qzr=2'®..0z!, e K} = f(z,...,x)

for x € K. The lemma is proved.

Lemma 2. If X is a real separable Banach space, n odd, K C X a convex
closed salient cone, f : K X ... x K — R an n-positive homogeneous function, then
fs(z®...@z) = f(z,...x) forx € K.

Proof. Using corollary 3.2 and lemma 3.5 we obtain

fs(z®..®@x)=
m
:inf{Zf .,i:m® ®CL‘—ZZ‘® .Q :UEKmGN}
=1 =1
:inf{z 1z .., 2Y) e ® .. ®:c—z:1x® . ® T, {x’@...@xl}zl—
= 1=

—lin.indepen. , x* GKmGN}—
:inf{f(:nl,..,x):x@...@x:x Q.0 ! GK}:f(x,...,x)

for x € K. The lemma is proved.

Remark 1. If X is a real Banach space, n odd, K C X a convex closed
salient cone and the cone K allows plastering, f : K x ... x K — R an n-positive-
homogeneous function, then fs(z ® ... ® z) = f(x,...,x) for x € K.

Assume My ={z®..®z :x € K}.

Lemma 3. If n is even, then coM is closed in space (X ® ... @ X)s.

Proof. It is clear that, F,, « € A, is a Banach space with respect to the
induced topology from Banach space X (see §2).

It is known (see [13], p. 9) that this topology is induced by any Euclidian metrics
determined by the scalar product, introduced in E, X E, with the help of positive-
definite symmetric bilinear function b(z,y). Similarly, from 2.6.4 and 2.6.5 [8] we
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conclude that {v;} C X ® ... ® X converges to v with respect to the topology in
(X ®...® X), if for some o« € A {v} converges to v in E, ® ... ® E,. Assume
|z|, = \/b(z,z) and

m m
Hl/”e:inf{Z’xﬂe...‘mme: V:Z:Hi@...@x;, zh . xl € B, mGN}.
=1 1=1

S . .
It is known that if dmE, = kand v =) 2"’ ® .. @ 2" € E, ® ... ® E,, where
i=1
(P®.. @ s, are linearly independent, then s < £". Except for that, from the
proof of lemma 3.5 it follows that such representation exists.
Lo A -
If niseven, v = > 2\ ®..®z, and b(xy,...,z,) = b(z1,22)...0(xp_1, zy) from
i=1

the Cauchy-Schwartzs inequality, it follows that

l !
b(v) = Zb(xi,wé)b(x%,l,m;) < Z |a;’1}e ‘xflfl‘e . ‘x;‘e
i1 i=1

n—1%n

- ! o ) )
Therefore b(v) = ) b(x,25)..b(x},_1,2;,) < |v|l,. Hence it follows that if
i=1

l . . l .
v=>y 2'®..®c", then |||, = ‘xl}:
i=1 i=1
Let vy, € coM; and v,, — v. Then there exists a > 0 such that v, €
cF,®..®F, and v,, — v. Let dim FE,, = k. If:vfn € E, K ati=1,k", are such

kn . . kn .
that vy, = > ), ® ... ® 2},, then we have ||V, = ‘xﬁn‘z As v,, converges
i=1 i=1

ko
to v, there exists A € Ry such that [|vy,|, < A, ie ) ‘xmz < A. Hence it follows
i=1

that ‘m?n‘e < /. Therefore, choosing convergent subsequences {a:,lnk} from {x}n},

{:L‘?nks} from {m?nk}, {xf’nksj} from {xf’nks} and continuing the process, we can

assume that ¢, converges to 7' € E, (K and 7%, ®...®z¢, converges to #'®...® 7’
at i = 1,k™. Tt is clear that v = TE F®..07, iev e coM,;.
i=1

As the norms |[|-||, s(-) and ||-||, are equivalent in E, ® ... ® E,, then we conclude
that coM; ((Ea ® ... ® E4 is closed in E, ® ... ® E,. Therefore coM is closed in
space (X ® ... ® X)s. The lemma is proved.

Lemma 4. If K C X is a convex closed salient cone, the cone K allows plas-
tering, n is odd, then coM is closed in space (X ® ... ® X)s.

Proof. It is clear that E,, a € A, is a Banach spaces with respect to the
induced topology from Banach space X (see §2).

