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Misraddin A. SADYGOV

CHARACTERIZATION OF n-POSITIVE

HOMOGENEOUS FUNCTIONS

Abstract

In the paper, an n-positive homogeneous function is compared with a sub-
linear function which is determined on tensor product spaces. A series of prop-
erties of sublinear functions determined on tensor product spaces is studied.
A link between an n-positive homogeneous function and a sublinear function
determined on tensor product spaces is also studied.

1. Introduction
The paper consists of five paragraphs. In the second paragraph, the formulation

of the basic results of the paper is given. In the third paragraph, some properties
of the representation of an element of tensor product spaces and the properties of
convergence on tensor product spaces are studied. In case of tensor product of two
spaces, such kind of questions are studied in [1].

In the third paragraph, the convex hull of a function is also considered. The
convex hull of a function in a finite-dimensional space is considered in the works [3,
4]. As usual, the convex hull of a function in a finite dimensional space is investigated
with the use of Caratheodory theorem. In an infinite dimensional space, such a
question is considered in the works [1],[2]. In the third paragraph, a similar question
is considered in an infinite-dimensional space.

In the fourth and fifth paragraphs, an n-positive homogeneous function is com-
pared with a sublinear function, determined on a tensor product spaces. A series
of properties of sublinear functions determined on tensor product spaces is stud-
ied. A link between an n-positive homogeneous function and a sublinear function
determined on tensor product spaces is also studied. Properties of n-positive homo-
geneous function from X× ...×X in R are studied in the fourth paragraph and those
of n-positive homogeneous function from K× ...×K in R, where K ⊂ X is a convex
closed salient cone are studied in the fifth paragraph. Note that corollary 4.5 when
n = 2 and X is a Banach space such that each point x with ‖x‖ = 1 is a strongly
exposed point of the unit ball is an analogue of theorem 6.4 [5], which is proved
by another method for even positive-homogeneous functions of second order in [5].
Such kind of questions are also studied, particularly, for n-sublinear functions in the
works [6], [7], for a bipositively- homogeneous function in [1] and for an n-positively
homogeneous function in [2].

Note that the problem of investigation of n-positive homogeneous functions arises
when one obtains necessary optimality conditions of high order of the solutions to
no n-smooth extreme problems (see corollary 3.5.5 [1]), but such problem is also of
independent interest.

2. Formulation of basic results
Let X be a real Banach space, R = (−∞, +∞), R̄ = (−∞, +∞] and q : X ×

...×X → R̄. The function q is called n-positive homogeneous if the functions xi →
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q(x1, ..., xi, ..., xn) are positive homogeneous and q(x1, ..., xi−1, 0, xi+1, ..., xn) = 0
for i = 1, n. The function q is called n-sublinear if q is an n-positive-homogeneous
function and the functions xi → q(x1, ..., xi, ..., xn) are convex.

The set of all continuous n-linear functions from X × ...×X in R is denoted by
B(Xn, R). An n-linear function from X× ...×X in R is called symmetric if it takes
on the same value at all permutations of its variables. If there exists b ∈ B(Xn, R)
such that Q(x) = b(x, ..., x), then Q is called n-polynomial. Note that for each
function b ∈ B(Xn, R) there exists a symmetric function b1 ∈ B(Xn, R) such that
b(x, ..., x) = b1(x, ..., x) for x ∈ X. The set of all n-polynomial functions from X

in R is denoted by B0(Xn). Tensor product of n number spaces X is denoted by
X ⊗ ....⊗X (see[1], [2], [8]). In the paper, we generally use the definition of tensor
product introduced in [8] .

As usual, the set of all linear continuous functions from X in R is denoted by
X∗. Note that X∗⊗ ...⊗X∗ is identified with some subspaces of n-linear continuous
functions on X × ... × X by means of the identity (x∗1 ⊗ ... ⊗ x∗n)(x1, ..., xn) =
x∗1(x1)...x∗n(xn). It is easily verified that for each element ν ∈ X ⊗ ... ⊗ X the

representation ν =
k1∑

i1=1
...

kn∑
in=1

αi1...inxi1
1 ⊗ ... ⊗ xin

n holds true, where {xis
s }ks

is=1 are

such that subsets of these elements differ from each other, i.e. they are linearly
independent for s = 1, n acting as sets. Therefore, similar to [8] (see p. 120) it
is verified that for each nonzero element ν ∈ X ⊗ ... ⊗X there exists the function
x∗1 ⊗ ... ⊗ x∗n ∈ X∗ ⊗ ... ⊗ X∗ such that (x∗1 ⊗ ... ⊗ x∗n)(ν) 6= 0, i.e. X∗ ⊗ ... ⊗ X∗

separates the elements of space X ⊗ ...⊗X.
We assume that the space X⊗ ...⊗X is supplied with a topology generated with

respect to the norm

‖ν‖ = inf

{
m∑

i=1

∥∥xi
1

∥∥ · · · ∥∥xi
n

∥∥ : ν =
m∑

i=1

xi
1 ⊗ ...⊗ xi

n, xi
j ∈ X, m ∈ N

}
,

i.e. X ⊗ ... ⊗ X is supplied with a projective topology (see [8]). Next, we shall
identify (see [8,9]) (X ⊗ · · · ⊗X)∗ and B(Xn, R).

Let {Eα : α ∈ A} be a family of finite-dimensional subspaces of the space X

directed along the growth and satisfying the condition
⋃

α∈A

Eα = X, where Eα 6= Eβ

at α 6= β; A is a set of indices directed (reflective, transitive, antisymmetric) by
the relation ≤. Thus, A is directed along the growth α ≤ β if Eα ⊂ Eβ. As any
linear system has algebraic basis, then the existence of the given family of finite-
dimensional subspaces Eα, α ∈ A, in X follows from Zorn lemma. It is clear that
Eα, α ∈ A, is a Banach space with respect to the induced topology from the Banach
space X. Assuming

Eα ⊗ ...⊗Eα = Lin{x1 ⊗ ...⊗ xn ∈ X ⊗ ...⊗X : x1, ..., xn ∈ Eα},

we have Eα ⊗ ...⊗ Eα ⊂ Eβ ⊗ ...⊗ Eβ for α ≤ β. It is clear that Eα ⊗ ...⊗ Eα is a
Banach space with respect to the norm
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‖ν‖ = inf
{

m∑
i=1

∥∥xi
1

∥∥ ...
∥∥xi

n

∥∥ :

ν =
m∑

i=1

xi
1 ⊗ ...⊗ xi

n, xi
1 ⊗ ...⊗ xi

n ∈ Eα ⊗ ...⊗ Eα, m ∈ N

}

and a subspace in X ⊗ ...⊗X.
Note that all norms are equivalent in a finite-dimensional space. Therefore, it is

possible to take s-norms (see §3) that are independent of the choice of the elements
representations.

Let gα denote a canonical imbedding Eα ⊗ ...⊗Eα in X ⊗ ...⊗X. As is known
(see [8]) an inductive topology in X ⊗ ... ⊗ X with respect to the family (Eα ⊗
...⊗ Eα, gα, α ∈ A) is a local convex space. We denote by (X ⊗ ...⊗X)s a space
X ⊗ ... ⊗X supplied with the topology introduced. Similarly, from 2.6.4 and 2.6.5
[8], we have that {νk} ⊂ X ⊗ ...⊗X converges to ν with respect to the topology in
(X ⊗ ...⊗X)s if and only if {νk} converges to {ν} in Eα ⊗ ...⊗Eα for some α ∈ A

. Therefore, the topology in (X ⊗ ...⊗X)s is stronger than the one in X ⊗ ...⊗X.
Then we have that (X ⊗ ...⊗X)s is a Hausdorff space.

From the definition of the topology in (X ⊗ ...⊗X)s it follows that B(Xn, R) ⊂
⊂ (X ⊗ ... ⊗ X)∗s . We denote by clB(Xn, R) a closure B(Xn, R) in the topology
σ((X⊗...⊗X)∗s, X⊗...⊗X). As clB(Xn, R) is closed in (X⊗...⊗X)∗s with respect to
the topology σ((X⊗ ...⊗X)∗s, X⊗ ...⊗X) and B(Xn, R) separates the points of the
set X⊗ ...⊗X, then, using separation theorems (see theorems 3.4 [10]), we have that
clB(Xn, R) = (X⊗ ...⊗X)∗s. And vice versa, if x∗ ∈ (X⊗ ...⊗X)∗s , then, it is easily
verified that b(x1, ..., xn) = x∗(x1 ⊗ ... ⊗ xn) is an n-linear function. Besides, from
2.6.1 [8] it follows that x∗ ∈ (X⊗...⊗X)∗s if and only if x∗|Eα⊗...⊗Eα

∈ (Eα⊗...⊗Eα)∗.
Therefore b|En

α
∈ B(En

α, R), where En
α = Eα × ...× Eα.

Besides if X is a seperabel space, having chosen the denumerable system of
elements x1, x2, ..., xk, ... generating all X and having put Ek = Lin{x1, x2, ..., xk},
Ek ⊗ ... ⊗ Ek = Lin{x1 ⊗ · · · ⊗ xn : x1, ..., xn ∈ Ek}, we have

⋃
k∈N

Ek ⊗ ... ⊗ Ek =

= X ⊗ ... ⊗X and A = N . It is known that (see 2.6.6 [8]) the inductive topology
in X ⊗ ...⊗X with respect to family (Ek ⊗ ...⊗Ek, gk, k ∈ N) is a complete local
convex space. As Ek is reflexive, from 4.5.8 [8] it follows that (X ⊗ ... ⊗ X)s is
reflexive.

