MATHEMATICS

Adalat Ya. AKHUNDOV, Aynur I. GASANOVA

DETERMINATION OF THE COEFFICIENT IN THE RIGHT SIDE OF THE SYSTEM OF REACTION –DIFFUSION TYPE IN THE PROBLEM WITH A NONLINEAR BOUNDARY CONDITION

Abstract

The goal of the paper is to investigate the well-posedness of the inverse problem on determination of the coefficient in the right side of the system of reactiondiffusion type in the problem with a nonlinear boundary condition. The additional condition is given in nonlocal-integral form. A theorem on uniqueness and 'conditional' stability of the considered problem is proved.

Let \mathbb{R}^n be a real *n*-dimensional Euclidean space, $x = (x_1, ..., x_n)$ be an arbitrary point of a bounded domain $D \subset \mathbb{R}^n$ with rather smooth boundary ∂D , $\Omega = D \times \mathbb{R}^n$ (0;T], $S = \partial D \times [0;T]$, 0 < T be a fixed number.

The spaces $C^{l}(\cdot)$, $C^{l+\alpha}(\cdot)$, $C^{l,l/2}(\cdot)$, $C^{l+\alpha,(l+\alpha)/2}(\cdot)$, $l = 0, 1, 2, \alpha \in (0, 1)$ and the norms in these spaces were determined for instance in [1, p. 12-20]

$$u = (u_1, ..., u_m), \quad ||u||_l = \sum_{k=1}^m ||u_k||_{C^l}, \quad u_{kt} = \frac{\partial u_k}{\partial t}, \quad u_{kx_i} = \frac{\partial u_k}{\partial x_i}, \quad i = \overline{1, n},$$

 $\Delta u_k = \sum_{i=1}^n \frac{\partial^2 u_k}{\partial x_i^2}$ is the Laplace operator, $\frac{\partial u_k}{\partial v}$ is an internal conormal derivative.

We consider the inverse problem on determination of the pair of functions $\{f_k(t), u_k(x,t), k=\overline{1,m}\}\$ from the conditions:

$$u_{kt} - \Delta u_k = f_k(t)q_k(x, t, u), \quad (x, t) \in \Omega, \tag{1}$$

$$u_k(x,0) = \varphi_k(x), \quad x \in \overline{D} = D \cup \partial D$$
 (2)

$$\frac{\partial u_k}{\partial v} = \psi_k(x, t, u), \quad (x, t) \in S \tag{3}$$

$$\int_{D} u_k(x,t)dx = h_k(t), \ t \in [0,T], \tag{4}$$

where $g_k(x,t,p)$, $\varphi_k(x)$, $\psi_k(x,t,p)$, $h_k(t)$ are the given functions.

The coefficient inverse problems were studied in the papers [2-4] (see also references in these papers).

For the input data of problem (1)-(4) we make the following assumptions:

 1^0 . $g_k(x,t,p) \in C_{x,t}^{\alpha,\alpha/2}(\overline{\Omega} \times \mathbb{R}^m)$ there exists $c_1 > 0$, such that for any

 $(x,t) \in \overline{\Omega} \text{ and } p_1, p_2 \in R^m : |g_k(x,t,p_1) - g_k(x,t,p_2)| \le c_1 |p_1 - p_2|;$

 2^0 . $\varphi_k(x) \in C^{2+\alpha}(\overline{D});$

 3^0 . $\psi_k(x,t,p) \in C_{x,t}^{\alpha,\alpha/2}(\overline{\Omega} \times \mathbb{R}^m)$, there exists $c_2 > 0$ such that for any

$$(x,t) \in \overline{\Omega}$$
 and $p_1, p_2 \in R^m : |\psi_k(x,t,p_1) - \psi_k(x,t,p_2)| \le c_2 |p_1 - p_2|;$
 $4^0. \ h_k(t) \in C^{2+\alpha}[0,T].$

Definition 1. We call the pair of functions $\{f_k(t), u_k(x,t)\}$ the solution of problem (1)-(4) if:

- 1) $f_k(t) \in C[0,T];$
- 2) $u_k(x,t) \in C^{2,1}(\Omega) \cap C^{1,0}(\overline{\Omega});$
- 3) relations (1)-(4) are satisfied for these functions, and conditions (3) is satisfied in the following way:

$$\frac{\partial u_k(x,t)}{\partial v(x,t)} = \lim_{\substack{y \to x \\ y \neq x}} \frac{\partial u_k(y,t)}{\partial v(x,t)},$$

where σ is any closed cone with the vertex x, contained in $D \cup \{x\}$.