It is known (see [13], p. 9) that this topology is induced by any Euclidian metrics
determined by the scalar product introduced in E, X E, with the help of positive
definite symmetric bilinear function b(x,y). Assume |z|, = \/b(z,z) and

e =
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m m
= inf {Z }x’l‘e ‘m%_ﬂe Ha:le v = Z:ﬂﬁ ®..0z, o, .. 2 € B, me N} .
i=1 =1

S . .
From lemma 3.5 it follows that if dmFE, = k and v = Y ' ® ... ® 2* € €
i=1
Ey®...0 E,, where {2'®...@2'}F_ are linearly independent and z* € E,, () K, then
s < k™. Furthermore, from the proof of lemma 3.5 it follows that such representation
exists.

Let vy, € co My and vy, — v. From the definition of ||vy,||, it follows that for

. L .
any 0 > 0 there exist 7 € E,, i = 1,1, j = 1,n, such that v,, = Y ®..QT,
i=1

l . . .
and ‘iﬂe !:Eﬁkl‘e HSE%H <||vmll,+0 . As vy, — v, there exists o > 0 such that
i=1
Um € B,®..QF, and v, —» vin E,®...Q E,. Introduce the notations dim F,, = k.
kn

Let 2, € K,i = 1,k", be such that v, = > 2!, ® ... ® 2% . According to theorem
i=1
5.6 (see [11], p. 40) there exists z*x € X* and a > 0 such that z*(z) > a||z| for

x € K. Then assuming z*(x1,...,x,) =b(z1, z2)...0(xn—2, xn_1)x*(z,) we conclude
L. A
that 2*(vpm) = 2°(>_ 2y, ® ... ® 23,,) < ||2*] (|lvml|, + ). Introduce the notations
i=1

e =inf{z*(x) : 2z € K,||z| =1} and I,,, = {i € 1,k* : 2*(z,) > €}, we have

m

lz*|| (lvmll, +6) > € ZI: ‘xmz_l By the data v, converges to v. Then there
1C€lm

exists A € Ry such that ||v,], +6 < A, We conclude that |x§n’:_1 < 22|
for ¢ € L. It is clear that HxinH < 1 for i € Jp, where J,, = {i € € 1,k»
l

2*(ah,) < e}. (I 2*(vm) = 25(3 @y @ . @) < [l (vl +9), then it is casily
=1

!
verified that al; ‘xfn}z_l 2%, || < ll*]| (|#mll. + 6). Therefore, a ‘xfﬂ|2_1 |22, || <

|z*|| (|vmll, + 8) < A, i.e. the sequence {z%,} is also bounded). Therefore, without
loss of generality, we can assume that z¢, converges to 7' € K and 2!, ® ... ® ¢,

converges to ' ® ... ® &'. Therefore, there exist 2 € K, i = 1,k", such that
ko .
v=>YT®..®7, lev € coM;. As the norms ||| and ||-||, are equivalent in

=1
E, ®Z ... ® E,, we conclude that co My is closed in (X ® ... ® X)s. The lemma is
proved.

Remark 2. Let X be a Banach space, K C X a convex closed salient cone. If
0 ¢ co{r € K : ||z|| = 1}, then according to the separation theorem (see [10], p.
71) there exists x* € X such that e = inf{z*(z) : x € K, ||z]| =1} > 0. Therefore,
if n is odd, then similarly to lemma 4 we have that the set coM is closed in space
(X®..0X),.

Remark 3. Let K C R"™ be a convex closed salient cone. According to theorem
5.9 (see [11], p. 42) there exists z* € X such that z*(z) > 0 for z € K, z # 0. Then
e =min{z*(z) :z € K,||z|| =1} > 0. If n is odd, then similarly to lemma 4 we
have that the set coM is closed in space (R" ® ... ® R™).

Lemma 5. Let X be a separable Banach space, K C X a convex closed salient
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cone, n odd, f: K x...x K — R an n-positive homogeneous lower semicontinuous
function, there exists o > 0 such that o ||z||" < f(z, ..., ) for x € X and v € coM ..