If f : X × ...×X → R̄ and f(−x, ...,−x) = f(x, ..., x), then f is called even.
Assume that B0(Xn) = {Q : Q(x) = x∗(x, ..., x), x∗ ∈ B(Xn, R)}, B1(Xn) =

= {Q : Q(x) = x∗(x, ..., x), x∗ ∈ clB(Xn, R) = (X ⊗ ... ⊗ X)∗s}, ∂̄nϕ = {Q ∈
∈ B1(Xn) : ϕ(x) ≥ Q(x) for x ∈ X}, where ϕ(x) = f(x, · · · , x) (see the details in
paragraphs 4 and 5 ). Next, we assume that the number X in X × ...×X equals n

and n ≥ 2 .
Theorem 1. Let n be even, f : X × ... × X → R̄ an n-positive-homogeneous

even and lower semicontinuous function in each finite-dimensional subspace of space
X × ... × X, there exist α > 0 such that α ‖x‖n ≤ f(x, ..., x) for x ∈ X. Then
f(x, ...., x) = sup

{
Q(x) : Q ∈ ∂̄nϕ

}
for x ∈ X.

Theorem 2. Let X be a real Banach space, n even, f : X× ...×X → R̄ a lower
semicontinuous n-positive homogeneous even function, there exist b ∈ (X⊗ ...⊗X)∗s
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and α > 0 such that ‖x‖n ≤ b(x, ..., x) and −αb(x, ..., x) ≤ f(x, ..., x) for x ∈ X.
Then f(x, ..., x) = sup

{
Q(x) : Q ∈ ∂̄nϕ

}
for x ∈ X.

If X is a Hilbert space, then in theorem 2, we can assume b(x, ..., x) = ‖x‖n .
Corollary 1. Let X be a real Banach space, n be even, f : X × ...×X → R a

lower semicontinuous n-positive homogeneous even function, there exist b ∈ (X ⊗
...⊗X)∗s such that ‖x‖n ≤ b(x, ..., x). Then f(x, ..., x) = sup

{
Q(x) : Q ∈ ∂̄nϕ

}
for

x ∈ X.
If q : X → R̄, we assume dnq = {Q ∈ B0(Xn) : q(x) ≥ Q(x) for x ∈ X}.
Theorem 3. Let X = Rk, n be even, f : Rk×...×Rk → R̄ an n-positive homoge-

neous lower semicontinuous even function. Then f(x, ..., x) = sup {Q(x) : Q ∈ dnϕ}
for x ∈ Rk.

The set K ⊂ X is called a cone if λx ∈ K for x ∈ K and λ ≥ 0. The cone K is
called a salient (or pointed) cone if K

⋂{−K} = {0}.
If there exists such a convex closed salient cone K1 and number d > 0 is such

that {x ∈ X : ‖x− x0‖ ≤ d ‖x0‖} ⊂ K1 for each point x0 ∈ K, then it is said that
the convex closed salient cone K allows plastering (see [11], p.40), where the number
d is independent of x0 ∈ K.

Let K ⊂ X be a convex closed cone, f : K × ...×K → R an n-positive homoge-

neous function. Assume ϕ(x) =
{

f(x, ..., x) : x ∈ K,

+∞ : x /∈ K.

Theorem 4. Let X be a real Banach space, K ⊂ X a convex closed salient
cone (cone K allows plastering cone if n is odd), f : K × ... × K → R a lower
semicontinuous n-positive homogeneous function, there exist b ∈ (X ⊗ ...⊗X)∗s and
α > 0 such that ‖x‖n ≤ b(x, ..., x) and −αb(x, ..., x) ≤ f(x, ..., x) for x ∈ K. Then
f(x, ..., x) = sup

{
Q(x) : Q ∈ ∂̄nϕ

}
for x ∈ K.

A linear function x∗ ∈ X∗ is called uniformly positive if there exists such a > 0
that x∗(x) ≥ a ‖x‖ for x ∈ K (see [11], p. 40). A convex closed salient cone K allows
plastering cone if and only if there exists a uniform positive function x∗ ∈ X∗ (see

[11], p. 40). Therefore ‖x‖n ≤ b(x, ..., x) for x ∈ K, where
1
an

(x∗(x))n = b(x, ..., x),

b ∈ B(Xn, R), i.e. if K allows plastering cone, then there exist b ∈ B(Xn, R) such
that ‖x‖n ≤ b(x, ..., x) for x ∈ K.

Corollary 2. Let X be a real Banach space, cone K allow plastering, f :
K × ... ×K → R a lower semicontinuous n-positive homogeneous function. Then
f(x, ..., x) = sup

{
Q(x) : Q ∈ ∂̄nϕ

}
for x ∈ K.

Theorem 5. Let X = Rk, K ⊂ Rk be a convex closed salient cone, f :
K × ... ×K → R an n-positive homogeneous lower semicontinuous function. Then
f(x, ..., x) = sup {Q(x) : Q ∈ dnϕ} for x ∈ K.

3. Some properties of tensor product
In the third paragraph, some properties of the representation of an element and

convergence of a sequence in tensor product spaces are studied.
Let X be a real Banach space and R+ = [0,−∞).

Lemma 1 [2]. If x⊗ x⊗ ...⊗ x =
m∑

i=1
yi ⊗ yi ⊗ ...⊗ yi and n is even, then there
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exists λi ∈ R, i = 1,m, such that yi = λix and
m∑

i=1
λn

i = 1.

Corollary 1. If X is a Banach space, n is even, x⊗x⊗...⊗x =
m∑

i=1
xi⊗xi⊗...⊗xi

and {xi ⊗ .... ⊗ xi}m
i=1 are linearly independent, where x, xi ∈ X for i = 1, m, then

m = 1 and x1 = ±x.
Lemma 2. If X is a separable Banach space, K ⊂ X is a convex closed salient

cone, x ⊗ x ⊗ ... ⊗ x =
m∑

i=1
xi ⊗ xi ⊗ ... ⊗ xi and x, xi ∈ K at i = 1,m, then there

exist λi ∈ R+ for i = 1,m, such that xi = λix and
m∑

i=1
λn

i = 1.

Proof. If n is even, the validity of lemma 2 follows from lemma 1. Let n be odd.
According to theorem 5.9 (see [11], p. 42) there exists x∗ ∈ X such that x∗(z) > 0
for z ∈ K, z 6= 0.

Let x⊗ x⊗ ...⊗ x =
m∑

i=1
xi ⊗ xi ⊗ ...⊗ xi and x, xi ∈ K for i = 1,m.

The case x = 0 is trivial. Let x, xi ∈ K, x 6= 0, xi 6= 0.
If b1 ∈ B(Xn−1, R), then b = b1 ⊗ x∗ ∈ B(Xn, R) and

b1(x, ..., x)x∗(x) =
m∑

i=1

b1(xi, ..., xi)x∗(xi).

Hence it follows that

x∗(x)x⊗ x⊗ ...⊗ x =
m∑

i=1

x∗(xi)xi ⊗ xi ⊗ ...⊗ xi (1)

and x∗(x) > 0. As xi ∈ K, then x∗(xi) > 0. Then from (1) we obtain

x⊗ x⊗ ...⊗ x =
m∑

i=1

x∗(xi)
x∗(x)

xi ⊗ xi ⊗ ...⊗ xi (2)

As the number x in equality (2) is even, assuming that x̄i = n−1

√
x∗(xi)
x∗(x) xi according

to lemma 1 we have x̄i = βix, i.e. xi = βi
n−1

√
x∗(x)
x∗(xi)

x = λix at i = 1,m. Also it is

clear that x⊗x⊗ ...⊗x =
m∑

i=1
λn

i x⊗x⊗ ...⊗x. Hence it follows that
m∑

i=1
λn

i = 1. As

x, xi ∈ K, we have λi > 0 for i = 1,m. The lemma is proved.
Corollary 2. If X is a separable Banach space, K ⊂ X a convex closed salient

cone, x ⊗ x ⊗ ... ⊗ x =
m∑

i=1
xi ⊗ xi ⊗ ... ⊗ xi and {xi ⊗ .... ⊗ xi}m

i=1 are linearly

independent, where x, xi ∈ K for i = 1,m, then m = 1 and x1 = x.
Let K be a convex closed salient cone. A linear function x∗ ∈ X∗ is called

uniformly positive if there exists a > 0 such that x∗(x) ≥ a ‖x‖ for x ∈ K. A convex
closed salient cone K allows plastering if and only if there exists a uniformly positive
function x∗ ∈ X∗ (see [11], p. 40).
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Remark 1. If X is a Banach space, K ⊂ X is a convex closed salient cone and

cone K allows plastering, x ⊗ x ⊗ ... ⊗ x =
m∑

i=1
xi ⊗ xi ⊗ ... ⊗ xi and x, xi ∈ K for

i = 1,m, then there exist λi ∈ R+ for i = 1,m, such that xi = λix and
m∑

i=1
λn

i = 1.

Lemma 3 [2]. If xm ∈ X weakly converges to x and xm ⊗ .... ⊗ xm weakly
converges to ν ∈ X ⊗ ...⊗X, then ν = x⊗ ....⊗ x.