The uniqueness theorem and also estimation of stability of the inverse problems solution occupies a central place in investigation of their well-posedness issues. In the paper, under more general assumptions, the uniqueness of the solution of problem (1)-(4) is proved and the estimation characterizing the "conditional" stability of the solution is established.

Let $\{f_k^i(t), u_k^i(x,t), k = \overline{1,m}\}$ be the solution of problem (1)-(4) corresponding to the data $g_k^i(x, t, u^i), \varphi_k^i(x), \psi_k^i(x, t, u^i), h_k^i(t), i = 1, 2.$

Definition 2. Say that the solution of problem (1)-(4) is stable if for any $\varepsilon > 0$ there will be found such $\delta\left(\varepsilon\right) > 0$ that for $\left\|g^{1} - g^{2}\right\| < \delta$, $\left\|\varphi^{1} - \varphi^{2}\right\| < \delta$, $\left\|\psi^{1} - \psi^{2}\right\| < \delta$, $\left\|h^{1} - h^{2}\right\| < \delta$ the inequality $\left\|u^{1} - u^{2}\right\| + \left\|f^{1} - f^{2}\right\| \leq \delta$ ε is fulfilled.

Theorem. Let:

- 1. $g_k^i(x,t,u^i)$, $\varphi_k^i(x)$, $\psi_k^i(x,t,u^i)$, $h_k^i(t)$, $k=\overline{1,m}, i=1,2$ satisfy conditions 1^0-4^0 , respectively;
- 2. there exist the solutions $\{f_k^i(t), u_k^i(x,t), k = \overline{1,m}, i = 1,2\}$ of problem (1)-(4) in the sense of definition 1, and they belong to the set

$$K_{\alpha} = \left\{ (f, u) \middle| f_k(t) \in C^{\alpha}[0, T], \ u_k(x, t) \in C^{2 + \alpha, 1 + \alpha/2} \left(\overline{\Omega}\right), \ k = 1, m \right\}.$$

Then there exists $T^* > 0$ such that for $(x,t) \in \overline{D} \times [0,T^*]$ the solution of problem (1)-(4) is unique and the following stability estimation is true:

$$||u^{1} - u^{2}||_{0} + ||f^{1} - f^{2}||_{0} \le$$

$$\le c_{3} [||g^{1} - g^{2}||_{0} + ||\varphi^{1} - \varphi^{2}||_{2} + ||\psi^{1} - \psi^{2}||_{0} + ||h^{1} - h^{2}||_{1}],$$
(5)

where $c_3 > 0$ depends on the data of problem (1)-(4) and the set K_{α} .

Proof of the theorem. At first prove the validity of estimation (5). In order to get the uniqueness theorem , in the reasonings conducted below the input data should be everywhere supposed to be identically equal to zero.

Allowing for (2), from equation (1) and the theorem's conditions, for the function $f_k(t)$ we get

$$f_k(t) = \left[h'_k(t) - \int_{\partial D} \frac{\partial u_k}{\partial v} d\eta \right] \setminus \int_{D} g_k(x, t, u) dx, \quad t \in [0, T],$$
 (6)

Transactions of NAS of Azerbaijan ______[Determination of the coefficient in the ...]

 $dx = dx_1...dx_n, \ d\eta = d\eta...d\eta_n$ is the element of the surface ∂D .

Denote

$$z_k(x,t) = u_k^1(x,t) - u_k^2(x,t), \ \lambda_k(t) = f_k^1(t) - f_k^3(t),$$

$$\delta_{1k}(x,t,p) = g_k^1(x,t,p) - g_k^2(x,t,p), \ \delta_{2k}(x) = \varphi_k^1(x) - \varphi_k^2(x),$$

$$\delta_{3k}(x,t,p) = \psi_k^1(x,t,p) - \psi_k^2(x,t,p), \ \delta_{4k}(t) = h_k^1(t) - h_k^2(t).$$