Then there exists {z'}_,C K, where r = rid v and v = Z 7' ® ... ® 2" such that
=1

Proof. If v = Z ' ® .. @2, where {z'®...® 2'}}_, are linearly independent,
=1
we conclude that k < r™. Therefore, according to lemma 3.5 we obtain

T

Tn n
:inf{Zf(xi,...,$i): V:ZI‘i@...@l‘i, xiEK} .
i=1

=1
. Tn . .
By the definition of fs(v), there exist !, € K,1 <i <r" wherev = ) z! ®..Qx!,
i=1
r’ ) ) r’ )
such that > f(zf,, ...,2%,) < fs(v) + . By the data, we have that ) « Hxian <
i=1 i=1

rn

Sof(xt,, .. 2t) < fs(v) + 1. Therefore, alemﬁan < fs(v) + 1. Hence we

ms m
=1

conclude that meH < W

Let v = Z 2 ®...Q27, rid v = r and {z!,....,2"} be linearly independent. Then
j=1

there exist a;; € R such that 2t = ayr' + ...+ " for i = r + 1, k. According

to theorem 5.9 (see [11], p.42) there exists z* € X such that z*(z) > 0 for z € K,

z # 0.
Tn . . k - .
From equality >z}, ® ...®@ 2!, = > 2/ ® ... ® 27 it follows that
i=1 j=1
k . . .
Z:L' ok, ® ... @k, Zaz*(:cj):cj®...®w9,
j=1

where the number 27 in the equality is even. Then

'
Zx )zl @ @l =Y a*(al)a! @ .. @2+

j=1
+ Z ozhx 4+t o )®:vi...®xi,
i=r+1
where {z'}7_, are linearly independent. Hence it follows that x%, € Lin{z?,...,2"}.

Therefore, choosing a convergent subsequence {xmk} from {xm}, { Ty ® . @ xmk }

from {z}, ®.. @z, }, {x?nks} from {xfnks}, {xgnks ® ...®x12nksjl} from
J

T

2 o i
{xmk ®..& a:mk } and continuing the process, we can assume that x},, converges
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to ' € X and 2!, ® ... ® 2%, converges to ' ® ... ® ¥ (According to lemma 3.4, it is
enough to choose convergent subsequences {:U } from {xm} { } from {xfnk},

{x3 } from {x3 } and so on). It is clear that v = Z T®..07 and

mks mip
J s i=1

) > lim Zf zio >Z lim f(2! .. m)_if(;zi,...,g:«i).
=1

m—o0 Ty m—o00

Hence it follows that fs(v) = > f(Z',...,2°). The lemma is proved.

The following lemma 6 and lemma 7 is proved similarly to the proof of lemma 5.

Lemma 6. Let a convex closed salient cone K C X allow plastering, n be odd,
f: K x..x K — R an n-positive homogeneous lower semicontinuous function,
there exist o > 0 such that o ||z||" < f(z,...,x) for x € X and v € coMy. Then

there exist {z'}I" C K, where r = rid v and v = Z 7' ®...®2t, such that fs(v) =
i=1

rzlf(ml,,a;’)

Lemma 7. Let K C X be a convex closed salient cone, n even, f: Kx..x K —
R an n-positive homogeneous lower semicontinuous function, there exists o > 0 such
that o||z||" < f(z, ..., ) for x e X and v € coM,. Then, there exists {z'}7",C K,

where r =rid v and v = E ' ®...® 2%, such that fs(v) = Z fat ... xb).
i=1 =1

Proposition 1. Let K C X be a convex closed salient cone (cone K allows
plastering if n is odd), f : K x ... x K — R an n-positive homogeneous lower
semicontinuous function, there exists o > 0 such that o ||z||" < f(x,...,z) forx € K.
Then fs(v) is lower semicontinuous function in co My with respect to the topology
of space (X ® ... ® X)s.

Proof. We are to show that S(fs,\) = {v € coMy : fs(v) < A} is a closed
set for A € Ry. Let v € S(fs,A) and v converges to v in space (X ® ... ® X)s.
Then there exists a € A such that vy € E, ® ... ® E, and v converges to v in
space Eqo ® ... ® E,, where dim E, = r < 400.According to lemma 7 (or lemma

. . . Tn . .
6), there exist {532; ® ... ® x%}, where z; € K and vy, = Z:lec ® ... ® z}, such that
1=
/rn . .
fs(vg) = f(z,...,z}). Similarly to the proof of lemma 7 (or lemma 5), we obtain

1

-
Il

rn

. rn . . .
that ) € E, at j = 1,7, By the data, we have ) o H:E}CHn <O (g, e, ) <A
i=1 i—1

1=
Therefore « S: Hx}cHn < \. Hence we have Hx}cH <? % Without loss of generality,
i=1

we assume (see the proof of lemma 3 and 4) that x!, converges to z' € K and

,r,TL

zl, ® ... ® zt, converges to ' ® ... ® #'. Then v = 5. a:}€ ®...® zr:}C converges to
i=1
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r" .
v=1> T'®..®z". Therefore
i=1

lim fs(vg) = lim Y f(x, .. 2}) >

k—oo k—o0 i—1

r’ r’
> lim f(x},...,x}) > f@,....z") > fs(v).
SRR o
Hence it follows that fg(v) < A, i.e v € S(fg,\). We conclude that the set S(fs, )
is closed. The proposition is proved.