Lemma 4 [2]. If xi
m strongly converges to xi, then νm =

k∑
i=1

xi
m ⊗ ... ⊗ xi

m

strongly converges to ν =
k∑

i=1
xi ⊗ ...⊗ xi.

Let Z be a vector space. If S ⊂ Z is a nonempty set, then assume

coneS =

{
m∑

i=1

αiz
i : zi ∈ S, αi ≥ 0, m ∈ N

}
.

Introduce the notation M = {x⊗ ...⊗ x : x ∈ X}.
Assuming λ · x⊗ · · · ⊗ x = n

√
λx⊗ · · · n

√
λx for λ ≥ 0, we have

coM =
{

m∑
i=1

αix
i ⊗ · · · ⊗ xi :

m∑
i=1

αi = 1, xi ∈ X, αi ≥ 0, m ∈ N

}
=

=
{

m∑
i=1

yi ⊗ ...⊗ yi : yi ∈ X, m ∈ N

}
,

coneM =
{

m∑
i=1

αix
i ⊗ · · · ⊗ xi : xi ∈ X, αi ≥ 0, m ∈ N

}
=

=
{

m∑
i=1

yi ⊗ · · · ⊗ yi : yi ∈ X, m ∈ N

}
.

If n is even, we have that

LinM =

{
m∑

i=1

λix
i ⊗ · · · ⊗ xi : xi ∈ X, λi ∈ R, m ∈ N

}
= coM − coM.

If n is odd, we also have

LinM =
{

m∑
i=1

λix
i ⊗ · · · ⊗ xi : xi ∈ X, λi ∈ R, m ∈ N

}
=

=
{

m∑
i=1

yi ⊗ · · · ⊗ yi : yi ∈ X, m ∈ N

}
= coM.

If X = Rk, from lemma 1.20 [10], it follows that LinM is closed in space Rk⊗···⊗Rk.
Let X be a real Banach space and B∗ = {x∗ ∈ X∗ : ‖x∗‖ ≤ 1} a unit ball in X∗.

As is known (see [8], p.153; [9], p.40)

s(ν) = sup

{
m∑

i=1

x∗1(x
i
1)...x

∗
n(xi

n) : ν =
m∑

i=1

xi
1 ⊗ ...⊗ xi

n, xi
j ∈ X, x∗1, ..., x

∗
n ∈ B∗

}
.
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is a cross norm (s-norm) on X ⊗ ....⊗X, where
m∑

i=1
x∗1(x

i
1)...x

∗
n(xi

n) does not depend

on the choice of the representation of the element ν =
m∑

i=1
xi

1 ⊗ ...⊗ xi
n.

If X is a Hılbert space, then using the other definition of a tensor product (see
[12]), we have that Euclidian norm does not depend on the representation of the
element ν ∈ X ⊗ ...⊗X.

In lemma 5, the convex hull of a function is considered in an infinite-dimensional
space.

Lemma 5 [2]. If Xi, i = 1, n, are normalized spaces, P : X1 × ...×Xn → R̄ an
n-positive homogeneous function and (conv P )(ν) > −∞, then

(conv P )(ν) = P̄ (ν) =

= inf

{∑

i

P (xi
1, ..., x

i
n) : ν =

∑

i

xi
1 ⊗ ...⊗ xi

n, (xi
1, ..., x

i
n) ∈ X1 × ...×Xn

}
=

= inf

{
r∑

i=1

P (xi
1, ..., x

i
n) :

ν =
r∑

i=1

(xi
1 ⊗ ...⊗ xi

n), xi
1 ⊗ ...⊗ xi

n, i = 1, r, lin. indepen., r ∈ N

}
.

Remark 2. If X is normalized space, n is even, f : X × ... × X → R̄ is an
n-positive homogeneous function, then the solution to problem

m∑

i=1

αif(xi, ..., xi) → inf, αi ≥ 0, ν =
m∑

i=1

αix
i ⊗ ...⊗ xi (3)

exists (The set (α1, ..., αm) ∈ Rm satifying the conditions αi ≥ 0, ν =
m∑

i=1
αix

i ⊗
...⊗ xi is compact). Therefore

fS(ν) = inf
{

m∑
i=1

f(xi, ..., xi) : ν =
m∑

i=1
xi ⊗ ...⊗ xi , xi ∈

∈ X, m ∈ N} = inf
{

m∑
i=1

f(xi, ..., xi) : ν =

=
m∑

i=1
xi ⊗ ...⊗ xi,

{
xi ⊗ ...⊗ xi

}m

i=1
− lin.indepen., xi ∈ X, m ∈ N

}
,

where as usually, we assume that inf ∅ = +∞.
Remark 3. Note that if X is a real separable Banach space, K ⊂ X is a convex

closed salient cone, f : K× ...×K → R̄ is an n-positive homogeneous function, then

fS(ν) = inf
{

m∑
i=1

f(xi, ..., xi) : ν =
m∑

i=1
xi ⊗ ...⊗ xi , xi ∈

∈ K, m ∈ N} = inf
{

m∑
i=1

f(xi, ..., xi) : ν =

=
m∑

i=1
xi ⊗ ...⊗ xi,

{
xi ⊗ ...⊗ xi

}m

i=1
− lin.indepen., xi ∈ K, m ∈ N

}
.
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Remark 4. Note that if X is a real Banach space, K ⊂ X is a convex closed
salient cone and cone K allows plastering if n is odd, f : K × ... × K → R̄ is an
n-positive homogeneous function, then

fS(ν) = inf
{

m∑
i=1

f(xi, ..., xi) : ν =
m∑

i=1
xi ⊗ ...⊗ xi , xi ∈

∈ K, m ∈ N} = inf
{

m∑
i=1

f(xi, ..., xi) : ν =

=
m∑

i=1
xi ⊗ ...⊗ xi,

{
xi ⊗ ...⊗ xi

}m

i=1
− lin.indepen., xi ∈ K, m ∈ N

}
.

4. Properties of n-positive homogeneous functions
Let X be a real Banach space, M = {x⊗ ...⊗ x : x ∈ X} and f : X×...×X → R̄

be an n-positive homogeneous function. Assume that

fS(ν) = inf

{
m∑

i=1

f(xi, ..., xi) : ν =
m∑

i=1

xi ⊗ ...⊗ xi, m ∈ N, xi ∈ X

}
,

where as usually, we assume that inf ∅ = +∞.
A function f : X × ... ×X → R̄ is called even if f(−x, ...,−x) = f(x, ..., x) for

x ∈ X.
Lemma 1 [2]. If n is even, f : X × ... × X → R̄ an n-positive homogeneous

even function, then fs(x⊗ ...⊗ x) = f(x, ..., x) for x ∈ X.
Let f : X × · · · ×X → R̄, ν ∈ X ⊗ ...⊗X. Assume

f̄(ν) = inf

{
k∑

i=1

f(xi
1, ..., x

i
n) : ν =

k∑

i=1

xi
1 ⊗ ...⊗ xi

n, xi
j ∈ X, k ∈ N

}
.

Lemma 2[2]. If n is even, f1 : X × ...×X → R̄ is an n-positive homogeneous
even function and

f(x1, ..., xn) =
{

f1(x, ..., x) : for xi = x, i = 1, n , x ∈ X,

+∞ : otherwise,

then f̄(x⊗ ...⊗ x) = f(x, ..., x) for x ∈ X.

If ν =
k∑

i=1
xi

1⊗....⊗xi
n, we assume r = rid ν = max{dim{xi

1}k
i=1, ...,dim{xi

n}k
i=1}.

Remark 1. Let ν =
k∑

j=1
xj ⊗ ... ⊗ xj , rid ν = r and {x1, ...., xr} be linearly

independent. Then there exist αij ∈ R such that xi = α1ix
1 + ... + αrix

r for
i = r + 1, k. Therefore,

ν =
r∑

j=1
xj ⊗ ...⊗ xj +

k∑
i=r+1

(α1ix
1 + ... + αrix

r)⊗ xi ⊗ ...⊗ xi =

=
r∑

j=1
xj ⊗ ...⊗ xj +

k∑
i=r+1

(α1ix
1 + ... + αrix

r)⊗ ...⊗ (α1ix
1 + ... + αrix

r).
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Lemma 3. Let n be even, f : X× ...×X → R̄ an n-positive homogeneous lower
semicontinuous even function, there exist α > 0 such that α ‖x‖n ≤ ≤ f(x, ..., x) for

x ∈ X. Then there exist {xi}rn

i=1 , where r = rid ν and ν =
rn∑
i=1

xi⊗ ...⊗xi such that

fS(ν) =
rn∑
i=1

f(xi, ..., xi) for ν ∈ coM .

Proof. It is clear that if ν =
k∑

i=1
xi⊗ ...⊗xi, where {xi⊗ ...⊗xi}k

i=1 are linearly

independent, then k ≤ rn (see [16], p.20). Therefore, from lemma 3.5 it follows, that

fS(ν) = inf
{

rn∑
i=1

f(xi, ..., xi) : ν =
rn∑
i=1

xi ⊗ ...⊗ xi, xi ∈ X

}
.

The case fS(ν) = +∞ is trivial.