We can verify that the functions $\lambda_k(t)$, $w_k(x,t) = z_k(x,t) - \delta_{2k}(x)$ satisfy the relations of the system:

$$w_{kt} - \Delta w_k = \lambda_k(t)g_k^1(x, t, u^1) + F_k(x, t), \quad (x, t) \in \Omega,$$
 (7)

$$w_k(x,0) = 0, \ x \in \overline{D}; \quad \frac{\partial w_k}{\partial v}(x,t) = \Psi_k(x,t), \quad (x,t) \in S$$
 (8)

$$\lambda_k(t) = \left(-\int_{\partial D} \frac{\partial z_k}{\partial v} d\eta\right) \setminus \int_{D} g_k^1(x, t, u^1) dx + H_k(t), \tag{9}$$

where

$$\begin{split} F_{k}(x,t) &= \Delta \delta_{2k}(x) + f_{k}^{2}(t)\delta_{1k}(x,t,u^{1}) + g_{k}^{2}(x,t,u^{1}) - g_{k}^{2}(x,t,u^{2}), \\ \Psi(x,t) &= \delta_{3k}(x,t,u^{1}) - \frac{\partial \delta_{2}(x)}{\partial v} + \psi_{k}^{2}(x,t,u^{1}) - \psi_{k}^{2}(x,t,u^{2}), \\ H_{k}(t) &= \left\{ \delta_{4kt}(t) \int_{D} g_{k}^{2}(x,t,u^{2}) dx + \left[h_{kt}^{2}(t) - \int_{\partial D} \frac{\partial u_{k}^{2}}{\partial v} d\eta \right] \times \right. \\ &\times \left. \left[\int_{D} \left(g_{k}^{1}(x,t,u^{2}) - g_{k}^{1}(x,t,u^{1}) \right) dx - \int_{D} \delta_{1k}(x,t,u^{2}) dx \right] \right\} \setminus \\ &\left. \left[\int_{D} g_{k}^{1}(x,t,u^{1}) dx \int_{D} g_{k}^{2}(x,t,u^{2}) dt \right]. \end{split}$$

From the conditions of the theorem it follows that there exists the classic solution of problem (7),(8) on determination of $w_k(x,t)$ and it may be represented in the form [5, p. 182]:

$$w_k(x,t) = \int_0^t \int_D \Gamma_k(x,t;\xi,\tau) \left[\lambda_k(\tau) g_k^1(\xi,\tau,u^1) + F_k(\xi,\tau) \right] d\xi d\tau +$$

$$+ \int_0^t \int_{\partial D} \Gamma_k(x,t;\xi,\tau) \rho_k(\xi,\tau) d\eta d\tau, \tag{10}$$

where $\Gamma_k(x,t;\xi,\tau)$ is the fundamental solution of the equation, $w_{kt} - \Delta w_k = 0$, $d\xi = d\xi_1...d\xi_n$, $d\eta$ is the element of the surface ∂D , $\rho_k(x,t)$ is the continuous bounded solution of the following integral equation [5, p. 183]

$$\rho_{k}(x,t) = 2 \int_{0}^{t} \int_{\partial D} \frac{\Gamma_{k}(x,t;\xi,\tau)}{\partial v(x,t)} \left[\lambda_{k}(\tau) g_{k}^{1}(\xi,\tau,u^{1}) + F_{k}(\xi,\tau) \right] d\xi d\tau +$$

$$+2 \int_{0}^{t} \int_{\partial D} \frac{\Gamma_{k}(x,t;\xi,\tau)}{\partial v(x,t)} \rho_{k}(\xi,\tau) d\eta d\tau - 2\Psi_{k}(x,t). \tag{11}$$

Assume

$$\chi = \|u^1 - u^2\|_0 + \|f^1 - f^2\|_0.$$

Estimate the function $|z_k(x,t)|$. Taking into account $z_k(x,t) = w_k(x,t) + \delta_{2k}(x)$, from (10) we get:

$$|z_{k}(x;t)| \leq |w_{k}(x,t)| + |\delta_{2k}(x)| \leq |\delta_{2k}(x)| +$$

$$+ \int_{0}^{t} \int_{D} |\Gamma_{k}(x,t,\xi,\tau)| \left[\left| \lambda_{k}(\tau)g_{k}^{1}(\xi,\tau,u^{1}) \right| + |F_{k}(\xi,\tau)| \right] d\xi d\tau +$$

$$+ \int_{0}^{t} \int_{\partial D} |\Gamma_{k}(x,t,\xi,\tau)| \cdot |\rho_{k}(\xi,\tau)| d\eta d\tau. \tag{12}$$