According to the condition of proposition 1, fg(r) is a lower semicontinuous
fs(v) : vecoMy,
+oo @ v¢coMy
condition of proposition 1, we have that g(v) is a lower semicontinuous sublinear
function in (X ® ... ® X)s. Then according to the Hormander theorem it follows
that f(x,...,x) = sup{Q(:E) RS 5ngp}, where () = f(z,...,x) for z € K and
o(z) = 4oo for x ¢ K, Opp = {Q € B1(X"): ¢(x) > Q(z) for z € X}, By(X") =
{Q: Qz) =2"(x,...,z), ¥ € dB(X",R)=(X®..0 X):}.

Lemma 8. If f: K x .. x K — R is an n-positive-homogeneous continu-
ous function, then there exists a > 0 such that |f(z1,...,zn)| < a||zi|| ... |znl| for
(X1, .y xpn) € K x ... x K.

Lemma 9. If f: K x ... x K — R is an n-positive-homogeneous lower semi-
continuous function, then there exists o such that o ||z1]| ... [|[zn]| < f(21, ..., 2) for
(X1, .yzp) € K x ... x K.

function in coM;. Assuming g(v) = { , according to the

The proof of theorem 4. Assuming f*(z1,...,z,) = f(x1,...,2n)+(a+
+1)b(x1, ..., xn), according to proposition 1, we have that f&(v) is a lower semi-
continuous function in co My with respect to the topology in (X ® ... ® X)s. As
f&(w) = fs(v)+ (a+1)bs(v) for v € co My, we have that fg is a lower semicontinu-
fs(v) : vecoMy,
+oo @ v¢coMy
is a lower semicontinuous function in (X ® ... ® X)s. Then according to Hormander
theorem, it follows that g(v) = sup{b(v) : b € dg}. As g(z ® ... ® x) = f(z,...,x)
for z € K, we have that f(z,....,x) = sup {Q(x) Qe 5n<p5} for z € K. Theorem
4 is proved.

Note that in theorem 3 the function b can be taken from B(X"™, R).

From theorem 3 and lemma 9, the validity of the following corollary 1 follows.

Corollary 1. Let X be a real Banach space, cone K allow plastering, f :
K x..x K — R a lower semicontinuous n-positive homogeneous function. Then
f(z,...,x) =sup {Q(m) Qe 5ng0} forx e K.

In particular, if X = R* and K C X is a convex closed salient cone, then
introducing the notation

ous function in co M. Assuming g(v) = { we have that g(v)
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and using lemmas 3.5 and a lemma 3.2, similarly to lemma 1, we conclude that
fslx®...®z) = f(z,...z) for z € K. If p(z) = { J@, @) 2@ € K,

+oo @ xz¢ K. we
assume dpp = {Q € Bo(X") : p(x) > Q(z) for z € X}.

The proof of theorem 5. As K C R” is a convex closed salient cone, then
according to theorem 5.9 ( [11], p.42), there exists z* € X* such that *(z) > 0 for
z € K, z # 0. Then there exists a such that, a = min{z*(z) :z € K, |jz|| =1} > 0.
It is clear that x*(x) > a||z| for z € K, i.e. cone K allows plastering. Therefore
z|" < bz, ...,z) for z € K, where % (2*(2))" = b(z,...,z), b € B(X",R). As
f: K x..x K — R is an n-positive homogeneous lower semicontinuity function,
then there exists « such that o ||z||" < f(z,...,x) for € K. If X = RF, then
On = dnp. Therefore, the validity of theorem 5 follows from theorem 4, i.e. from
theorem 4 it follows that f(z,...,x) = sup{Q(x) : @ € d,p} for v € K. Theorem
5 is proved.

Remark 4. Note that using the other definition of tensor product (see[9], p.38)
one can also prove the obtained results.
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