Let fS(ν) < +∞. By definition of fS(ν), there exist xi
m ∈ X, 1 ≤ i ≤ rn, where

ν =
rn∑
i=1

xi
m ⊗ ... ⊗ xi

m such that
rn∑
i=1

f(xi
m, ..., xi

m) ≤ fS(ν) + 1
m . By the data we

have that
rn∑
i=1

α
∥∥xi

m

∥∥n ≤
rn∑
i=1

f(xi
m, ..., xi

m) ≤ fS(ν) + 1. Therefore, α
rn∑
i=1

∥∥xi
m

∥∥n ≤

fS(ν) + 1. Hence
∥∥xi

m

∥∥ ≤ n

√
fS(ν)+1

α .

According to remark 1, the element ν =
k∑

j=1
xj ⊗ ...⊗ xj has the representation

ν =
r∑

j=1
xj ⊗ ... ⊗ xj +

k∑
i=r+1

(α1ix
1 + ... + αrix

r) ⊗ xi... ⊗ xi, where {xi}r
i=1 are

linearly independent.

From the equality
rn∑
i=1

xi
m ⊗ ... ⊗ xi

m =
r∑

j=1
xj ⊗ ... ⊗ xj +

k∑
i=r+1

(α1ix
1 + ... +

αrix
r) ⊗ xi... ⊗ xi it follows that xi

m ∈ Lin{x1, ..., xr}. Suppose the contrary.
Let there exist i ∈ 1, rn such that the set

{
x1, x2, ..., xr, xi

m

}
are linearly inde-

pendent. Then, according to the lemma of biorthogonal basis (see [4],p.25) there
exist x∗ ∈ X∗ such that x∗(xi

m) = 1 and x∗(xj) = 0 for j = 1, r. Assuming
(x∗ ⊗ ... ⊗ x∗)(x1, ..., xn) = x∗(x1)...x∗(xn) for (x1, ..., xn) ∈ X × ... × X we have

that
rn∑
i=1

x∗(xi
m)n = 0. As

rn∑
i=1

x∗(xi
m)n ≥ 1, then we have a contradiction, i.e. the set

{
x1, x2, ..., xk, xi

m

}
is linearly dependent. Therefore, choosing the convergent subse-

quence
{
x1

mk

}
from

{
x1

m

}
,

{
x1

mks
⊗ ...⊗ x1

mks

}
from

{
x1

mk
⊗ ...⊗ x1

mk

}
,

{
x2

mksj

}

from
{

x2
mks

}
,

{
x2

mksjl

⊗ ...⊗ x2
mksjl

}
from

{
x2

mksj

⊗ ...⊗ x2
mksj

}
and continuing

the process, it is possible to assume that xi
m converges to x̄i ∈ X and xi

m ⊗ ...⊗ xi
m

converges to x̄i⊗ ...⊗ x̄i ( according to lemma 3.4 it is enough to choose the conver-
gent subsequences

{
x1

mk

}
from

{
x1

m

}
,
{

x2
mks

}
from

{
x2

mk

}
,
{

x3
mksj

}
from

{
x3

mks

}
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and etc. ). It is clear that ν =
rn∑
i=1

x̄i ⊗ ...⊗ x̄i and

fS(ν) ≥ lim
m→∞

rn∑

i=1

f(xi
m, ..., xi

m) ≥
rn∑

i=1

lim
m→∞

f(xi
m, ..., xi

m) ≥
rn∑

i=1

f(x̄i, ..., x̄i) .

Hence it follows that fS(ν) =
rn∑
i=1

f(x̄i, ..., x̄i). The lemma is proved.

It is known (see [10], p.23) that LinM
⋂

(Eα ⊗ ... ⊗ Eα) is closed for α ∈ A.
Then we have that LinM is closed in (X ⊗ ... ⊗ X)s. Therefore, if n is odd, then
coM = LinM and it is closed in space (X ⊗ ...⊗X)s.

Lemma 4. If n is even, then coM is closed in space (X ⊗ ...⊗X)s.
Proof. It is clear that, Eα, α ∈ A is a Banach space with respect to induced

topology from Banach space X(see §2).
It is known (see [13], p.9) that this topology is induced by any Euclidian metric

determined by scalar product introduced on Eα × Eα with the help of positive-
definite symmetric bilinear function b(x, y). Similarly, from 2.6.4 and 2.6.5 [8] we
have that {νk} ⊂ X⊗...⊗X converges to ν with respect to topology in (X⊗...⊗X)s

iff for some α ∈ A subsequence {νk} converges to ν in space Eα⊗...⊗Eα. We assume
|x|e =

√
b(x, x) and

‖ν‖e = inf

{
m∑

i=1

∣∣xi
1

∣∣
e
...

∣∣xi
n

∣∣
e

: ν =
m∑

i=1

xi
1 ⊗ ...⊗ xi

n, xi
1, ..., x

i
n ∈ Eα, m ∈ N

}
.

It is known that if dimEα = k and ν =
s∑

i=1
xi ⊗ ... ⊗ xi ∈ Eα ⊗ ... ⊗ Eα, where

{xi ⊗ ...⊗ xi}s
i=1 are linearly independent, then s ≤ kn.

If n is even, ν =
l∑

i=1
xi

1 ⊗ ...⊗ xi
n and b̃(x1, ..., xn) = b(x1, x2)...b(xn−1, xn), then

from Cauchy-Schwartz inequality (see [8] ), it follows that

b̃(ν) =
l∑

i=1

b(xi
1, x

i
2)...b(x

i
n−1, x

i
n) ≤

l∑

i=1

∣∣xi
1

∣∣
e
...

∣∣xi
n−1

∣∣
e
.
∣∣xi

n

∣∣
e
.

Therefore, b̃(ν) =
l∑

i=1
b(xi

1, x
i
2)...b(x

i
n−1, x

i
n) ≤ ‖ν‖e. Hence it follows that if ν =

l∑
i=1

xi ⊗ ...⊗ xi, then ‖ν‖e =
kn∑
i=1

∣∣xi
∣∣n
e
.

Let νm ∈ coM and νm → ν. Then there exists α > 0 such that νm ∈ Eα⊗...⊗Eα

and νm → ν . Let dimEα = k. If n is even and xi
m ∈ Eα,i = 1, k, such that

νm =
kn∑
i=1

xi
m ⊗ ... ⊗ xi

m, we have ‖νm‖e =
kn∑
i=1

∣∣xi
m

∣∣n
e
. As νm converges to ν, there

exists λ ∈ R+ such that ‖νm‖e ≤ λ, i.e
kn∑
i=1

∣∣xi
m

∣∣n
e
≤ λ. Hence it follows that

∣∣xi
m

∣∣
e
≤ n
√

λ. Therefore, choosing the convergent subsequences
{
x1

mk

}
from

{
x1

m

}
,{

x2
mks

}
from

{
x2

mk

}
,

{
x3

mksj

}
from

{
x3

mks

}
and continuing the process, we can
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assume that xi
m converges to x̄i ∈ Eα and xi

m⊗ ...⊗xi
m converges to x̄i⊗ ...⊗ x̄i for

i = 1, kn. It is clear that ν =
rn∑
i=1

x̄i ⊗ ...⊗ x̄i, i.e ν ∈ coM .

As the norms ‖·‖, s(·) and ‖·‖e are equivalent in Eα ⊗ ... ⊗ Eα we obtain that
coM

⋂
Eα ⊗ ... ⊗ Eα is closed in space Eα ⊗ ... ⊗ Eα. Therefore, coM is closed in

space (X ⊗ ...⊗X)s. The lemma is proved.

Lemma 5. Let f : X × ... × X → R̄ be an n-positive-homogeneous continu-
ous function.Then there exists α > 0 such that |f(x1, ..., xn)| ≤ α ‖x1‖ ... ‖xn‖ for
(x1, ..., xn) ∈ X × ...×X .

Proof. As f : X × ... × X → R is an n-positive-homogeneous continu-
ous function, then for ε > 0 there exists ν > 0 such that |f(x1, ..., xn)| ≤ ε for

‖(x1, ..., xn)‖ =
n∑

i=1
‖xi‖ ≤ ν. Then

|f(
ν

n ‖x1‖x1, ...,
ν

n ‖xn‖xn)| = νn

nn ‖x1‖ ... ‖xn‖|f(x1, ..., xn)| ≤ ε

for (x1, ..., xn) ∈ X × ... ×X , xi 6= 0. Therefore, |f(x1, ..., xn)| ≤ εnn

νn ‖x1‖ ... ‖xn‖
for (x1, ..., xn) ∈ X × ...×X . The lemma is proved.

Lemma 6. Let f : X × ...×X → R̄ be an n-positive-homogeneous lower semi-
continuous function. Then there exists α such that α ‖x1‖ ... ‖xn‖ ≤ f(x1, ..., xn)
for (x1, ..., xn) ∈ X × ...×X .

Proof. As f : X × ... ×X → R̄ is an n-positive-homogeneous lower semicon-
tinuous function, then for ε < 0 there exists ν > 0 such that ε ≤ f(x1, ..., xn) for
‖(x1, ..., xn)‖ ≤ ν. Then

ε ≤ f( ν
n‖x1‖x1, ...,

ν
n‖xn‖xn) = νn

nn‖x1‖...‖xn‖f(x1, ..., xn)

for (x1, ..., xn) ∈ X× ...×X , xi 6= 0. Therefore, εnn

νn ‖x1‖ ... ‖xn‖ ≤ f(x1, ..., xn)
for (x1, ..., xn) ∈ X × ...×X . The lemma is proved.