For the expression $\int_{D} |\Gamma_k(x, t, \xi, \tau)| d\xi$ in the second addend of the right side of (12), the following estimation is true [5, p. 20]

$$\int_{D} |\Gamma_k(x, t, \xi, \tau)| \, d\xi \le c_4. \tag{13}$$

The integrand function $|\lambda_k(t)g_k^1(\xi,t,u^1)| + |F_k(x,t)|$ in the second addend of the right side of (12), by the requirements imposed on the input data and on the set K_{α} satisfies the estimation

$$\left| \lambda_{k}(t)g_{k}^{1}(x,t,u^{1}) \right| + \left| F_{k}(x,t) \right| \leq \left| \lambda_{k}(t)g_{k}^{1}(x,t,u^{1}) \right| +
+ \left| \Delta \delta_{2k}(x) \right| + \left| f_{k}^{2}(t) \right| \cdot \left| \delta_{1k}(x,t,u^{1}) \right| + \left| g_{k}^{2}(x,t,u^{1}) - g_{k}^{2}(x,t,u^{2}) \right| \leq
\leq c_{5} \left[\left\| g^{1} - g^{2} \right\|_{0} + \left\| \varphi^{1} - \varphi^{2} \right\|_{2} \right] + c_{6} \cdot \chi, \quad (x,t) \in \overline{\Omega},$$
(14)

where $c_5, c_6 > 0$ depend on the data of problem (1)-(4) and the set K_{α} .

The expression $\int_{\partial D} |\Gamma_k(x,t;\xi,\tau)| d\eta$ in the third addend of the right side of (12) satisfies the estimation [5, p. 20]

$$\int_{\partial D} |\Gamma_k(x, t; \xi, \tau)| \, d\eta \le c_7. \tag{15}$$

Transactions of NAS of Azerbaijan ______[Determination of the coefficient in the ...]

Taking into account expressions (11), the theorem's conditions, definition of the set K_{α} and the following estimation [5, p. 20]:

$$\int_{D} \left| \frac{\partial \Gamma_k(x, t; \xi, \tau)}{\partial v(x, t)} \right| d\xi \le c_8 (t - \tau)^{-\mu}, \quad \frac{1}{2} < \mu < 1$$

for the function $\rho_k(x,t)$ we get:

$$|\rho_k(x,t)| \le c_9 [\|\delta_1\|_0 + \|\delta_2\|_2 + \|\delta_3\|_0 + \chi] + c_{10} \|\rho\|_0 \cdot t^{1-\mu}, \ (x,t) \in S,$$

where $c_9, c_{10} > 0$ depend on the data of problem (1)-(4) and the set K_{α} .

The last inequality is fulfilled for all $(x,t) \in \overline{D} \times [0,T]$, therefore the following estimation is true:

$$\|\rho\|_{0} \le c_{9} [\|\delta_{1}\|_{0} + \|\delta_{2}\|_{2} + \|\delta_{3}\|_{0} + \chi] + c_{10}t^{1-\mu} \|\rho\|_{0}.$$

Let $0 < T_1 \le T$ be such a number that $c_{10}T_1^{1-\mu} < 1$. Then for all $(x,t) \in \overline{D} \times [0,T_1]$ we have

$$\|\rho\|_{0} \le c_{11} \left[\|\delta_{1}\|_{0} + \|\delta_{2}\|_{2} + \|\delta_{3}\|_{0} + \chi \right], \tag{16}$$

where $c_{11} > 0$ depends on the data of problem (1)-(4) and the set K_{α} .

Taking into account inequalities (13), (14), (15) and (16) for $|z_k(x,t)|$ from (12) we get:

$$|z_k(x,t)| \le c_{12} \left[\|\delta_1\|_0 + \|\delta_2\|_2 + \|\delta_3\|_0 \right] + c_{13}\chi t, \quad (x,t) \in \overline{\Omega}, \tag{17}$$

where $c_{12}, c_{13} > 0$ depend on the data of problem (1)-(4) and the set K_{α} .