Proposition 1. Let n be even, f : X × ...×X → R̄ an n-positive-homogeneous
lower semicontinuous even function, there exists α > 0 such that α ‖x‖n ≤ f(x, ..., x)
for x ∈ X. Then fS(ν) is a lower semicontinuous function in coM with respect to
the topology of space (X ⊗ ...⊗X)s.

Proof. We are to show that S(fS , λ) = {ν ∈ coM : fS(ν) ≤ λ} is a closed set
for λ ∈ R+. Let νk ∈ S(fS , λ) and νk ∈ Eα ⊗ ... ⊗ Eα, where α ∈ A is a fixed
element, dimEα = r and νk converges to ν in space (X ⊗ ... ⊗ X)s. As coM is
closed in space (X ⊗ ...⊗X)s we have ν ∈ coM . According to lemma 3, there exist
{
xi

k ⊗ ...⊗ xi
k

}
, where νk =

rn∑
i=1

xi
k ⊗ ... ⊗ xi

k, such that fS(νk) =
rn∑
i=1

f(xi
k, ..., x

i
k).

Similarly to the proof of lemma 3, we conclude that xi
k ∈ Eα for i = 1, rn. By the

data, we have that
rn∑
i=1

α
∥∥xi

k

∥∥n ≤
rn∑
i=1

f(xi
k, ..., xi

k) ≤ λ. Therefore, α
rn∑
i=1

∥∥xi
k

∥∥n ≤ λ.

Hence we have
∥∥xi

k

∥∥ ≤ n

√
λ
α . Without loss of generality, we assume that(see the

proof of lemma 3) that xi
m converges to x̄i ∈ X and xi

m ⊗ ... ⊗ xi
m converges to
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x̄i⊗ ...⊗ x̄i. Then νk =
rn∑
i=1

xi
k ⊗ ...⊗ xi

k converges to ν =
rn∑
i=1

x̄i⊗ ...⊗ x̄i. Therefore,

lim
k→∞

fS(νk) = lim
k→∞

rn∑

i=1

f(xi
k, ..., x

i
k) ≥

rn∑

i=1

lim
k→∞

f(xi
k, ..., x

i
k) ≥

≥
rn∑

i=1

f(x̄i, ..., x̄i) ≥ fS(ν).

Hence it follows that fS(ν) ≤ λ, i.e ν ∈ S(fS , λ). We obtain that the set S(fS , λ) is
closed. The proposition 1 is proved.

From the proof of proposition 1, the validity of the following proposition 2 follows.
Proposition 2. Let n be even, f : X× ...×X → R̄ an n-positive-homogeneous

even and lower semicontinuous function in each finite-dimensional subspace of space
X × ...×X, there exist α > 0 such that α ‖x‖n ≤ f(x, ..., x) for x ∈ X. Then fS(ν)
is a lower semicontinuous function in coM with respect to the topology of space
(X ⊗ ...⊗X)s.

Remark 2. Let n be even, f : X × ... × X → R̄ an n-positive-homogeneous
even and lower semicontinuous function in each finite-dimensional subspace of space
X × ... ×X, there exists c ≥ 0 and function h : R+ → R+, where h(t) → +∞ for
t → +∞, such that h(‖x‖) − c ≤ f(x, ..., x) for x ∈ X. Then from the proof of
lemma 3 and proposition 1, it follows that fS(ν) is a lower semicontinuous function
in coM with respect to the topology of space (X ⊗ ...⊗X)s.

We assume that ∂g = (x∗ ∈ (X ⊗ ...⊗X)∗s : g(ν) ≥ x∗(ν) for ν ∈ X ⊗ ...⊗X} .

The proof of theorem 1. Under the condition of proposition 2, fS(ν) is a
lower semicontinuous sublinear function in coM . Therefore, under the condition of

proposition 2, g(ν) =
{

fS(ν) : ν ∈ coM

+∞ : ν /∈ coM
is a lower semicontinuous sublinear

function in (X ⊗ ... ⊗X)s (see [14]). Then, according to Hormander theorem (see
[15]) it follows that g(ν) = sup{b(ν) : b ∈ ∂g}. As g(x ⊗ ... ⊗ x) = f(x, ..., x)
for x ∈ X we have f(x, ...., x) = sup

{
Q(x) : Q ∈ ∂̄nϕ

}
for x ∈ X, where ϕ(x) =

f(x, ..., x), ∂̄nϕ = {Q ∈ B1(Xn) : ϕ(x) ≥ Q(x) for x ∈ X}, B1(Xn) = {Q : Q(x) =
x∗(x, ..., x), x∗ ∈ clB(Xn, R) = (X ⊗ ...⊗X)∗s}. Theorem 1 is proved.

If f : X × ... × X → R̄ is an n-positive-homogeneous lower semicontinu-
ous function, then from lemma 6 it follows that there exists α > 0 such that
−α ‖x1‖ ... ‖xn‖ ≤ f(x1, ..., xn) for (x1, ..., xn) ∈ X × ... × X . Therefore, if
n is even, f : X × ... × X → R̄ is an n-positive-homogeneous lower semicon-
tinuous even function, then f(x, ...., x) + (α + ε) ‖x‖n = sup

{
Q(x) : Q ∈ ∂̄nϕ1

}
for x ∈ X, where ϕ1(x) = f(x, ..., x) + (α + ε) ‖x‖n, ε > 0. It is clear that,
f(x, ...., x) = sup

{
Q(x)− (α + ε) ‖x‖n : Q ∈ ∂̄nϕ1

}
for x ∈ X.

The proof of theorem 2. Assuming fα(x1, ..., xn) = f(x1, ..., xn) + (α+
+1)b(x1, ..., xn), from proposition 1 we have that fα

S (ν) is a lower semicontinu-
ous function in coM with respect to the topology of space (X ⊗ ... ⊗ X)s. As
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fα
S (ν) = fS(ν) + (α + 1)bS(ν), we have that fS is also a lower semicontinuous func-

tion in coM . Assuming g(ν) =
{

fS(ν) : ν ∈ coM,

+∞ : ν /∈ coM
, we have that g(ν) is a lower

semicontinuous function in space (X ⊗ ... ⊗ X)s. Then, according to Hormander
theorem it follows that g(ν) = sup{b(ν) : b ∈ ∂g}. As g(x ⊗ ... ⊗ x) = f(x, ..., x)
for x ∈ X we have f(x, ...., x) = sup

{
Q(x) : Q ∈ ∂̄nϕ

}
for x ∈ X. Theorem 2 is

proved.
Note that if X is a locally convex space, theorem 2 also holds true. Furthermore,

the function b can be taken from B(Xn, R).
From theorem 2 and lemma 6, the validity of the following corollary 1 follows.
Corollary 1. Let X be a real Banach space, n even, f : X× ...×X → R̄ a lower

semicontinuous n-positive homogeneous even function, there exist b ∈ (X⊗ ...⊗X)∗s
such that ‖x‖n ≤ b(x, ..., x) for x ∈ X. Then f(x, ..., x) = = sup

{
Q(x) : Q ∈ ∂̄nϕ

}
for x ∈ X.

Note that in spaces L1, C and C1 the inequality ‖x‖2 ≤ b(x, x), where b ∈
B(X2, R) is symmetric, is not satisfied.

Corollary 2. Let X be a real Hilbert space, n even, f : X × ... × X → R̄

a lower semicontinuous n-positive homogeneous even function. Then f(x, ..., x) =
= sup

{
Q(x) : Q ∈ ∂̄nϕ

}
for x ∈ X.

Let X ⊗ · · · ⊗ X be supplied with a projective topology. Further, we are to
identify (X ⊗ · · · ⊗ X)∗ and B(Xn, R)(see [8,9]). Denote by B0(Xn) a set of all
n-polynomial functions from X in R. If q : X → R̄, we take

dnq = {Q ∈ B0(Xn) : q(x) ≥ Q(x) for x ∈ X}

The proof of theorem 3. If f : Rk×...×Rk → R̄ is an n-positive homogeneous
lower semicontinuous function, then there exist α such that α ‖x‖n ≤ ≤ f(x, ..., x)
for x ∈ Rk.

It is clear that (Rk ⊗ ...⊗Rk)∗s = (Rk ⊗ ...⊗Rk)∗ = B((Rk)n, R). Therefore, if
X = Rk, then dnϕ = ∂̄nϕ. Then the validity of theorem 3 follows from theorem 2.
Theorem 3 is proved.

Note that if X is a Hilbert space and n = 2, according to Hellinger and Teoplits
theorem (see [10], p.132) it follows that B0(X2) = B1(X2). Therefore d2ϕ = ∂̄2ϕ.

From lemma 1 and theorem 2 the validity of the following corollary follows.
Corollary 3. If n is even, ϕ : X → R̄ a positive-homogeneous even function of

order n and there exists b ∈ B(Xn, R) such that b(x, ..., x) ≤ ϕ(x) for x ∈ X and
f(x1, ..., xn) = n

√
(ϕ(x1)− b(x1, ..., x1))...(ϕ(xn)− b(xn, ..., xn)), then fS(x ⊗ ... ⊗

x) = ϕ(x)− b(x, ..., x) for x ∈ X.
Corollary 4. If n is even, ϕ : X → R̄ a lower semicontinuous even positive-

homogeneous function of order n and there exists b ∈ B(Xn, R) such that ‖x‖n ≤
b(x, ..., x) for x ∈ X, then ϕ(x) = sup

{
Q(x) : Q ∈ ∂̄nϕ

}
for x ∈ X.

Proof. As ϕ : X → R̄ is a lower semicontinuous function, then for ε > 0 there
exists ν > 0 such that −ε ≤ ϕ(x) for x ∈ X, ‖x‖ ≤ ν. Then −ε ≤ νn

‖x‖n ϕ(x) for
x ∈ X, x 6= 0. Therefore, − ε

νn ‖x‖n ≤ ϕ(x) for x ∈ X. Then − ε
νn b(x, ..., x) ≤ ϕ(x).



76
[M.A.Sadygov]

Transactions of NAS of Azerbaijan

Assuming f(x1, ..., xn) = n
√

(ϕ(x1) + ε
νn b(x1, ..., x1))...(ϕ(xn) + ε

νn b(xn, ..., xn)) ac-
cording to theorem 2 we have ϕ(x) = sup

{
Q(x) : Q ∈ ∂̄nϕ

}
for x ∈ X.The corollary

is proved.
Corollary 5. If n is even, ϕ : X → R̄ is a lower semicontinuous even positive-

homogeneous function of order n, then

ϕ(x) = sup {Q(x) + α ‖x‖n : ϕ(x) ≥ Q(x) + α ‖x‖n , α ≤ 0, Q ∈ B1(Xn)}

for x ∈ X.
Proof. As ϕ : X → R̄ is a lower semicontinuous positive-homogeneous function

of degree n, then ε > 0 there exists ν > 0 such that − ε
νn ‖x‖n ≤ ϕ(x) for x ∈ X

(see corollary 4). Assuming

f(x1, ..., xn) = n

√
(ϕ(x1) + (1 +

ε

νn
) ‖x1‖n)...(ϕ(xn) + (1 +

ε

νn
) ‖xn‖n))

from proposition 1 and the theorem of Hormander we have ϕ(x) + (1 + ε
νn ) ‖x‖n =

sup
{
Q(x) : Q ∈ ∂̄n(ϕ + (1 + ε

νn ) ‖x‖n)
}

for x ∈ X. Therefore,

ϕ(x) = sup {Q(x) + α ‖x‖n : ϕ(x) ≥ Q(x) + α ‖x‖n , α ≤ 0, Q ∈ B1(Xn)}

for x ∈ X.The corollary is proved.
Corollary 6. If n is even, ϕ : X → R̄ is a lower semicontinuous even positive-

homogeneous function of order n and X is a finite-dimensional space, then ϕ(x) =
sup {Q(x) : Q ∈ dnϕ}.

Corollary 7. If X is a Hilbert space, ϕ : X → R̄ is a lower semicontinuous
even positive- homogeneous function of second order, then

ϕ(x) = sup {Q(x) : Q ∈ d2ϕ} .

5. Properties of n-positive homogeneous functions in a cone
Let X be a real Banach space, X ⊗ · · · ⊗X supplied with a projective topology,

K ⊂ X a convex closed cone, M+ = {x⊗ ...⊗ x : x ∈ K} and f : K × ...×K → R

an n-positive homogeneous function.
It is clear that

coM+ =
{

m∑
i=1

αix
i ⊗ · · · ⊗ xi :

m∑
i=1

αi = 1, xi ∈ K, αi ≥ 0, m ∈ N

}
=

=
{

m∑
i=1

yi ⊗ ...⊗ yi : yi ∈ K, m ∈ N

}
,

coneM =
{

m∑
i=1

αix
i ⊗ · · · ⊗ xi : xi ∈ K, αi ≥ 0, m ∈ N

}
=

=
{

m∑
i=1

yi ⊗ · · · ⊗ yi : yi ∈ K, m ∈ N

}
,

LinM+ =

{
m∑

i=1

λix
i ⊗ · · · ⊗ xi : xi ∈ K, λi ∈ R, m ∈ N

}
= coM+ − coM+.
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Assume

fS(ν) = inf

{
m∑

i=1

f(xi, ..., xi) : ν =
m∑

i=1

xi ⊗ ...⊗ xi, m ∈ N, xi ∈ K

}
,

where as usual we assume that inf ∅ = +∞.
Next, we assume that the number K in K × ...×K equals n.
Lemma 1. If n is even, K ⊂ X a convex closed salient cone, f : K × ...×

×K → R an n-positive homogeneous function, then fs(x⊗ ... ⊗ x) = f(x, ..., x) for
x ∈ K.

Proof. Using corollary 3.1 and lemma 3.5 we obtain

fS(x⊗ ...⊗ x) =

= inf
{

m∑
i=1

f(xi, ..., xi) : x⊗ ...⊗ x =
m∑

i=1
xi ⊗ ...⊗ xi, xi ∈ K, m ∈ N

}
=

= inf
{

m∑
i=1

f1(xi, ..., xi) : x⊗ ...⊗ x =
m∑

i=1
xi ⊗ ...⊗ xi,

{
xi ⊗ ...⊗ xi

}m

i=1
−

−lin. indepen. , xi ∈ K, m ∈ N
}

=

= inf
{
f(x1, .., x1) : x⊗ ...⊗ x = x1 ⊗ ...⊗ x1, x1 ∈ K

}
= f(x, ..., x)

for x ∈ K. The lemma is proved.
Lemma 2. If X is a real separable Banach space, n odd, K ⊂ X a convex

closed salient cone, f : K × ... ×K → R an n-positive homogeneous function, then
fs(x⊗ ...⊗ x) = f(x, ..., x) for x ∈ K.

Proof. Using corollary 3.2 and lemma 3.5 we obtain

fS(x⊗ ...⊗ x) =

= inf

{
m∑

i=1

f(xi, ..., xi) : x⊗ ...⊗ x =
m∑

i=1

xi ⊗ ...⊗ xi, xi ∈ K, m ∈ N

}
=

= inf
{

m∑
i=1

f1(xi, ..., xi) : x⊗ ...⊗ x =
m∑

i=1
xi ⊗ ...⊗ xi,

{
xi ⊗ ...⊗ xi

}m

i=1
−

−lin. indepen. , xi ∈ K, m ∈ N
}

=

= inf
{
f(x1, .., x1) : x⊗ ...⊗ x = x1 ⊗ ...⊗ x1, x1 ∈ K

}
= f(x, ..., x)

for x ∈ K. The lemma is proved.
Remark 1. If X is a real Banach space, n odd, K ⊂ X a convex closed

salient cone and the cone K allows plastering, f : K × ... ×K → R an n-positive-
homogeneous function, then fs(x⊗ ...⊗ x) = f(x, ..., x) for x ∈ K.

Assume M+ = {x⊗ ...⊗ x : x ∈ K}.
Lemma 3. If n is even, then coM+ is closed in space (X ⊗ ...⊗X)s.
Proof. It is clear that, Eα, α ∈ A, is a Banach space with respect to the

induced topology from Banach space X (see §2).
It is known (see [13], p. 9) that this topology is induced by any Euclidian metrics

determined by the scalar product, introduced in Eα ×Eα with the help of positive-
definite symmetric bilinear function b(x, y). Similarly, from 2.6.4 and 2.6.5 [8] we
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conclude that {νk} ⊂ X ⊗ ... ⊗ X converges to ν with respect to the topology in
(X ⊗ ... ⊗ X)s if for some α ∈ A {νk} converges to ν in Eα ⊗ ... ⊗ Eα. Assume
|x|e =

√
b(x, x) and

‖ν‖e = inf

{
m∑

i=1

∣∣xi
1

∣∣
e
...

∣∣xi
n

∣∣
e

: ν =
m∑

i=1

xi
1 ⊗ ...⊗ xi

n, xi
1, ..., x

i
n ∈ Eα, m ∈ N

}
.

It is known that if dimEα = k and ν =
s∑

i=1
xi ⊗ ... ⊗ xi ∈ Eα ⊗ ... ⊗ Eα, where

{xi ⊗ ... ⊗ xi}s
i=1 are linearly independent, then s ≤ kn. Except for that, from the

proof of lemma 3.5 it follows that such representation exists.

If n is even, ν =
l∑

i=1
xi

1 ⊗ ... ⊗ xi
n and b̃(x1, ..., xn) = b(x1, x2)...b(xn−1, xn) from

the Cauchy-Schwartzs inequality, it follows that

b̃(ν) =
l∑

i=1

b(xi
1, x

i
2)...b(x

i
n−1, x

i
n) ≤

l∑

i=1

∣∣xi
1

∣∣
e
...

∣∣xi
n−1

∣∣
e
.
∣∣xi

n

∣∣
e
.

Therefore b̃(ν) =
l∑

i=1
b(xi

1, x
i
2)...b(x

i
n−1, x

i
n) ≤ ‖ν‖e. Hence it follows that if

ν =
l∑

i=1
xi ⊗ ...⊗ xi, then ‖ν‖e =

l∑
i=1

∣∣xi
∣∣n
e
.

Let νm ∈ coM+ and νm → ν. Then there exists α > 0 such that νm ∈
∈ Eα⊗ ...⊗Eα and νm → ν. Let dimEα = k. If xi

m ∈ Eα
⋂

K at i = 1, kn, are such

that νm =
kn∑
i=1

xi
m ⊗ ... ⊗ xi

m, then we have ‖νm‖e =
kn∑
i=1

∣∣xi
m

∣∣n
e
. As νm converges

to ν, there exists λ ∈ R+ such that ‖νm‖e ≤ λ, i.e
kn∑
i=1

∣∣xi
m

∣∣n
e
≤ λ. Hence it follows

that
∣∣xi

m

∣∣
e
≤ n
√

λ. Therefore, choosing convergent subsequences
{
x1

mk

}
from

{
x1

m

}
,{

x2
mks

}
from

{
x2

mk

}
,

{
x3

mksj

}
from

{
x3

mks

}
and continuing the process, we can

assume that xi
m converges to x̄i ∈ Eα

⋂
K and xi

m⊗ ...⊗xi
m converges to x̄i⊗ ...⊗ x̄i

at i = 1, kn. It is clear that ν =
rn∑
i=1

x̄i ⊗ ...⊗ x̄i, i.e ν ∈ coM+.