Now estimate the function $|\lambda_k(t)|$. From (9) it follows

$$\begin{aligned} |\lambda_k(t)| &\leq \int\limits_{\partial D} \left| \frac{\partial z_k}{\partial v} \right| d\eta \setminus \int\limits_{D} \left| g_k^1(x,t,u^1) \right| dx + \\ &+ \left\{ \left| \delta_{4kt}(t) \right| \int\limits_{D} \left| g_k^2(x,t,u^2) \right| dx + \left(\left| h_{kt}^2 \right| + \int\limits_{\partial D} \left| \frac{\partial u_k^2}{\partial v} \right| d\eta \right) \times \right. \\ &\times \int\limits_{D} \left[\left| \delta_{1k}(x,t,u^2) \right| + \left| g_k^1(x,t,u^1) - g_k^2(x,t,u^2) \right| \right] dx \right\} \setminus \\ &\left. \left| \int\limits_{D} \left| g_k^1(x,t,u^1) \right| dx \int\limits_{D} \left| g_k^2(x,t,u^2) \right| dx, \end{aligned}$$

or

$$|\lambda_k(t)| \le c_{14} \left[\|g^1 - g^2\|_0 + \|h^1 - h^2\|_1 \right] + c_{15} \left[|z_k| + \left| \frac{\partial z_k}{\partial v} \right| \right], \quad t \in [0, T_1]$$

 $c_{14}, c_{15} > 0$ depend on the data of problem (1)-(4) and the set K_{α} .

8______[A.Ya.Akhundov,A.I.Gasanova]

Taking into account (17) and the following estimation:

$$\left| \frac{\partial z_k}{\partial v} \right| \le c_{16} \left[\|\delta_1\|_0 + \|\delta_2\|_2 + \|\delta_3\|_0 \right] + c_{17} \chi t^{1-\mu}, \quad t \in [0, T_1]$$

for $|\lambda_k(t)|$ we get:

$$|\lambda_k(t)| \le c_{18} [\|\delta_1\|_0 + \|\delta_2\|_2 + \|\delta_3\|_0 + \|\delta_4\|_1] + c_{19} \chi t^{1-\mu}, \quad t \in [0, T_1]$$
(18)

care independent $c_{18}, c_{19} > 0$ depend on the data of problem (1)-(4) and the set K_{α} .

Inequalities (17) and (18) are satisfied for any values of $(x,t) \in \overline{D} \times [0,T_1]$. Consequently, combining these inequalities, we get

$$\chi \le c_{20} \left[\|\delta_1\|_0 + \|\delta_2\|_2 + \|\delta_3\|_0 + \|\delta_4\|_1 \right] + c_2 \chi t^{1-\mu},\tag{19}$$

where $c_{20}, c_{21} > 0$ depend on the data of problem (1)-(4) and the set K_{α} .

Now let T_2 $(0 < T_2 \le T)$ be such a number that $c_{21}T_2 < 1$. Then from (19) we get that for $(x,t) \in \overline{D} \times [0,T]^*$, $T^* = \min(T_1,T_2)$, stability estimation (5) for the solution of problem (1)-(4) is true.

The uniqueness of solution of problem (1)-(4) follows from estimation (5) for

$$g_k^1(x,t,u) = g_k^2(x,t,u), \ \varphi_k^1(x) = \varphi_k^2(x), \ \psi_k^1(x,t,u) = \psi_k^2(x,t,u), \ h_k^1(t) = h_k^2(t).$$

The theorem is completely proved.

References

- [1]. Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.I. Linear and quasilinear equations of parabolic type. M., Nauka, 1967, 736 p. (Russian)
- [2]. Akhundov A.Y. Some inverse problems for strong parabolic systems. // Ukraine math. Journal, 2006, vol. 58, No1, pp. 114-123.
- [3]. Ivanchov N.M. Some inverse problems for heat conduction equations with nonlocal boundary conditions. Ukr. matem. zhurnal, 1993, vol. 45, No8, pp. 1066-1071. (Russian)
- [4]. Iskenderov A.D. Many-dimensional inverse problems for linear and quasilinear parabolic equations. // DAN SSSR, 1975, vol. 225, No5, pp. 1005-1008. (Russian)
- [5]. Friedman A. Partial equations of parabolic type. M., Mir, 1968, 427 p. (Russian)

Adalat Ya. Akhundov, Aynur I. Gasanova

Institute of Mathematics and Mechanics of NAS of Azerbaijan.

9, B. Vahabzade str., AZ1141, Baku, Azerbaijan.

Tel.: (99412) 539 47 20 (apt.).

Received September 10, 2012; Revised December 05, 2012.