As the norms ‖·‖, s(·) and ‖·‖e are equivalent in Eα⊗ ...⊗Eα, then we conclude
that coM+

⋂
Eα ⊗ ... ⊗ Eα is closed in Eα ⊗ ... ⊗ Eα. Therefore coM+ is closed in

space (X ⊗ ...⊗X)s. The lemma is proved.
Lemma 4. If K ⊂ X is a convex closed salient cone, the cone K allows plas-

tering, n is odd, then coM+ is closed in space (X ⊗ ...⊗X)s.
Proof. It is clear that Eα, α ∈ A, is a Banach spaces with respect to the

induced topology from Banach space X (see §2).
It is known (see [13], p. 9) that this topology is induced by any Euclidian metrics

determined by the scalar product introduced in Eα × Eα with the help of positive
definite symmetric bilinear function b(x, y). Assume |x|e =

√
b(x, x) and

‖ν‖e =
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= inf

{
m∑

i=1

∣∣xi
1

∣∣
e
...

∣∣xi
n−1

∣∣
e

∥∥xi
n

∥∥ : ν =
m∑

i=1

xi
1 ⊗ ...⊗ xi

n, xi
1, ..., x

i
n ∈ Eα, m ∈ N

}
.

From lemma 3.5 it follows that if dimEα = k and ν =
s∑

i=1
xi ⊗ ... ⊗ xi ∈ ∈

Eα⊗ ...⊗Eα, where {xi⊗ ...⊗xi}k
i=1 are linearly independent and xi ∈ Eα

⋂
K, then

s ≤ kn. Furthermore, from the proof of lemma 3.5 it follows that such representation
exists.

Let νm ∈ co M+ and νm → ν. From the definition of ‖νm‖e it follows that for

any δ > 0 there exist x̃i
j ∈ Ea, i = 1, l, j = 1, n, such that νm =

l∑
i=1

x̃i
1 ⊗ ... ⊗ x̃i

n

and
l∑

i=1

∣∣x̃i
1

∣∣
e
...

∣∣x̃i
n−1

∣∣
e

∥∥x̃i
n

∥∥ < ‖νm‖e +δ . As νm → ν, there exists α > 0 such that

νm ∈ Eα⊗...⊗Eα and νm → ν in Eα⊗...⊗Eα. Introduce the notations dimEα = k.

Let xi
m ∈ K,i = 1, kn, be such that νm =

kn∑
i=1

xi
m ⊗ ... ⊗ xi

m. According to theorem

5.6 (see [11], p. 40) there exists x∗ ∈ X∗ and a > 0 such that x∗(x) ≥ a ‖x‖ for
x ∈ K. Then assuming z∗(x1, ..., xn) =b(x1, x2)...b(xn−2, xn−1)x∗(xn) we conclude

that z∗(νm) = z∗(
l∑

i=1
xi

m ⊗ ... ⊗ xi
m) < ‖x∗‖ (‖νm‖e + δ). Introduce the notations

ε = inf{x∗(x) : x ∈ K, ‖x‖ = 1 } and Im = {i ∈ 1, kn : x∗(xi
m) ≥ ε}, we have

‖x∗‖ (‖νm‖e + δ) ≥ ε
∑

i∈Im

∣∣xi
m

∣∣n−1

e
. By the data νm converges to ν. Then there

exists λ ∈ R+ such that ‖νm‖e + δ ≤ λ. We conclude that
∣∣xi

m

∣∣n−1

e
≤ λ

ε ‖x∗‖
for i ∈ Im. It is clear that

∥∥xi
m

∥∥ ≤ 1 for i ∈ Jm, where Jm = {i ∈ ∈ 1, kn :

x∗(xi
m) ≤ ε}. (If z∗(νm) = z∗(

l∑
i=1

xi
m⊗ ...⊗xi

m) < ‖x∗‖ (‖νm‖e + δ), then it is easily

verified that a
l∑

i=1

∣∣xi
m

∣∣n−1

e

∥∥xi
m

∥∥ < ‖x∗‖ (‖νm‖e + δ). Therefore, a
∣∣xi

m

∣∣n−1

e

∥∥xi
m

∥∥ <

‖x∗‖ (‖νm‖e + δ) ≤ λ, i.e. the sequence
{
xi

m

}
is also bounded). Therefore, without

loss of generality, we can assume that xi
m converges to x̄i ∈ K and xi

m ⊗ ... ⊗ xi
m

converges to x̄i ⊗ ... ⊗ x̄i. Therefore, there exist x̄i ∈ K, i = 1, kn, such that

ν =
kn∑
i=1

x̄i ⊗ ... ⊗ x̄i, i.e ν ∈ coM+. As the norms ‖·‖ and ‖·‖e are equivalent in

Eα ⊗ ... ⊗ Eα, we conclude that coM+ is closed in (X ⊗ ... ⊗ X)s. The lemma is
proved.

Remark 2. Let X be a Banach space, K ⊂ X a convex closed salient cone. If
0 /∈ cō{x ∈ K : ‖x‖ = 1 }, then according to the separation theorem (see [10], p.
71) there exists x∗ ∈ X such that ε = inf{x∗(x) : x ∈ K, ‖x‖ = 1 } > 0. Therefore,
if n is odd, then similarly to lemma 4 we have that the set coM+ is closed in space
(X ⊗ ...⊗X)s.

Remark 3. Let K ⊂ Rn be a convex closed salient cone. According to theorem
5.9 (see [11], p. 42) there exists x∗ ∈ X such that x∗(z) > 0 for z ∈ K, z 6= 0. Then
ε = min{x∗(x) : x ∈ K, ‖x‖ = 1 } > 0. If n is odd, then similarly to lemma 4 we
have that the set coM+ is closed in space (Rn ⊗ ...⊗Rn).

Lemma 5. Let X be a separable Banach space, K ⊂ X a convex closed salient
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cone, n odd, f : K × ...×K → R an n-positive homogeneous lower semicontinuous
function, there exists α > 0 such that α ‖x‖n ≤ f(x, ..., x) for x ∈ X and ν ∈ coM+.

Then there exists {xi}rn

i=1⊂ K, where r = rid ν and ν =
rn∑
i=1

xi ⊗ ... ⊗ xi such that

fS(ν) =
rn∑
i=1

f(xi, ..., xi).

Proof. If ν =
k∑

i=1
xi⊗ ...⊗ xi, where {xi⊗ ...⊗ xi}k

i=1 are linearly independent,

we conclude that k ≤ rn. Therefore, according to lemma 3.5 we obtain

fS(ν) = inf

{
rn∑

i=1

f(xi, ..., xi) : ν =
rn∑

i=1

xi ⊗ ...⊗ xi, xi ∈ K

}
.

By the definition of fS(ν), there exist xi
m ∈ K, 1 ≤ i ≤ rn, where ν =

rn∑
i=1

xi
m⊗...⊗xi

m

such that
rn∑
i=1

f(xi
m, ..., xi

m) ≤ fS(ν) + 1
m . By the data, we have that

rn∑
i=1

α
∥∥xi

m

∥∥n ≤
rn∑
i=1

f(xi
m, ..., xi

m) ≤ fS(ν) + 1. Therefore, α
rn∑
i=1

∥∥xi
m

∥∥n ≤ fS(ν) + 1. Hence we

conclude that
∥∥xi

m

∥∥ ≤ n

√
fS(ν)+1

α .

Let ν =
k∑

j=1
xj⊗...⊗xj , rid ν = r and {x1, ...., xr} be linearly independent. Then

there exist αij ∈ R such that xi = α1ix
1 + ... + αrix

r for i = r + 1, k. According
to theorem 5.9 (see [11], p.42) there exists x∗ ∈ X such that x∗(z) > 0 for z ∈ K,
z 6= 0.

From equality
rn∑
i=1

xi
m ⊗ ...⊗ xi

m =
k∑

j=1
xj ⊗ ...⊗ xj it follows that

rn∑

i=1

x∗(xi
m)xi

m ⊗ ...⊗ xi
m =

k∑

j=1

x∗(xj)xj ⊗ ...⊗ xj ,

where the number xj in the equality is even. Then

rn∑

i=1

x∗(xi
m)xi

m ⊗ ...⊗ xi
m =

r∑

j=1

x∗(xj)xj ⊗ ...⊗ xj+

+
k∑

i=r+1

x∗(xi)(α1ix
1 + ... + αrix

r)⊗ xi...⊗ xi,

where {xi}r
i=1 are linearly independent. Hence it follows that xi

m ∈ Lin{x1, ..., xr}.
Therefore, choosing a convergent subsequence

{
x1

mk

}
from

{
x1

m

}
,
{

x1
mks

⊗ ...⊗ x1
mks

}

from
{
x1

mk
⊗ ...⊗ x1

mk

}
,

{
x2

mksj

}
from

{
x2

mks

}
,

{
x2

mksjl

⊗ ...⊗ x2
mksjl

}
from

{
x2

mksj

⊗ ...⊗ x2
mksj

}
and continuing the process, we can assume that xi

m converges
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to x̄i ∈ X and xi
m⊗ ...⊗ xi

m converges to x̄i⊗ ...⊗ x̄i (According to lemma 3.4, it is
enough to choose convergent subsequences

{
x1

mk

}
from

{
x1

m

}
,
{

x2
mks

}
from

{
x2

mk

}
,

{
x3

mksj

}
from

{
x3

mks

}
and so on). It is clear that ν =

rn∑
i=1

x̄i ⊗ ...⊗ x̄i and

fS(ν) ≥ lim
m→∞

rn∑

i=1

f(xi
m, ..., xi

m) ≥
rn∑

i=1

lim
m→∞

f(xi
m, ..., xi

m) ≥
rn∑

i=1

f(x̄i, ..., x̄i) .

Hence it follows that fS(ν) =
rn∑
i=1

f(x̄i, ..., x̄i). The lemma is proved.

The following lemma 6 and lemma 7 is proved similarly to the proof of lemma 5.

Lemma 6. Let a convex closed salient cone K ⊂ X allow plastering, n be odd,
f : K × ... × K → R an n-positive homogeneous lower semicontinuous function,
there exist α > 0 such that α ‖x‖n ≤ f(x, ..., x) for x ∈ X and ν ∈ coM+. Then

there exist {xi}rn

i=1⊂ K, where r = rid ν and ν =
rn∑
i=1

xi ⊗ ...⊗ xi, such that fS(ν) =

rn∑
i=1

f(xi, ..., xi).

Lemma 7. Let K ⊂ X be a convex closed salient cone, n even, f : K×...×K →
R an n-positive homogeneous lower semicontinuous function, there exists α > 0 such
that α ‖x‖n ≤ f(x, ..., x) for x ∈ X and ν ∈ coM+. Then, there exists {xi}rn

i=1⊂ K,

where r = rid ν and ν =
rn∑
i=1

xi ⊗ ...⊗ xi, such that fS(ν) =
rn∑
i=1

f(xi, ..., xi).

Proposition 1. Let K ⊂ X be a convex closed salient cone (cone K allows
plastering if n is odd), f : K × ... × K → R an n-positive homogeneous lower
semicontinuous function, there exists α > 0 such that α ‖x‖n ≤ f(x, ..., x) for x ∈ K.
Then fS(ν) is lower semicontinuous function in coM+ with respect to the topology
of space (X ⊗ ...⊗X)s.

Proof. We are to show that S(fS , λ) = {ν ∈ coM+ : fS(ν) ≤ λ} is a closed
set for λ ∈ R+. Let νk ∈ S(fS , λ) and νk converges to ν in space (X ⊗ ... ⊗ X)s.
Then there exists α ∈ A such that νk ∈ Eα ⊗ ... ⊗ Eα and νk converges to ν in
space Eα ⊗ ... ⊗ Eα, where dimEα = r < +∞.According to lemma 7 (or lemma

6), there exist
{
xi

k ⊗ ...⊗ xi
k

}
, where xi

k ∈ K and νk =
rn∑
i=1

xi
k ⊗ ... ⊗ xi

k, such that

fS(νk) =
rn∑
i=1

f(xi
k, ..., x

i
k). Similarly to the proof of lemma 7 (or lemma 5), we obtain

that xi
k ∈ Eα at j = 1, rn. By the data, we have

rn∑
i=1

α
∥∥xi

k

∥∥n ≤
rn∑
i=1

f(xi
k, ..., xi

k) ≤ λ.

Therefore α
rn∑
i=1

∥∥xi
k

∥∥n ≤ λ. Hence we have
∥∥xi

k

∥∥ ≤ n

√
λ
α . Without loss of generality,

we assume (see the proof of lemma 3 and 4) that xi
m converges to x̄i ∈ K and

xi
m ⊗ ... ⊗ xi

m converges to x̄i ⊗ ... ⊗ x̄i. Then νk =
rn∑
i=1

xi
k ⊗ ... ⊗ xi

k converges to
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ν =
rn∑
i=1

x̄i ⊗ ...⊗ x̄i. Therefore

lim
k→∞

fS(νk) = lim
k→∞

rn∑

i=1

f(xi
k, ..., x

i
k) ≥

≥
rn∑

i=1

lim
k→∞

f(xi
k, ..., x

i
k) ≥

rn∑

i=1

f(x̄i, ..., x̄i) ≥ fS(ν).

Hence it follows that fS(ν) ≤ λ, i.e ν ∈ S(fS , λ). We conclude that the set S(fS , λ)
is closed. The proposition is proved.

According to the condition of proposition 1, fS(ν) is a lower semicontinuous

function in coM+. Assuming g(ν) =
{

fS(ν) : ν ∈ coM+,

+∞ : ν /∈ co M+
, according to the

condition of proposition 1, we have that g(ν) is a lower semicontinuous sublinear
function in (X ⊗ ... ⊗ X)s. Then according to the Hormander theorem it follows
that f(x, ..., x) = sup

{
Q(x) : Q ∈ ∂̄nϕ

}
, where ϕ(x) = f(x, ..., x) for x ∈ K and

ϕ(x) = +∞ for x /∈ K, ∂̄nϕ = {Q ∈ B1(Xn) : ϕ(x) ≥ Q(x) for x ∈ X}, B1(Xn) =
{Q : Q(x) = x∗(x, ..., x), x∗ ∈ clB(Xn, R) =(X ⊗ ...⊗X)∗s}.

Lemma 8. If f : K × ... × K → R is an n-positive-homogeneous continu-
ous function, then there exists α > 0 such that |f(x1, ..., xn)| ≤ α ‖x1‖ ... ‖xn‖ for
(x1, ..., xn) ∈ K × ...×K.

Lemma 9. If f : K × ... ×K → R is an n-positive-homogeneous lower semi-
continuous function, then there exists α such that α ‖x1‖ ... ‖xn‖ ≤ f(x1, ..., xn) for
(x1, ..., xn) ∈ K × ...×K.

The proof of theorem 4. Assuming fα(x1, ..., xn) = f(x1, ..., xn)+(α+
+1)b(x1, ..., xn), according to proposition 1, we have that fα

S (ν) is a lower semi-
continuous function in coM+ with respect to the topology in (X ⊗ ... ⊗ X)s. As
fα

S (ν) = fS(ν)+(α+1)bS(ν) for ν ∈ coM+, we have that fS is a lower semicontinu-

ous function in coM+. Assuming g(ν) =
{

fS(ν) : ν ∈ coM+,

+∞ : ν /∈ coM+
we have that g(ν)

is a lower semicontinuous function in (X ⊗ ...⊗X)s. Then according to Hormander
theorem, it follows that g(ν) = sup{b(ν) : b ∈ ∂g}. As g(x ⊗ ... ⊗ x) = f(x, ..., x)
for x ∈ K, we have that f(x, ...., x) = sup

{
Q(x) : Q ∈ ∂̄nϕε

}
for x ∈ K. Theorem

4 is proved.
Note that in theorem 3 the function b can be taken from B(Xn, R).
From theorem 3 and lemma 9, the validity of the following corollary 1 follows.
Corollary 1. Let X be a real Banach space, cone K allow plastering, f :

K × ... ×K → R a lower semicontinuous n-positive homogeneous function. Then
f(x, ..., x) = sup

{
Q(x) : Q ∈ ∂̄nϕ

}
for x ∈ K.

In particular, if X = Rk and K ⊂ X is a convex closed salient cone, then
introducing the notation

fS(ν) = inf

{
m∑

i=1

f(xi, ..., xi) : ν =
m∑

i=1

xi ⊗ ...⊗ xi, m ∈ N, xi ∈ K

}
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and using lemmas 3.5 and a lemma 3.2, similarly to lemma 1, we conclude that

fS(x ⊗ ... ⊗ x) = f(x, ..., x) for x ∈ K. If ϕ(x) =
{

f(x, ..., x) : x ∈ K,

+∞ : x /∈ K.
, we

assume dnϕ = {Q ∈ B0(Xn) : ϕ(x) ≥Q(x) for x ∈ X}.

The proof of theorem 5. As K ⊂ Rk is a convex closed salient cone, then
according to theorem 5.9 ( [11], p.42), there exists x∗ ∈ X∗ such that x∗(z) > 0 for
z ∈ K, z 6= 0. Then there exists a such that, a = min{x∗(x) : x ∈ K, ‖x‖ = 1 } > 0.
It is clear that x∗(x) ≥ a ‖x‖ for x ∈ K, i.e. cone K allows plastering. Therefore
‖x‖n ≤ b(x, ..., x) for x ∈ K, where 1

an (x∗(x))n = b(x, ..., x), b ∈ B(Xn, R). As
f : K × ... × K → R is an n-positive homogeneous lower semicontinuity function,
then there exists α such that α ‖x‖n ≤ f(x, ..., x) for x ∈ K. If X = Rk, then
∂̄nϕ = dnϕ. Therefore, the validity of theorem 5 follows from theorem 4, i.e. from
theorem 4 it follows that f(x, ..., x) = sup {Q(x) : Q ∈ dnϕ} for x ∈ K. Theorem
5 is proved.

Remark 4. Note that using the other definition of tensor product (see[9], p.38)
one can also prove the obtained results.
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